• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/cpufreq/
1/*
2 *  drivers/cpufreq/cpufreq_conservative.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/cpufreq.h>
18#include <linux/cpu.h>
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
21#include <linux/mutex.h>
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD		(80)
33#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34
35/*
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
40 * rate.
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
44 */
45#define MIN_SAMPLING_RATE_RATIO			(2)
46
47static unsigned int min_sampling_rate;
48
49#define LATENCY_MULTIPLIER			(1000)
50#define MIN_LATENCY_MULTIPLIER			(100)
51#define DEF_SAMPLING_DOWN_FACTOR		(1)
52#define MAX_SAMPLING_DOWN_FACTOR		(10)
53#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54
55static void do_dbs_timer(struct work_struct *work);
56
57struct cpu_dbs_info_s {
58	cputime64_t prev_cpu_idle;
59	cputime64_t prev_cpu_wall;
60	cputime64_t prev_cpu_nice;
61	struct cpufreq_policy *cur_policy;
62	struct delayed_work work;
63	unsigned int down_skip;
64	unsigned int requested_freq;
65	int cpu;
66	unsigned int enable:1;
67	/*
68	 * percpu mutex that serializes governor limit change with
69	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70	 * when user is changing the governor or limits.
71	 */
72	struct mutex timer_mutex;
73};
74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75
76static unsigned int dbs_enable;	/* number of CPUs using this policy */
77
78/*
79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80 * different CPUs. It protects dbs_enable in governor start/stop.
81 */
82static DEFINE_MUTEX(dbs_mutex);
83
84static struct workqueue_struct	*kconservative_wq;
85
86static struct dbs_tuners {
87	unsigned int sampling_rate;
88	unsigned int sampling_down_factor;
89	unsigned int up_threshold;
90	unsigned int down_threshold;
91	unsigned int ignore_nice;
92	unsigned int freq_step;
93} dbs_tuners_ins = {
94	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
95	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
96	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
97	.ignore_nice = 0,
98	.freq_step = 5,
99};
100
101static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
102							cputime64_t *wall)
103{
104	cputime64_t idle_time;
105	cputime64_t cur_wall_time;
106	cputime64_t busy_time;
107
108	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
109	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
110			kstat_cpu(cpu).cpustat.system);
111
112	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
113	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
114	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
115	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
116
117	idle_time = cputime64_sub(cur_wall_time, busy_time);
118	if (wall)
119		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
120
121	return (cputime64_t)jiffies_to_usecs(idle_time);;
122}
123
124static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
125{
126	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
127
128	if (idle_time == -1ULL)
129		return get_cpu_idle_time_jiffy(cpu, wall);
130
131	return idle_time;
132}
133
134/* keep track of frequency transitions */
135static int
136dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
137		     void *data)
138{
139	struct cpufreq_freqs *freq = data;
140	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141							freq->cpu);
142
143	struct cpufreq_policy *policy;
144
145	if (!this_dbs_info->enable)
146		return 0;
147
148	policy = this_dbs_info->cur_policy;
149
150	/*
151	 * we only care if our internally tracked freq moves outside
152	 * the 'valid' ranges of freqency available to us otherwise
153	 * we do not change it
154	*/
155	if (this_dbs_info->requested_freq > policy->max
156			|| this_dbs_info->requested_freq < policy->min)
157		this_dbs_info->requested_freq = freq->new;
158
159	return 0;
160}
161
162static struct notifier_block dbs_cpufreq_notifier_block = {
163	.notifier_call = dbs_cpufreq_notifier
164};
165
166/************************** sysfs interface ************************/
167static ssize_t show_sampling_rate_max(struct kobject *kobj,
168				      struct attribute *attr, char *buf)
169{
170	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
171		    "sysfs file is deprecated - used by: %s\n", current->comm);
172	return sprintf(buf, "%u\n", -1U);
173}
174
175static ssize_t show_sampling_rate_min(struct kobject *kobj,
176				      struct attribute *attr, char *buf)
177{
178	return sprintf(buf, "%u\n", min_sampling_rate);
179}
180
181define_one_global_ro(sampling_rate_max);
182define_one_global_ro(sampling_rate_min);
183
184/* cpufreq_conservative Governor Tunables */
185#define show_one(file_name, object)					\
186static ssize_t show_##file_name						\
187(struct kobject *kobj, struct attribute *attr, char *buf)		\
188{									\
189	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
190}
191show_one(sampling_rate, sampling_rate);
192show_one(sampling_down_factor, sampling_down_factor);
193show_one(up_threshold, up_threshold);
194show_one(down_threshold, down_threshold);
195show_one(ignore_nice_load, ignore_nice);
196show_one(freq_step, freq_step);
197
198/*** delete after deprecation time ***/
199#define DEPRECATION_MSG(file_name)					\
200	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
201		"interface is deprecated - " #file_name "\n");
202
203#define show_one_old(file_name)						\
204static ssize_t show_##file_name##_old					\
205(struct cpufreq_policy *unused, char *buf)				\
206{									\
207	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
208		"interface is deprecated - " #file_name "\n");		\
209	return show_##file_name(NULL, NULL, buf);			\
210}
211show_one_old(sampling_rate);
212show_one_old(sampling_down_factor);
213show_one_old(up_threshold);
214show_one_old(down_threshold);
215show_one_old(ignore_nice_load);
216show_one_old(freq_step);
217show_one_old(sampling_rate_min);
218show_one_old(sampling_rate_max);
219
220cpufreq_freq_attr_ro_old(sampling_rate_min);
221cpufreq_freq_attr_ro_old(sampling_rate_max);
222
223/*** delete after deprecation time ***/
224
225static ssize_t store_sampling_down_factor(struct kobject *a,
226					  struct attribute *b,
227					  const char *buf, size_t count)
228{
229	unsigned int input;
230	int ret;
231	ret = sscanf(buf, "%u", &input);
232
233	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
234		return -EINVAL;
235
236	mutex_lock(&dbs_mutex);
237	dbs_tuners_ins.sampling_down_factor = input;
238	mutex_unlock(&dbs_mutex);
239
240	return count;
241}
242
243static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
244				   const char *buf, size_t count)
245{
246	unsigned int input;
247	int ret;
248	ret = sscanf(buf, "%u", &input);
249
250	if (ret != 1)
251		return -EINVAL;
252
253	mutex_lock(&dbs_mutex);
254	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
255	mutex_unlock(&dbs_mutex);
256
257	return count;
258}
259
260static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
261				  const char *buf, size_t count)
262{
263	unsigned int input;
264	int ret;
265	ret = sscanf(buf, "%u", &input);
266
267	mutex_lock(&dbs_mutex);
268	if (ret != 1 || input > 100 ||
269			input <= dbs_tuners_ins.down_threshold) {
270		mutex_unlock(&dbs_mutex);
271		return -EINVAL;
272	}
273
274	dbs_tuners_ins.up_threshold = input;
275	mutex_unlock(&dbs_mutex);
276
277	return count;
278}
279
280static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
281				    const char *buf, size_t count)
282{
283	unsigned int input;
284	int ret;
285	ret = sscