• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/crypto/
1/*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/moduleparam.h>
23#include <linux/mod_devicetable.h>
24#include <linux/interrupt.h>
25#include <linux/pci.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/mm.h>
29#include <linux/dma-mapping.h>
30#include <linux/scatterlist.h>
31#include <linux/highmem.h>
32#include <linux/crypto.h>
33#include <linux/hw_random.h>
34#include <linux/ktime.h>
35
36#include <crypto/algapi.h>
37#include <crypto/des.h>
38
39#include <asm/kmap_types.h>
40
41//#define HIFN_DEBUG
42
43#ifdef HIFN_DEBUG
44#define dprintk(f, a...) 	printk(f, ##a)
45#else
46#define dprintk(f, a...)	do {} while (0)
47#endif
48
49static char hifn_pll_ref[sizeof("extNNN")] = "ext";
50module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
51MODULE_PARM_DESC(hifn_pll_ref,
52		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
53
54static atomic_t hifn_dev_number;
55
56#define ACRYPTO_OP_DECRYPT	0
57#define ACRYPTO_OP_ENCRYPT	1
58#define ACRYPTO_OP_HMAC		2
59#define ACRYPTO_OP_RNG		3
60
61#define ACRYPTO_MODE_ECB		0
62#define ACRYPTO_MODE_CBC		1
63#define ACRYPTO_MODE_CFB		2
64#define ACRYPTO_MODE_OFB		3
65
66#define ACRYPTO_TYPE_AES_128	0
67#define ACRYPTO_TYPE_AES_192	1
68#define ACRYPTO_TYPE_AES_256	2
69#define ACRYPTO_TYPE_3DES	3
70#define ACRYPTO_TYPE_DES	4
71
72#define PCI_VENDOR_ID_HIFN		0x13A3
73#define PCI_DEVICE_ID_HIFN_7955		0x0020
74#define	PCI_DEVICE_ID_HIFN_7956		0x001d
75
76/* I/O region sizes */
77
78#define HIFN_BAR0_SIZE			0x1000
79#define HIFN_BAR1_SIZE			0x2000
80#define HIFN_BAR2_SIZE			0x8000
81
82/* DMA registres */
83
84#define HIFN_DMA_CRA 			0x0C	/* DMA Command Ring Address */
85#define HIFN_DMA_SDRA 			0x1C	/* DMA Source Data Ring Address */
86#define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
87#define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
88#define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
89#define HIFN_DMA_INTREN 		0x44	/* DMA Interrupt Enable */
90#define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
91#define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
92#define HIFN_CHIP_ID			0x98	/* Chip ID */
93
94/*
95 * Processing Unit Registers (offset from BASEREG0)
96 */
97#define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
98#define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
99#define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
100#define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
101#define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
102#define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
103#define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
104#define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
105#define	HIFN_0_SPACESIZE	0x20	/* Register space size */
106
107/* Processing Unit Control Register (HIFN_0_PUCTRL) */
108#define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
109#define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
110#define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
111#define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
112#define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
113
114/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
115#define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
116#define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
117#define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
118#define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
119#define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
120#define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
121#define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
122#define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
123#define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
124#define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
125
126/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
127#define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
128#define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
129#define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
130#define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
131#define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
132#define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
133#define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
134#define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
135#define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
136#define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
137#define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
138#define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
139#define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
140#define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
141#define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
142#define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
143#define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
144#define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
145#define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
146#define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
147#define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
148#define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
149#define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
150
151/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
152#define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
153#define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
154#define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
155#define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
156#define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
157#define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
158#define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
159#define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
160#define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
161#define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
162
163/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
164#define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
165#define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
166#define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
167#define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
168#define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
169#define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
170#define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
171#define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
172#define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
173#define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
174#define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
175#define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
176#define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
177#define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
178#define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
179#define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
180#define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
181
182/* FIFO Status Register (HIFN_0_FIFOSTAT) */
183#define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
184#define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
185
186/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
187#define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
188
189/*
190 * DMA Interface Registers (offset from BASEREG1)
191 */
192#define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
193#define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
194#define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
195#define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
196#define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
197#define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
198#define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
199#define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
200#define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
201#define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
202#define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
203#define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
204#define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
205#define	HIFN_1_REVID		0x98	/* Revision ID */
206#define	HIFN_1_UNLOCK_SECRET1	0xf4
207#define	HIFN_1_UNLOCK_SECRET2	0xfc
208#define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
209#define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
210#define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
211#define	HIFN_1_PUB_OP		0x308	/* Public Operand */
212#define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
213#define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
214#define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
215#define	HIFN_1_RNG_DATA		0x318	/* RNG data */
216#define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
217#define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
218
219/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
220#define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
221#define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
222#define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
223#define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
224#define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
225#define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
226#define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
227#define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
228#define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
229#define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
230#define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
231#define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
232#define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
233#define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
234#define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
235#define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
236#define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
237#define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
238#define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
239#define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
240#define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
241#define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
242#define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
243#define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
244#define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
245#define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
246#define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
247#define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
248#define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
249#define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
250#define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
251#define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
252#define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
253#define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
254#define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
255#define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
256#define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
257#define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
258
259/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
260#define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
261#define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
262#define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
263#define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
264#define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
265#define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
266#define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
267#define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
268#define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
269#define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
270#define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
271#define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
272#define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
273#define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
274#define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
275#define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
276#define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
277#define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
278#define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
279#define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
280#define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
281#define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
282
283/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
284#define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
285#define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
286#define	HIFN_DMACNFG_UNLOCK	0x00000800
287#define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
288#define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
289#define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
290#define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
291#define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
292
293/* PLL configuration register */
294#define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
295#define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
296#define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
297#define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
298#define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
299#define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
300#define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
301#define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
302#define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
303#define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
304#define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
305#define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
306#define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
307#define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
308#define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
309#define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
310#define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
311
312#define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
313
314/* Public key reset register (HIFN_1_PUB_RESET) */
315#define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
316
317/* Public base address register (HIFN_1_PUB_BASE) */
318#define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
319
320/* Public operand length register (HIFN_1_PUB_OPLEN) */
321#define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
322#define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
323#define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
324#define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
325#define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
326#define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
327
328/* Public operation register (HIFN_1_PUB_OP) */
329#define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
330#define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
331#define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
332#define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
333#define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
334#define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
335#define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
336#define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
337#define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
338#define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
339#define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
340#define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
341#define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
342#define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
343#define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
344#define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
345#define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
346#define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
347#define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
348#define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
349
350/* Public status register (HIFN_1_PUB_STATUS) */
351#define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
352#define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
353
354/* Public interrupt enable register (HIFN_1_PUB_IEN) */
355#define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
356
357/* Random number generator config register (HIFN_1_RNG_CONFIG) */
358#define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
359
360#define HIFN_NAMESIZE			32
361#define HIFN_MAX_RESULT_ORDER		5
362
363#define	HIFN_D_CMD_RSIZE		24*1
364#define	HIFN_D_SRC_RSIZE		80*1
365#define	HIFN_D_DST_RSIZE		80*1
366#define	HIFN_D_RES_RSIZE		24*1
367
368#define HIFN_D_DST_DALIGN		4
369
370#define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
371
372#define AES_MIN_KEY_SIZE		16
373#define AES_MAX_KEY_SIZE		32
374
375#define HIFN_DES_KEY_LENGTH		8
376#define HIFN_3DES_KEY_LENGTH		24
377#define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
378#define HIFN_IV_LENGTH			8
379#define HIFN_AES_IV_LENGTH		16
380#define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
381
382#define HIFN_MAC_KEY_LENGTH		64
383#define HIFN_MD5_LENGTH			16
384#define HIFN_SHA1_LENGTH		20
385#define HIFN_MAC_TRUNC_LENGTH		12
386
387#define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
388#define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
389#define HIFN_USED_RESULT		12
390
391struct hifn_desc
392{
393	volatile __le32		l;
394	volatile __le32		p;
395};
396
397struct hifn_dma {
398	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE+1];
399	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE+1];
400	struct hifn_desc	dstr[HIFN_D_DST_RSIZE+1];
401	struct hifn_desc	resr[HIFN_D_RES_RSIZE+1];
402
403	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
404	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
405
406	/*
407	 *  Our current positions for insertion and removal from the descriptor
408	 *  rings.
409	 */
410	volatile int		cmdi, srci, dsti, resi;
411	volatile int		cmdu, srcu, dstu, resu;
412	int			cmdk, srck, dstk, resk;
413};
414
415#define HIFN_FLAG_CMD_BUSY	(1<<0)
416#define HIFN_FLAG_SRC_BUSY	(1<<1)
417#define HIFN_FLAG_DST_BUSY	(1<<2)
418#define HIFN_FLAG_RES_BUSY	(1<<3)
419#define HIFN_FLAG_OLD_KEY	(1<<4)
420
421#define HIFN_DEFAULT_ACTIVE_NUM	5
422
423struct hifn_device
424{
425	char			name[HIFN_NAMESIZE];
426
427	int			irq;
428
429	struct pci_dev		*pdev;
430	void __iomem		*bar[3];
431
432	void			*desc_virt;
433	dma_addr_t		desc_dma;
434
435	u32			dmareg;
436
437	void 			*sa[HIFN_D_RES_RSIZE];
438
439	spinlock_t		lock;
440
441	u32			flags;
442	int			active, started;
443	struct delayed_work	work;
444	unsigned long		reset;
445	unsigned long		success;
446	unsigned long		prev_success;
447
448	u8			snum;
449
450	struct tasklet_struct	tasklet;
451
452	struct crypto_queue 	queue;
453	struct list_head	alg_list;
454
455	unsigned int		pk_clk_freq;
456
457#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
458	unsigned int		rng_wait_time;
459	ktime_t			rngtime;
460	struct hwrng		rng;
461#endif
462};
463
464#define	HIFN_D_LENGTH			0x0000ffff
465#define	HIFN_D_NOINVALID		0x01000000
466#define	HIFN_D_MASKDONEIRQ		0x02000000
467#define	HIFN_D_DESTOVER			0x04000000
468#define	HIFN_D_OVER			0x08000000
469#define	HIFN_D_LAST			0x20000000
470#define	HIFN_D_JUMP			0x40000000
471#define	HIFN_D_VALID			0x80000000
472
473struct hifn_base_command
474{
475	volatile __le16		masks;
476	volatile __le16		session_num;
477	volatile __le16		total_source_count;
478	volatile __le16		total_dest_count;
479};
480
481#define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
482#define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
483#define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
484#define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
485#define	HIFN_BASE_CMD_DECODE		0x2000
486#define	HIFN_BASE_CMD_SRCLEN_M		0xc000
487#define	HIFN_BASE_CMD_SRCLEN_S		14
488#define	HIFN_BASE_CMD_DSTLEN_M		0x3000
489#define	HIFN_BASE_CMD_DSTLEN_S		12
490#define	HIFN_BASE_CMD_LENMASK_HI	0x30000
491#define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
492
493/*
494 * Structure to help build up the command data structure.
495 */
496struct hifn_crypt_command
497{
498	volatile __le16 		masks;
499	volatile __le16 		header_skip;
500	volatile __le16 		source_count;
501	volatile __le16 		reserved;
502};
503
504#define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
505#define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
506#define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
507#define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
508#define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
509#define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
510#define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
511#define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
512#define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
513#define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
514#define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
515#define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
516#define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
517#define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
518#define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
519#define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
520#define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
521#define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
522#define	HIFN_CRYPT_CMD_SRCLEN_S		14
523
524/*
525 * Structure to help build up the command data structure.
526 */
527struct hifn_mac_command
528{
529	volatile __le16 	masks;
530	volatile __le16 	header_skip;
531	volatile __le16 	source_count;
532	volatile __le16 	reserved;
533};
534
535#define	HIFN_MAC_CMD_ALG_MASK		0x0001
536#define	HIFN_MAC_CMD_ALG_SHA1		0x0000
537#define	HIFN_MAC_CMD_ALG_MD5		0x0001
538#define	HIFN_MAC_CMD_MODE_MASK		0x000c
539#define	HIFN_MAC_CMD_MODE_HMAC		0x0000
540#define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
541#define	HIFN_MAC_CMD_MODE_HASH		0x0008
542#define	HIFN_MAC_CMD_MODE_FULL		0x0004
543#define	HIFN_MAC_CMD_TRUNC		0x0010
544#define	HIFN_MAC_CMD_RESULT		0x0020
545#define	HIFN_MAC_CMD_APPEND		0x0040
546#define	HIFN_MAC_CMD_SRCLEN_M		0xc000
547#define	HIFN_MAC_CMD_SRCLEN_S		14
548
549/*
550 * MAC POS IPsec initiates authentication after encryption on encodes
551 * and before decryption on decodes.
552 */
553#define	HIFN_MAC_CMD_POS_IPSEC		0x0200
554#define	HIFN_MAC_CMD_NEW_KEY		0x0800
555
556struct hifn_comp_command
557{
558	volatile __le16 	masks;
559	volatile __le16 	header_skip;
560	volatile __le16 	source_count;
561	volatile __le16 	reserved;
562};
563
564#define	HIFN_COMP_CMD_SRCLEN_M		0xc000
565#define	HIFN_COMP_CMD_SRCLEN_S		14
566#define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
567#define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
568#define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
569#define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
570#define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
571#define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
572#define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
573#define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
574
575struct hifn_base_result
576{
577	volatile __le16 	flags;
578	volatile __le16 	session;
579	volatile __le16 	src_cnt;		/* 15:0 of source count */
580	volatile __le16 	dst_cnt;		/* 15:0 of dest count */
581};
582
583#define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
584#define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
585#define	HIFN_BASE_RES_SRCLEN_S		14
586#define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
587#define	HIFN_BASE_RES_DSTLEN_S		12
588
589struct hifn_comp_result
590{
591	volatile __le16		flags;
592	volatile __le16		crc;
593};
594
595#define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
596#define	HIFN_COMP_RES_LCB_S		8
597#define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
598#define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
599#define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
600
601struct hifn_mac_result
602{
603	volatile __le16 	flags;
604	volatile __le16 	reserved;
605	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
606};
607
608#define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
609#define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
610
611struct hifn_crypt_result
612{
613	volatile __le16		flags;
614	volatile __le16		reserved;
615};
616
617#define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
618
619#ifndef HIFN_POLL_FREQUENCY
620#define	HIFN_POLL_FREQUENCY	0x1
621#endif
622
623#ifndef HIFN_POLL_SCALAR
624#define	HIFN_POLL_SCALAR	0x0
625#endif
626
627#define	HIFN_MAX_SEGLEN 	0xffff		/* maximum dma segment len */
628#define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
629
630struct hifn_crypto_alg
631{
632	struct list_head	entry;
633	struct crypto_alg	alg;
634	struct hifn_device	*dev;
635};
636
637#define ASYNC_SCATTERLIST_CACHE	16
638
639#define ASYNC_FLAGS_MISALIGNED	(1<<0)
640
641struct hifn_cipher_walk
642{
643	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
644	u32			flags;
645	int			num;
646};
647
648struct hifn_context
649{
650	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
651	struct hifn_device	*dev;
652	unsigned int		keysize;
653};
654
655struct hifn_request_context
656{
657	u8			*iv;
658	unsigned int		ivsize;
659	u8			op, type, mode, unused;
660	struct hifn_cipher_walk	walk;
661};
662
663#define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
664
665static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
666{
667	u32 ret;
668
669	ret = readl(dev->bar[0] + reg);
670
671	return ret;
672}
673
674static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
675{
676	u32 ret;
677
678	ret = readl(dev->bar[1] + reg);
679
680	return ret;
681}
682
683static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
684{
685	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
686}
687
688static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
689{
690	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
691}
692
693static void hifn_wait_puc(struct hifn_device *dev)
694{
695	int i;
696	u32 ret;
697
698	for (i=10000; i > 0; --i) {
699		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
700		if (!(ret & HIFN_PUCTRL_RESET))
701			break;
702
703		udelay(1);
704	}
705
706	if (!i)
707		dprintk("%s: Failed to reset PUC unit.\n", dev->name);
708}
709
710static void hifn_reset_puc(struct hifn_device *dev)
711{
712	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
713	hifn_wait_puc(dev);
714}
715
716static void hifn_stop_device(struct hifn_device *dev)
717{
718	hifn_write_1(dev, HIFN_1_DMA_CSR,
719		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
720		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
721	hifn_write_0(dev, HIFN_0_PUIER, 0);
722	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
723}
724
725static void hifn_reset_dma(struct hifn_device *dev, int full)
726{
727	hifn_stop_device(dev);
728
729	/*
730	 * Setting poll frequency and others to 0.
731	 */
732	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
733			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
734	mdelay(1);
735
736	/*
737	 * Reset DMA.
738	 */
739	if (full) {
740		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
741		mdelay(1);
742	} else {
743		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
744				HIFN_DMACNFG_MSTRESET);
745		hifn_reset_puc(dev);
746	}
747
748	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
749			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
750
751	hifn_reset_puc(dev);
752}
753
754static u32 hifn_next_signature(u_int32_t a, u_int cnt)
755{
756	int i;
757	u32 v;
758
759	for (i = 0; i < cnt; i++) {
760
761		/* get the parity */
762		v = a & 0x80080125;
763		v ^= v >> 16;
764		v ^= v >> 8;
765		v ^= v >> 4;
766		v ^= v >> 2;
767		v ^= v >> 1;
768
769		a = (v & 1) ^ (a << 1);
770	}
771
772	return a;
773}
774
775static struct pci2id {
776	u_short		pci_vendor;
777	u_short		pci_prod;
778	char		card_id[13];
779} pci2id[] = {
780	{
781		PCI_VENDOR_ID_HIFN,
782		PCI_DEVICE_ID_HIFN_7955,
783		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
784		  0x00, 0x00, 0x00, 0x00, 0x00 }
785	},
786	{
787		PCI_VENDOR_ID_HIFN,
788		PCI_DEVICE_ID_HIFN_7956,
789		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
790		  0x00, 0x00, 0x00, 0x00, 0x00 }
791	}
792};
793
794#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
795static int hifn_rng_data_present(struct hwrng *rng, int wait)
796{
797	struct hifn_device *dev = (struct hifn_device *)rng->priv;
798	s64 nsec;
799
800	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
801	nsec -= dev->rng_wait_time;
802	if (nsec <= 0)
803		return 1;
804	if (!wait)
805		return 0;
806	ndelay(nsec);
807	return 1;
808}
809
810static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
811{
812	struct hifn_device *dev = (struct hifn_device *)rng->priv;
813
814	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
815	dev->rngtime = ktime_get();
816	return 4;
817}
818
819static int hifn_register_rng(struct hifn_device *dev)
820{
821	/*
822	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
823	 */
824	dev->rng_wait_time	= DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
825				  256;
826
827	dev->rng.name		= dev->name;
828	dev->rng.data_present	= hifn_rng_data_present,
829	dev->rng.data_read	= hifn_rng_data_read,
830	dev->rng.priv		= (unsigned long)dev;
831
832	return hwrng_register(&dev->rng);
833}
834
835static void hifn_unregister_rng(struct hifn_device *dev)
836{
837	hwrng_unregister(&dev->rng);
838}
839#else
840#define hifn_register_rng(dev)		0
841#define hifn_unregister_rng(dev)
842#endif
843
844static int hifn_init_pubrng(struct hifn_device *dev)
845{
846	int i;
847
848	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
849			HIFN_PUBRST_RESET);
850
851	for (i=100; i > 0; --i) {
852		mdelay(1);
853
854		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
855			break;
856	}
857
858	if (!i)
859		dprintk("Chip %s: Failed to initialise public key engine.\n",
860				dev->name);
861	else {
862		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
863		dev->dmareg |= HIFN_DMAIER_PUBDONE;
864		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
865
866		dprintk("Chip %s: Public key engine has been successfully "
867				"initialised.\n", dev->name);
868	}
869
870	/*
871	 * Enable RNG engine.
872	 */
873
874	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
875			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
876	dprintk("Chip %s: RNG engine has been successfully initialised.\n",
877			dev->name);
878
879#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
880	/* First value must be discarded */
881	hifn_read_1(dev, HIFN_1_RNG_DATA);
882	dev->rngtime = ktime_get();
883#endif
884	return 0;
885}
886
887static int hifn_enable_crypto(struct hifn_device *dev)
888{
889	u32 dmacfg, addr;
890	char *offtbl = NULL;
891	int i;
892
893	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
894		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
895				pci2id[i].pci_prod == dev->pdev->device) {
896			offtbl = pci2id[i].card_id;
897			break;
898		}
899	}
900
901	if (offtbl == NULL) {
902		dprintk("Chip %s: Unknown card!\n", dev->name);
903		return -ENODEV;
904	}
905
906	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
907
908	hifn_write_1(dev, HIFN_1_DMA_CNFG,
909			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
910			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
911	mdelay(1);
912	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
913	mdelay(1);
914	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
915	mdelay(1);
916
917	for (i=0; i<12; ++i) {
918		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
919		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
920
921		mdelay(1);
922	}
923	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
924
925	dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
926
927	return 0;
928}
929
930static void hifn_init_dma(struct hifn_device *dev)
931{
932	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
933	u32 dptr = dev->desc_dma;
934	int i;
935
936	for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
937		dma->cmdr[i].p = __cpu_to_le32(dptr +
938				offsetof(struct hifn_dma, command_bufs[i][0]));
939	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
940		dma->resr[i].p = __cpu_to_le32(dptr +
941				offsetof(struct hifn_dma, result_bufs[i][0]));
942
943	/*
944	 * Setup LAST descriptors.
945	 */
946	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
947			offsetof(struct hifn_dma, cmdr[0]));
948	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
949			offsetof(struct hifn_dma, srcr[0]));
950	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
951			offsetof(struct hifn_dma, dstr[0]));
952	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
953			offsetof(struct hifn_dma, resr[0]));
954
955	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
956	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
957	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
958}
959
960/*
961 * Initialize the PLL. We need to know the frequency of the reference clock
962 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
963 * allows us to operate without the risk of overclocking the chip. If it
964 * actually uses 33MHz, the chip will operate at half the speed, this can be
965 * overriden by specifying the frequency as module parameter (pci33).
966 *
967 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
968 * stable clock and the PCI clock frequency may vary, so the default is the
969 * external clock. There is no way to find out its frequency, we default to
970 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
971 * has an external crystal populated at 66MHz.
972 */
973static void hifn_init_pll(struct hifn_device *dev)
974{
975	unsigned int freq, m;
976	u32 pllcfg;
977
978	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
979
980	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
981		pllcfg |= HIFN_PLL_REF_CLK_PLL;
982	else
983		pllcfg |= HIFN_PLL_REF_CLK_HBI;
984
985	if (hifn_pll_ref[3] != '\0')
986		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
987	else {
988		freq = 66;
989		printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
990				 "override with hifn_pll_ref=%.3s<frequency>\n",
991		       freq, hifn_pll_ref);
992	}
993
994	m = HIFN_PLL_FCK_MAX / freq;
995
996	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
997	if (m <= 8)
998		pllcfg |= HIFN_PLL_IS_1_8;
999	else
1000		pllcfg |= HIFN_PLL_IS_9_12;
1001
1002	/* Select clock source and enable clock bypass */
1003	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1004		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1005
1006	/* Let the chip lock to the input clock */
1007	mdelay(10);
1008
1009	/* Disable clock bypass */
1010	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1011		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1012
1013	/* Switch the engines to the PLL */
1014	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1016
1017	/*
1018	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1019	 * calculate the minimum time between two reads of the rng. Since 33MHz
1020	 * is actually 33.333... we overestimate the frequency here, resulting
1021	 * in slightly larger intervals.
1022	 */
1023	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1024}
1025
1026static void hifn_init_registers(struct hifn_device *dev)
1027{
1028	u32 dptr = dev->desc_dma;
1029
1030	/* Initialization magic... */
1031	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1032	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1033	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1034
1035	/* write all 4 ring address registers */
1036	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1037				offsetof(struct hifn_dma, cmdr[0]));
1038	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1039				offsetof(struct hifn_dma, srcr[0]));
1040	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1041				offsetof(struct hifn_dma, dstr[0]));
1042	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1043				offsetof(struct hifn_dma, resr[0]));
1044
1045	mdelay(2);
1046	hifn_write_1(dev, HIFN_1_DMA_CSR,
1047	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1048	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1049	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1050	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1051	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1052	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1053	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1054	    HIFN_DMACSR_S_WAIT |
1055	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1056	    HIFN_DMACSR_C_WAIT |
1057	    HIFN_DMACSR_ENGINE |
1058	    HIFN_DMACSR_PUBDONE);
1059	hifn_read_1(dev, HIFN_1_DMA_CSR);
1060
1061	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1062	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1063	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1064	    HIFN_DMAIER_ENGINE;
1065	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1066
1067	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1068	hifn_read_1(dev, HIFN_1_DMA_IER);
1069	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1070	hifn_init_pll(dev);
1071
1072	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1073	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1074	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1075	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1076	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1077}
1078
1079static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1080		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1081{
1082	struct hifn_base_command *base_cmd;
1083	u8 *buf_pos = buf;
1084
1085	base_cmd = (struct hifn_base_command *)buf_pos;
1086	base_cmd->masks = __cpu_to_le16(mask);
1087	base_cmd->total_source_count =
1088		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1089	base_cmd->total_dest_count =
1090		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1091
1092	dlen >>= 16;
1093	slen >>= 16;
1094	base_cmd->session_num = __cpu_to_le16(snum |
1095	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1096	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1097
1098	return sizeof(struct hifn_base_command);
1099}
1100
1101static int hifn_setup_crypto_command(struct hifn_device *dev,
1102		u8 *buf, unsigned dlen, unsigned slen,
1103		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1104{
1105	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1106	struct hifn_crypt_command *cry_cmd;
1107	u8 *buf_pos = buf;
1108	u16 cmd_len;
1109
1110	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1111
1112	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1113	dlen >>= 16;
1114	cry_cmd->masks = __cpu_to_le16(mode |
1115			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1116			 HIFN_CRYPT_CMD_SRCLEN_M));
1117	cry_cmd->header_skip = 0;
1118	cry_cmd->reserved = 0;
1119
1120	buf_pos += sizeof(struct hifn_crypt_command);
1121
1122	dma->cmdu++;
1123	if (dma->cmdu > 1) {
1124		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1125		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1126	}
1127
1128	if (keylen) {
1129		memcpy(buf_pos, key, keylen);
1130		buf_pos += keylen;
1131	}
1132	if (ivsize) {
1133		memcpy(buf_pos, iv, ivsize);
1134		buf_pos += ivsize;
1135	}
1136
1137	cmd_len = buf_pos - buf;
1138
1139	return cmd_len;
1140}
1141
1142static int hifn_setup_cmd_desc(struct hifn_device *dev,
1143		struct hifn_context *ctx, struct hifn_request_context *rctx,
1144		void *priv, unsigned int nbytes)
1145{
1146	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1147	int cmd_len, sa_idx;
1148	u8 *buf, *buf_pos;
1149	u16 mask;
1150
1151	sa_idx = dma->cmdi;
1152	buf_pos = buf = dma->command_bufs[dma->cmdi];
1153
1154	mask = 0;
1155	switch (rctx->op) {
1156		case ACRYPTO_OP_DECRYPT:
1157			mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1158			break;
1159		case ACRYPTO_OP_ENCRYPT:
1160			mask = HIFN_BASE_CMD_CRYPT;
1161			break;
1162		case ACRYPTO_OP_HMAC:
1163			mask = HIFN_BASE_CMD_MAC;
1164			break;
1165		default:
1166			goto err_out;
1167	}
1168
1169	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1170			nbytes, mask, dev->snum);
1171
1172	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1173		u16 md = 0;
1174
1175		if (ctx->keysize)
1176			md |= HIFN_CRYPT_CMD_NEW_KEY;
1177		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1178			md |= HIFN_CRYPT_CMD_NEW_IV;
1179
1180		switch (rctx->mode) {
1181			case ACRYPTO_MODE_ECB:
1182				md |= HIFN_CRYPT_CMD_MODE_ECB;
1183				break;
1184			case ACRYPTO_MODE_CBC:
1185				md |= HIFN_CRYPT_CMD_MODE_CBC;
1186				break;
1187			case ACRYPTO_MODE_CFB:
1188				md |= HIFN_CRYPT_CMD_MODE_CFB;
1189				break;
1190			case ACRYPTO_MODE_OFB:
1191				md |= HIFN_CRYPT_CMD_MODE_OFB;
1192				break;
1193			default:
1194				goto err_out;
1195		}
1196
1197		switch (rctx->type) {
1198			case ACRYPTO_TYPE_AES_128:
1199				if (ctx->keysize != 16)
1200					goto err_out;
1201				md |= HIFN_CRYPT_CMD_KSZ_128 |
1202					HIFN_CRYPT_CMD_ALG_AES;
1203				break;
1204			case ACRYPTO_TYPE_AES_192:
1205				if (ctx->keysize != 24)
1206					goto err_out;
1207				md |= HIFN_CRYPT_CMD_KSZ_192 |
1208					HIFN_CRYPT_CMD_ALG_AES;
1209				break;
1210			case ACRYPTO_TYPE_AES_256:
1211				if (ctx->keysize != 32)
1212					goto err_out;
1213				md |= HIFN_CRYPT_CMD_KSZ_256 |
1214					HIFN_CRYPT_CMD_ALG_AES;
1215				break;
1216			case ACRYPTO_TYPE_3DES:
1217				if (ctx->keysize != 24)
1218					goto err_out;
1219				md |= HIFN_CRYPT_CMD_ALG_3DES;
1220				break;
1221			case ACRYPTO_TYPE_DES:
1222				if (ctx->keysize != 8)
1223					goto err_out;
1224				md |= HIFN_CRYPT_CMD_ALG_DES;
1225				break;
1226			default:
1227				goto err_out;
1228		}
1229
1230		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1231				nbytes, nbytes, ctx->key, ctx->keysize,
1232				rctx->iv, rctx->ivsize, md);
1233	}
1234
1235	dev->sa[sa_idx] = priv;
1236	dev->started++;
1237
1238	cmd_len = buf_pos - buf;
1239	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1240			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1241
1242	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1243		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1244			HIFN_D_VALID | HIFN_D_LAST |
1245			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1246		dma->cmdi = 0;
1247	} else
1248		dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1249
1250	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1251		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1252		dev->flags |= HIFN_FLAG_CMD_BUSY;
1253	}
1254	return 0;
1255
1256err_out:
1257	return -EINVAL;
1258}
1259
1260static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1261		unsigned int offset, unsigned int size, int last)
1262{
1263	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1264	int idx;
1265	dma_addr_t addr;
1266
1267	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1268
1269	idx = dma->srci;
1270
1271	dma->srcr[idx].p = __cpu_to_le32(addr);
1272	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1273			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1274
1275	if (++idx == HIFN_D_SRC_RSIZE) {
1276		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1277				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1278				(last ? HIFN_D_LAST : 0));
1279		idx = 0;
1280	}
1281
1282	dma->srci = idx;
1283	dma->srcu++;
1284
1285	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1286		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1287		dev->flags |= HIFN_FLAG_SRC_BUSY;
1288	}
1289
1290	return size;
1291}
1292
1293static void hifn_setup_res_desc(struct hifn_device *dev)
1294{
1295	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1296
1297	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1298			HIFN_D_VALID | HIFN_D_LAST);
1299	/*
1300	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1301	 *					HIFN_D_LAST);
1302	 */
1303
1304	if (++dma->resi == HIFN_D_RES_RSIZE) {
1305		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1306				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1307		dma->resi = 0;
1308	}
1309
1310	dma->resu++;
1311
1312	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1313		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1314		dev->flags |= HIFN_FLAG_RES_BUSY;
1315	}
1316}
1317
1318static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1319		unsigned offset, unsigned size, int last)
1320{
1321	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1322	int idx;
1323	dma_addr_t addr;
1324
1325	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1326
1327	idx = dma->dsti;
1328	dma->dstr[idx].p = __cpu_to_le32(addr);
1329	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1330			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1331
1332	if (++idx == HIFN_D_DST_RSIZE) {
1333		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1334				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1335				(last ? HIFN_D_LAST : 0));
1336		idx = 0;
1337	}
1338	dma->dsti = idx;
1339	dma->dstu++;
1340
1341	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1342		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1343		dev->flags |= HIFN_FLAG_DST_BUSY;
1344	}
1345}
1346
1347static int hifn_setup_dma(struct hifn_device *dev,
1348		struct hifn_context *ctx, struct hifn_request_context *rctx,
1349		struct scatterlist *src, struct scatterlist *dst,
1350		unsigned int nbytes, void *priv)
1351{
1352	struct scatterlist *t;
1353	struct page *spage, *dpage;
1354	unsigned int soff, doff;
1355	unsigned int n, len;
1356
1357	n = nbytes;
1358	while (n) {
1359		spage = sg_page(src);
1360		soff = src->offset;
1361		len = min(src->length, n);
1362
1363		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1364
1365		src++;
1366		n -= len;
1367	}
1368
1369	t = &rctx->walk.cache[0];
1370	n = nbytes;
1371	while (n) {
1372		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1373			BUG_ON(!sg_page(t));
1374			dpage = sg_page(t);
1375			doff = 0;
1376			len = t->length;
1377		} else {
1378			BUG_ON(!sg_page(dst));
1379			dpage = sg_page(dst);
1380			doff = dst->offset;
1381			len = dst->length;
1382		}
1383		len = min(len, n);
1384
1385		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1386
1387		dst++;
1388		t++;
1389		n -= len;
1390	}
1391
1392	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1393	hifn_setup_res_desc(dev);
1394	return 0;
1395}
1396
1397static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1398		int num, gfp_t gfp_flags)
1399{
1400	int i;
1401
1402	num = min(ASYNC_SCATTERLIST_CACHE, num);
1403	sg_init_table(w->cache, num);
1404
1405	w->num = 0;
1406	for (i=0; i<num; ++i) {
1407		struct page *page = alloc_page(gfp_flags);
1408		struct scatterlist *s;
1409
1410		if (!page)
1411			break;
1412
1413		s = &w->cache[i];
1414
1415		sg_set_page(s, page, PAGE_SIZE, 0);
1416		w->num++;
1417	}
1418
1419	return i;
1420}
1421
1422static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1423{
1424	int i;
1425
1426	for (i=0; i<w->num; ++i) {
1427		struct scatterlist *s = &w->cache[i];
1428
1429		__free_page(sg_page(s));
1430
1431		s->length = 0;
1432	}
1433
1434	w->num = 0;
1435}
1436
1437static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1438		unsigned int size, unsigned int *nbytesp)
1439{
1440	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1441	int idx = 0;
1442
1443	if (drest < size || size > nbytes)
1444		return -EINVAL;
1445
1446	while (size) {
1447		copy = min(drest, min(size, dst->length));
1448
1449		size -= copy;
1450		drest -= copy;
1451		nbytes -= copy;
1452
1453		dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1454				__func__, copy, size, drest, nbytes);
1455
1456		dst++;
1457		idx++;
1458	}
1459
1460	*nbytesp = nbytes;
1461	*drestp = drest;
1462
1463	return idx;
1464}
1465
1466static int hifn_cipher_walk(struct ablkcipher_request *req,
1467		struct hifn_cipher_walk *w)
1468{
1469	struct scatterlist *dst, *t;
1470	unsigned int nbytes = req->nbytes, offset, copy, diff;
1471	int idx, tidx, err;
1472
1473	tidx = idx = 0;
1474	offset = 0;
1475	while (nbytes) {
1476		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1477			return -EINVAL;
1478
1479		dst = &req->dst[idx];
1480
1481		dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1482			__func__, dst->length, dst->offset, offset, nbytes);
1483
1484		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1485		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1486		    offset) {
1487			unsigned slen = min(dst->length - offset, nbytes);
1488			unsigned dlen = PAGE_SIZE;
1489
1490			t = &w->cache[idx];
1491
1492			err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1493			if (err < 0)
1494				return err;
1495
1496			idx += err;
1497
1498			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1499			diff = slen & (HIFN_D_DST_DALIGN - 1);
1500
1501			if (dlen < nbytes) {
1502				/*
1503				 * Destination page does not have enough space
1504				 * to put there additional blocksized chunk,
1505				 * so we mark that page as containing only
1506				 * blocksize aligned chunks:
1507				 * 	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1508				 * and increase number of bytes to be processed
1509				 * in next chunk:
1510				 * 	nbytes += diff;
1511				 */
1512				nbytes += diff;
1513
1514				/*
1515				 * Temporary of course...
1516				 * Kick author if you will catch this one.
1517				 */
1518				printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1519					"slen: %u, offset: %u.\n",
1520					__func__, dlen, nbytes, slen, offset);
1521				printk(KERN_ERR "%s: please contact author to fix this "
1522					"issue, generally you should not catch "
1523					"this path under any condition but who "
1524					"knows how did you use crypto code.\n"
1525					"Thank you.\n",	__func__);
1526				BUG();
1527			} else {
1528				copy += diff + nbytes;
1529
1530				dst = &req->dst[idx];
1531
1532				err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1533				if (err < 0)
1534					return err;
1535
1536				idx += err;
1537			}
1538
1539			t->length = copy;
1540			t->offset = offset;
1541		} else {
1542			nbytes -= min(dst->length, nbytes);
1543			idx++;
1544		}
1545
1546		tidx++;
1547	}
1548
1549	return tidx;
1550}
1551
1552static int hifn_setup_session(struct ablkcipher_request *req)
1553{
1554	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1555	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1556	struct hifn_device *dev = ctx->dev;
1557	unsigned long dlen, flags;
1558	unsigned int nbytes = req->nbytes, idx = 0;
1559	int err = -EINVAL, sg_num;
1560	struct scatterlist *dst;
1561
1562	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1563		goto err_out_exit;
1564
1565	rctx->walk.flags = 0;
1566
1567	while (nbytes) {
1568		dst = &req->dst[idx];
1569		dlen = min(dst->length, nbytes);
1570
1571		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1572		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1573			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1574
1575		nbytes -= dlen;
1576		idx++;
1577	}
1578
1579	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1580		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1581		if (err < 0)
1582			return err;
1583	}
1584
1585	sg_num = hifn_cipher_walk(req, &rctx->walk);
1586	if (sg_num < 0) {
1587		err = sg_num;
1588		goto err_out_exit;
1589	}
1590
1591	spin_lock_irqsave(&dev->lock, flags);
1592	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1593		err = -EAGAIN;
1594		goto err_out;
1595	}
1596
1597	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1598	if (err)
1599		goto err_out;
1600
1601	dev->snum++;
1602
1603	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1604	spin_unlock_irqrestore(&dev->lock, flags);
1605
1606	return 0;
1607
1608err_out:
1609	spin_unlock_irqrestore(&dev->lock, flags);
1610err_out_exit:
1611	if (err) {
1612		printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1613				"type: %u, err: %d.\n",
1614			dev->name, rctx->iv, rctx->ivsize,
1615			ctx->key, ctx->keysize,
1616			rctx->mode, rctx->op, rctx->type, err);
1617	}
1618
1619	return err;
1620}
1621
1622static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1623{
1624	int n, err;
1625	u8 src[16];
1626	struct hifn_context ctx;
1627	struct hifn_request_context rctx;
1628	u8 fips_aes_ecb_from_zero[16] = {
1629		0x66, 0xE9, 0x4B, 0xD4,
1630		0xEF, 0x8A, 0x2C, 0x3B,
1631		0x88, 0x4C, 0xFA, 0x59,
1632		0xCA, 0x34, 0x2B, 0x2E};
1633	struct scatterlist sg;
1634
1635	memset(src, 0, sizeof(src));
1636	memset(ctx.key, 0, sizeof(ctx.key));
1637
1638	ctx.dev = dev;
1639	ctx.keysize = 16;
1640	rctx.ivsize = 0;
1641	rctx.iv = NULL;
1642	rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1643	rctx.mode = ACRYPTO_MODE_ECB;
1644	rctx.type = ACRYPTO_TYPE_AES_128;
1645	rctx.walk.cache[0].length = 0;
1646
1647	sg_init_one(&sg, &src, sizeof(src));
1648
1649	err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1650	if (err)
1651		goto err_out;
1652
1653	dev->started = 0;
1654	msleep(200);
1655
1656	dprintk("%s: decoded: ", dev->name);
1657	for (n=0; n<sizeof(src); ++n)
1658		dprintk("%02x ", src[n]);
1659	dprintk("\n");
1660	dprintk("%s: FIPS   : ", dev->name);
1661	for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1662		dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1663	dprintk("\n");
1664
1665	if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1666		printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1667				"passed.\n", dev->name);
1668		return 0;
1669	}
1670
1671err_out:
1672	printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1673	return -1;
1674}
1675
1676static int hifn_start_device(struct hifn_device *dev)
1677{
1678	int err;
1679
1680	dev->started = dev->active = 0;
1681	hifn_reset_dma(dev, 1);
1682
1683	err = hifn_enable_crypto(dev);
1684	if (err)
1685		return err;
1686
1687	hifn_reset_puc(dev);
1688
1689	hifn_init_dma(dev);
1690
1691	hifn_init_registers(dev);
1692
1693	hifn_init_pubrng(dev);
1694
1695	return 0;
1696}
1697
1698static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1699		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1700{
1701	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1702	void *daddr;
1703	int idx = 0;
1704
1705	if (srest < size || size > nbytes)
1706		return -EINVAL;
1707
1708	while (size) {
1709		copy = min(srest, min(dst->length, size));
1710
1711		daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1712		memcpy(daddr + dst->offset + offset, saddr, copy);
1713		kunmap_atomic(daddr, KM_IRQ0);
1714
1715		nbytes -= copy;
1716		size -= copy;
1717		srest -= copy;
1718		saddr += copy;
1719		offset = 0;
1720
1721		dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1722				__func__, copy, size, srest, nbytes);
1723
1724		dst++;
1725		idx++;
1726	}
1727
1728	*nbytesp = nbytes;
1729	*srestp = srest;
1730
1731	return idx;
1732}
1733
1734static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1735{
1736	unsigned long flags;
1737
1738	spin_lock_irqsave(&dev->lock, flags);
1739	dev->sa[i] = NULL;
1740	dev->started--;
1741	if (dev->started < 0)
1742		printk("%s: started: %d.\n", __func__, dev->started);
1743	spin_unlock_irqrestore(&dev->lock, flags);
1744	BUG_ON(dev->started < 0);
1745}
1746
1747static void hifn_process_ready(struct ablkcipher_request *req, int error)
1748{
1749	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1750
1751	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1752		unsigned int nbytes = req->nbytes;
1753		int idx = 0, err;
1754		struct scatterlist *dst, *t;
1755		void *saddr;
1756
1757		while (nbytes) {
1758			t = &rctx->walk.cache[idx];
1759			dst = &req->dst[idx];
1760
1761			dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1762				"sg_page(dst): %p, dst->length: %u, "
1763				"nbytes: %u.\n",
1764				__func__, sg_page(t), t->length,
1765				sg_page(dst), dst->length, nbytes);
1766
1767			if (!t->length) {
1768				nbytes -= min(dst->length, nbytes);
1769				idx++;
1770				continue;
1771			}
1772
1773			saddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1774
1775			err = ablkcipher_get(saddr, &t->length, t->offset,
1776					dst, nbytes, &nbytes);
1777			if (err < 0) {
1778				kunmap_atomic(saddr, KM_SOFTIRQ0);
1779				break;
1780			}
1781
1782			idx += err;
1783			kunmap_atomic(saddr, KM_SOFTIRQ0);
1784		}
1785
1786		hifn_cipher_walk_exit(&rctx->walk);
1787	}
1788
1789	req->base.complete(&req->base, error);
1790}
1791
1792static void hifn_clear_rings(struct hifn_device *dev, int error)
1793{
1794	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1795	int i, u;
1796
1797	dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1798			"k: %d.%d.%d.%d.\n",
1799			dev->name,
1800			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1801			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1802			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1803
1804	i = dma->resk; u = dma->resu;
1805	while (u != 0) {
1806		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1807			break;
1808
1809		if (dev->sa[i]) {
1810			dev->success++;
1811			dev->reset = 0;
1812			hifn_process_ready(dev->sa[i], error);
1813			hifn_complete_sa(dev, i);
1814		}
1815
1816		if (++i == HIFN_D_RES_RSIZE)
1817			i = 0;
1818		u--;
1819	}
1820	dma->resk = i; dma->resu = u;
1821
1822	i = dma->srck; u = dma->srcu;
1823	while (u != 0) {
1824		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1825			break;
1826		if (++i == HIFN_D_SRC_RSIZE)
1827			i = 0;
1828		u--;
1829	}
1830	dma->srck = i; dma->srcu = u;
1831
1832	i = dma->cmdk; u = dma->cmdu;
1833	while (u != 0) {
1834		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1835			break;
1836		if (++i == HIFN_D_CMD_RSIZE)
1837			i = 0;
1838		u--;
1839	}
1840	dma->cmdk = i; dma->cmdu = u;
1841
1842	i = dma->dstk; u = dma->dstu;
1843	while (u != 0) {
1844		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1845			break;
1846		if (++i == HIFN_D_DST_RSIZE)
1847			i = 0;
1848		u--;
1849	}
1850	dma->dstk = i; dma->dstu = u;
1851
1852	dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1853			"k: %d.%d.%d.%d.\n",
1854			dev->name,
1855			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1856			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1857			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1858}
1859
1860static void hifn_work(struct work_struct *work)
1861{
1862	struct delayed_work *dw = to_delayed_work(work);
1863	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1864	unsigned long flags;
1865	int reset = 0;
1866	u32 r = 0;
1867
1868	spin_lock_irqsave(&dev->lock, flags);
1869	if (dev->active == 0) {
1870		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1871
1872		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1873			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1874			r |= HIFN_DMACSR_C_CTRL_DIS;
1875		}
1876		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1877			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1878			r |= HIFN_DMACSR_S_CTRL_DIS;
1879		}
1880		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1881			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1882			r |= HIFN_DMACSR_D_CTRL_DIS;
1883		}
1884		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1885			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1886			r |= HIFN_DMACSR_R_CTRL_DIS;
1887		}
1888		if (r)
1889			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1890	} else
1891		dev->active--;
1892
1893	if ((dev->prev_success == dev->success) && dev->started)
1894		reset = 1;
1895	dev->prev_success = dev->success;
1896	spin_unlock_irqrestore(&dev->lock, flags);
1897
1898	if (reset) {
1899		if (++dev->reset >= 5) {
1900			int i;
1901			struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1902
1903			printk("%s: r: %08x, active: %d, started: %d, "
1904				"success: %lu: qlen: %u/%u, reset: %d.\n",
1905				dev->name, r, dev->active, dev->started,
1906				dev->success, dev->queue.qlen, dev->queue.max_qlen,
1907				reset);
1908
1909			printk("%s: res: ", __func__);
1910			for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1911				printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1912				if (dev->sa[i]) {
1913					hifn_process_ready(dev->sa[i], -ENODEV);
1914					hifn_complete_sa(dev, i);
1915				}
1916			}
1917			printk("\n");
1918
1919			hifn_reset_dma(dev, 1);
1920			hifn_stop_device(dev);
1921			hifn_start_device(dev);
1922			dev->reset = 0;
1923		}
1924
1925		tasklet_schedule(&dev->tasklet);
1926	}
1927
1928	schedule_delayed_work(&dev->work, HZ);
1929}
1930
1931static irqreturn_t hifn_interrupt(int irq, void *data)
1932{
1933	struct hifn_device *dev = (struct hifn_device *)data;
1934	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1935	u32 dmacsr, restart;
1936
1937	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1938
1939	dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1940			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1941		dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1942		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1943		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1944
1945	if ((dmacsr & dev->dmareg) == 0)
1946		return IRQ_NONE;
1947
1948	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1949
1950	if (dmacsr & HIFN_DMACSR_ENGINE)
1951		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1952	if (dmacsr & HIFN_DMACSR_PUBDONE)
1953		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1954			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1955
1956	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1957	if (restart) {
1958		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1959
1960		printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1961			dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1962			!!(dmacsr & HIFN_DMACSR_D_OVER),
1963			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1964		if (!!(puisr & HIFN_PUISR_DSTOVER))
1965			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1966		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1967					HIFN_DMACSR_D_OVER));
1968	}
1969
1970	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1971			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1972	if (restart) {
1973		printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1974			dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1975			!!(dmacsr & HIFN_DMACSR_S_ABORT),
1976			!!(dmacsr & HIFN_DMACSR_D_ABORT),
1977			!!(dmacsr & HIFN_DMACSR_R_ABORT));
1978		hifn_reset_dma(dev, 1);
1979		hifn_init_dma(dev);
1980		hifn_init_registers(dev);
1981	}
1982
1983	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1984		dprintk("%s: wait on command.\n", dev->name);
1985		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1986		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1987	}
1988
1989	tasklet_schedule(&dev->tasklet);
1990
1991	return IRQ_HANDLED;
1992}
1993
1994static void hifn_flush(struct hifn_device *dev)
1995{
1996	unsigned long flags;
1997	struct crypto_async_request *async_req;
1998	struct ablkcipher_request *req;
1999	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2000	int i;
2001
2002	for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2003		struct hifn_desc *d = &dma->resr[i];
2004
2005		if (dev->sa[i]) {
2006			hifn_process_ready(dev->sa[i],
2007				(d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2008			hifn_complete_sa(dev, i);
2009		}
2010	}
2011
2012	spin_lock_irqsave(&dev->lock, flags);
2013	while ((async_req = crypto_dequeue_request(&dev->queue))) {
2014		req = container_of(async_req, struct ablkcipher_request, base);
2015		spin_unlock_irqrestore(&dev->lock, flags);
2016
2017		hifn_process_ready(req, -ENODEV);
2018
2019		spin_lock_irqsave(&dev->lock, flags);
2020	}
2021	spin_unlock_irqrestore(&dev->lock, flags);
2022}
2023
2024static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2025		unsigned int len)
2026{
2027	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2028	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2029	struct hifn_device *dev = ctx->dev;
2030
2031	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2032		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2033		return -1;
2034	}
2035
2036	if (len == HIFN_DES_KEY_LENGTH) {
2037		u32 tmp[DES_EXPKEY_WORDS];
2038		int ret = des_ekey(tmp, key);
2039
2040		if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2041			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2042			return -EINVAL;
2043		}
2044	}
2045
2046	dev->flags &= ~HIFN_FLAG_OLD_KEY;
2047
2048	memcpy(ctx->key, key, len);
2049	ctx->keysize = len;
2050
2051	return 0;
2052}
2053
2054static int hifn_handle_req(struct ablkcipher_request *req)
2055{
2056	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2057	struct hifn_device *dev = ctx->dev;
2058	int err = -EAGAIN;
2059
2060	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2061		err = hifn_setup_session(req);
2062
2063	if (err == -EAGAIN) {
2064		unsigned long flags;
2065
2066		spin_lock_irqsave(&dev->lock, flags);
2067		err = ablkcipher_enqueue_request(&dev->queue, req);
2068		spin_unlock_irqrestore(&dev->lock, flags);
2069	}
2070
2071	return err;
2072}
2073
2074static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2075		u8 type, u8 mode)
2076{
2077	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2078	struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2079	unsigned ivsize;
2080
2081	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2082
2083	if (req->info && mode != ACRYPTO_MODE_ECB) {
2084		if (type == ACRYPTO_TYPE_AES_128)
2085			ivsize = HIFN_AES_IV_LENGTH;
2086		else if (type == ACRYPTO_TYPE_DES)
2087			ivsize = HIFN_DES_KEY_LENGTH;
2088		else if (type == ACRYPTO_TYPE_3DES)
2089			ivsize = HIFN_3DES_KEY_LENGTH;
2090	}
2091
2092	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2093		if (ctx->keysize == 24)
2094			type = ACRYPTO_TYPE_AES_192;
2095		else if (ctx->keysize == 32)
2096			type = ACRYPTO_TYPE_AES_256;
2097	}
2098
2099	rctx->op = op;
2100	rctx->mode = mode;
2101	rctx->type = type;
2102	rctx->iv = req->info;
2103	rctx->ivsize = ivsize;
2104
2105	/*
2106	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2107	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2108	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2109	 */
2110
2111	return hifn_handle_req(req);
2112}
2113
2114static int hifn_process_queue(struct hifn_device *dev)
2115{
2116	struct crypto_async_request *async_req, *backlog;
2117	struct ablkcipher_request *req;
2118	unsigned long flags;
2119	int err = 0;
2120
2121	while (dev->started < HIFN_QUEUE_LENGTH) {
2122		spin_lock_irqsave(&dev->lock, flags);
2123		backlog = crypto_get_backlog(&dev->queue);
2124		async_req = crypto_dequeue_request(&dev->queue);
2125		spin_unlock_irqrestore(&dev->lock, flags);
2126
2127		if (!async_req)
2128			break;
2129
2130		if (backlog)
2131			backlog->complete(backlog, -EINPROGRESS);
2132
2133		req = container_of(async_req, struct ablkcipher_request, base);
2134
2135		err = hifn_handle_req(req);
2136		if (err)
2137			break;
2138	}
2139
2140	return err;
2141}
2142
2143static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2144		u8 type, u8 mode)
2145{
2146	int err;
2147	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2148	struct hifn_device *dev = ctx->dev;
2149
2150	err = hifn_setup_crypto_req(req, op, type, mode);
2151	if (err)
2152		return err;
2153
2154	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2155		hifn_process_queue(dev);
2156
2157	return -EINPROGRESS;
2158}
2159
2160/*
2161 * AES ecryption functions.
2162 */
2163static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2164{
2165	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2166			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2167}
2168static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2169{
2170	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2171			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2172}
2173static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2174{
2175	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2176			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2177}
2178static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2179{
2180	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2181			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2182}
2183
2184/*
2185 * AES decryption functions.
2186 */
2187static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2188{
2189	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2190			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2191}
2192static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2193{
2194	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2195			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2196}
2197static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2198{
2199	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2200			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2201}
2202static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2203{
2204	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2205			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2206}
2207
2208/*
2209 * DES ecryption functions.
2210 */
2211static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2212{
2213	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2214			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2215}
2216static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2217{
2218	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2219			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2220}
2221static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2222{
2223	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2224			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2225}
2226static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2227{
2228	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2229			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2230}
2231
2232/*
2233 * DES decryption functions.
2234 */
2235static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2236{
2237	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2238			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2239}
2240static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2241{
2242	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2243			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2244}
2245static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2246{
2247	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2248			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2249}
2250static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2251{
2252	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2253			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2254}
2255
2256/*
2257 * 3DES ecryption functions.
2258 */
2259static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2260{
2261	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2262			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2263}
2264static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2265{
2266	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2267			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2268}
2269static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2270{
2271	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2272			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2273}
2274static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2275{
2276	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2277			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2278}
2279
2280/*
2281 * 3DES decryption functions.
2282 */
2283static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2284{
2285	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2286			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2287}
2288static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2289{
2290	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2291			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2292}
2293static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2294{
2295	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2296			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2297}
2298static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2299{
2300	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2301			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2302}
2303
2304struct hifn_alg_template
2305{
2306	char name[CRYPTO_MAX_ALG_NAME];
2307	char drv_name[CRYPTO_MAX_ALG_NAME];
2308	unsigned int bsize;
2309	struct ablkcipher_alg ablkcipher;
2310};
2311
2312static struct hifn_alg_template hifn_alg_templates[] = {
2313	/*
2314	 * 3DES ECB, CBC, CFB and OFB modes.
2315	 */
2316	{
2317		.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2318		.ablkcipher = {
2319			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2320			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2321			.setkey		=	hifn_setkey,
2322			.encrypt	=	hifn_encrypt_3des_cfb,
2323			.decrypt	=	hifn_decrypt_3des_cfb,
2324		},
2325	},
2326	{
2327		.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2328		.ablkcipher = {
2329			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2330			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2331			.setkey		=	hifn_setkey,
2332			.encrypt	=	hifn_encrypt_3des_ofb,
2333			.decrypt	=	hifn_decrypt_3des_ofb,
2334		},
2335	},
2336	{
2337		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2338		.ablkcipher = {
2339			.ivsize		=	HIFN_IV_LENGTH,
2340			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2341			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2342			.setkey		=	hifn_setkey,
2343			.encrypt	=	hifn_encrypt_3des_cbc,
2344			.decrypt	=	hifn_decrypt_3des_cbc,
2345		},
2346	},
2347	{
2348		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2349		.ablkcipher = {
2350			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2351			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2352			.setkey		=	hifn_setkey,
2353			.encrypt	=	hifn_encrypt_3des_ecb,
2354			.decrypt	=	hifn_decrypt_3des_ecb,
2355		},
2356	},
2357
2358	/*
2359	 * DES ECB, CBC, CFB and OFB modes.
2360	 */
2361	{
2362		.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2363		.ablkcipher = {
2364			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2365			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2366			.setkey		=	hifn_setkey,
2367			.encrypt	=	hifn_encrypt_des_cfb,
2368			.decrypt	=	hifn_decrypt_des_cfb,
2369		},
2370	},
2371	{
2372		.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2373		.ablkcipher = {
2374			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2375			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2376			.setkey		=	hifn_setkey,
2377			.encrypt	=	hifn_encrypt_des_ofb,
2378			.decrypt	=	hifn_decrypt_des_ofb,
2379		},
2380	},
2381	{
2382		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2383		.ablkcipher = {
2384			.ivsize		=	HIFN_IV_LENGTH,
2385			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2386			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2387			.setkey		=	hifn_setkey,
2388			.encrypt	=	hifn_encrypt_des_cbc,
2389			.decrypt	=	hifn_decrypt_des_cbc,
2390		},
2391	},
2392	{
2393		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2394		.ablkcipher = {
2395			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2396			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2397			.setkey		=	hifn_setkey,
2398			.encrypt	=	hifn_encrypt_des_ecb,
2399			.decrypt	=	hifn_decrypt_des_ecb,
2400		},
2401	},
2402
2403	/*
2404	 * AES ECB, CBC, CFB and OFB modes.
2405	 */
2406	{
2407		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2408		.ablkcipher = {
2409			.min_keysize	=	AES_MIN_KEY_SIZE,
2410			.max_keysize	=	AES_MAX_KEY_SIZE,
2411			.setkey		=	hifn_setkey,
2412			.encrypt	=	hifn_encrypt_aes_ecb,
2413			.decrypt	=	hifn_decrypt_aes_ecb,
2414		},
2415	},
2416	{
2417		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2418		.ablkcipher = {
2419			.ivsize		=	HIFN_AES_IV_LENGTH,
2420			.min_keysize	=	AES_MIN_KEY_SIZE,
2421			.max_keysize	=	AES_MAX_KEY_SIZE,
2422			.setkey		=	hifn_setkey,
2423			.encrypt	=	hifn_encrypt_aes_cbc,
2424			.decrypt	=	hifn_decrypt_aes_cbc,
2425		},
2426	},
2427	{
2428		.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2429		.ablkcipher = {
2430			.min_keysize	=	AES_MIN_KEY_SIZE,
2431			.max_keysize	=	AES_MAX_KEY_SIZE,
2432			.setkey		=	hifn_setkey,
2433			.encrypt	=	hifn_encrypt_aes_cfb,
2434			.decrypt	=	hifn_decrypt_aes_cfb,
2435		},
2436	},
2437	{
2438		.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2439		.ablkcipher = {
2440			.min_keysize	=	AES_MIN_KEY_SIZE,
2441			.max_keysize	=	AES_MAX_KEY_SIZE,
2442			.setkey		=	hifn_setkey,
2443			.encrypt	=	hifn_encrypt_aes_ofb,
2444			.decrypt	=	hifn_decrypt_aes_ofb,
2445		},
2446	},
2447};
2448
2449static int hifn_cra_init(struct crypto_tfm *tfm)
2450{
2451	struct crypto_alg *alg = tfm->__crt_alg;
2452	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2453	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2454
2455	ctx->dev = ha->dev;
2456	tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2457	return 0;
2458}
2459
2460static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2461{
2462	struct hifn_crypto_alg *alg;
2463	int err;
2464
2465	alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2466	if (!alg)
2467		return -ENOMEM;
2468
2469	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2470	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2471		 t->drv_name, dev->name);
2472
2473	alg->alg.cra_priority = 300;
2474	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2475	alg->alg.cra_blocksize = t->bsize;
2476	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2477	alg->alg.cra_alignmask = 0;
2478	alg->alg.cra_type = &crypto_ablkcipher_type;
2479	alg->alg.cra_module = THIS_MODULE;
2480	alg->alg.cra_u.ablkcipher = t->ablkcipher;
2481	alg->alg.cra_init = hifn_cra_init;
2482
2483	alg->dev = dev;
2484
2485	list_add_tail(&alg->entry, &dev->alg_list);
2486
2487	err = crypto_register_alg(&alg->alg);
2488	if (err) {
2489		list_del(&alg->entry);
2490		kfree(alg);
2491	}
2492
2493	return err;
2494}
2495
2496static void hifn_unregister_alg(struct hifn_device *dev)
2497{
2498	struct hifn_crypto_alg *a, *n;
2499
2500	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2501		list_del(&a->entry);
2502		crypto_unregister_alg(&a->alg);
2503		kfree(a);
2504	}
2505}
2506
2507static int hifn_register_alg(struct hifn_device *dev)
2508{
2509	int i, err;
2510
2511	for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2512		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2513		if (err)
2514			goto err_out_exit;
2515	}
2516
2517	return 0;
2518
2519err_out_exit:
2520	hifn_unregister_alg(dev);
2521	return err;
2522}
2523
2524static void hifn_tasklet_callback(unsigned long data)
2525{
2526	struct hifn_device *dev = (struct hifn_device *)data;
2527
2528	/*
2529	 * This is ok to call this without lock being held,
2530	 * althogh it modifies some parameters used in parallel,
2531	 * (like dev->success), but they are used in process
2532	 * context or update is atomic (like setting dev->sa[i] to NULL).
2533	 */
2534	hifn_clear_rings(dev, 0);
2535
2536	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2537		hifn_process_queue(dev);
2538}
2539
2540static int __devinit hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2541{
2542	int err, i;
2543	struct hifn_device *dev;
2544	char name[8];
2545
2546	err = pci_enable_device(pdev);
2547	if (err)
2548		return err;
2549	pci_set_master(pdev);
2550
2551	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2552	if (err)
2553		goto err_out_disable_pci_device;
2554
2555	snprintf(name, sizeof(name), "hifn%d",
2556			atomic_inc_return(&hifn_dev_number)-1);
2557
2558	err = pci_request_regions(pdev, name);
2559	if (err)
2560		goto err_out_disable_pci_device;
2561
2562	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2563	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2564	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2565		dprintk("%s: Broken hardware - I/O regions are too small.\n",
2566				pci_name(pdev));
2567		err = -ENODEV;
2568		goto err_out_free_regions;
2569	}
2570
2571	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2572			GFP_KERNEL);
2573	if (!dev) {
2574		err = -ENOMEM;
2575		goto err_out_free_regions;
2576	}
2577
2578	INIT_LIST_HEAD(&dev->alg_list);
2579
2580	snprintf(dev->name, sizeof(dev->name), "%s", name);
2581	spin_lock_init(&dev->lock);
2582
2583	for (i=0; i<3; ++i) {
2584		unsigned long addr, size;
2585
2586		addr = pci_resource_start(pdev, i);
2587		size = pci_resource_len(pdev, i);
2588
2589		dev->bar[i] = ioremap_nocache(addr, size);
2590		if (!dev->bar[i])
2591			goto err_out_unmap_bars;
2592	}
2593
2594	dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2595			&dev->desc_dma);
2596	if (!dev->desc_virt) {
2597		dprintk("Failed to allocate descriptor rings.\n");
2598		goto err_out_unmap_bars;
2599	}
2600	memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2601
2602	dev->pdev = pdev;
2603	dev->irq = pdev->irq;
2604
2605	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2606		dev->sa[i] = NULL;
2607
2608	pci_set_drvdata(pdev, dev);
2609
2610	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2611
2612	crypto_init_queue(&dev->queue, 1);
2613
2614	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2615	if (err) {
2616		dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2617		dev->irq = 0;
2618		goto err_out_free_desc;
2619	}
2620
2621	err = hifn_start_device(dev);
2622	if (err)
2623		goto err_out_free_irq;
2624
2625	err = hifn_test(dev, 1, 0);
2626	if (err)
2627		goto err_out_stop_device;
2628
2629	err = hifn_register_rng(dev);
2630	if (err)
2631		goto err_out_stop_device;
2632
2633	err = hifn_register_alg(dev);
2634	if (err)
2635		goto err_out_unregister_rng;
2636
2637	INIT_DELAYED_WORK(&dev->work, hifn_work);
2638	schedule_delayed_work(&dev->work, HZ);
2639
2640	dprintk("HIFN crypto accelerator card at %s has been "
2641			"successfully registered as %s.\n",
2642			pci_name(pdev), dev->name);
2643
2644	return 0;
2645
2646err_out_unregister_rng:
2647	hifn_unregister_rng(dev);
2648err_out_stop_device:
2649	hifn_reset_dma(dev, 1);
2650	hifn_stop_device(dev);
2651err_out_free_irq:
2652	free_irq(dev->irq, dev->name);
2653	tasklet_kill(&dev->tasklet);
2654err_out_free_desc:
2655	pci_free_consistent(pdev, sizeof(struct hifn_dma),
2656			dev->desc_virt, dev->desc_dma);
2657
2658err_out_unmap_bars:
2659	for (i=0; i<3; ++i)
2660		if (dev->bar[i])
2661			iounmap(dev->bar[i]);
2662
2663err_out_free_regions:
2664	pci_release_regions(pdev);
2665
2666err_out_disable_pci_device:
2667	pci_disable_device(pdev);
2668
2669	return err;
2670}
2671
2672static void __devexit hifn_remove(struct pci_dev *pdev)
2673{
2674	int i;
2675	struct hifn_device *dev;
2676
2677	dev = pci_get_drvdata(pdev);
2678
2679	if (dev) {
2680		cancel_delayed_work(&dev->work);
2681		flush_scheduled_work();
2682
2683		hifn_unregister_rng(dev);
2684		hifn_unregister_alg(dev);
2685		hifn_reset_dma(dev, 1);
2686		hifn_stop_device(dev);
2687
2688		free_irq(dev->irq, dev->name);
2689		tasklet_kill(&dev->tasklet);
2690
2691		hifn_flush(dev);
2692
2693		pci_free_consistent(pdev, sizeof(struct hifn_dma),
2694				dev->desc_virt, dev->desc_dma);
2695		for (i=0; i<3; ++i)
2696			if (dev->bar[i])
2697				iounmap(dev->bar[i]);
2698
2699		kfree(dev);
2700	}
2701
2702	pci_release_regions(pdev);
2703	pci_disable_device(pdev);
2704}
2705
2706static struct pci_device_id hifn_pci_tbl[] = {
2707	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2708	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2709	{ 0 }
2710};
2711MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2712
2713static struct pci_driver hifn_pci_driver = {
2714	.name     = "hifn795x",
2715	.id_table = hifn_pci_tbl,
2716	.probe    = hifn_probe,
2717	.remove   = __devexit_p(hifn_remove),
2718};
2719
2720static int __init hifn_init(void)
2721{
2722	unsigned int freq;
2723	int err;
2724
2725	if (sizeof(dma_addr_t) > 4) {
2726		printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
2727		return -EINVAL;
2728	}
2729
2730	if (strncmp(hifn_pll_ref, "ext", 3) &&
2731	    strncmp(hifn_pll_ref, "pci", 3)) {
2732		printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2733				"must be pci or ext");
2734		return -EINVAL;
2735	}
2736
2737	/*
2738	 * For the 7955/7956 the reference clock frequency must be in the
2739	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2740	 * but this chip is currently not supported.
2741	 */
2742	if (hifn_pll_ref[3] != '\0') {
2743		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2744		if (freq < 20 || freq > 100) {
2745			printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2746					"frequency, must be in the range "
2747					"of 20-100");
2748			return -EINVAL;
2749		}
2750	}
2751
2752	err = pci_register_driver(&hifn_pci_driver);
2753	if (err < 0) {
2754		dprintk("Failed to register PCI driver for %s device.\n",
2755				hifn_pci_driver.name);
2756		return -ENODEV;
2757	}
2758
2759	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2760			"has been successfully registered.\n");
2761
2762	return 0;
2763}
2764
2765static void __exit hifn_fini(void)
2766{
2767	pci_unregister_driver(&hifn_pci_driver);
2768
2769	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2770			"has been successfully unregistered.\n");
2771}
2772
2773module_init(hifn_init);
2774module_exit(hifn_fini);
2775
2776MODULE_LICENSE("GPL");
2777MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2778MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2779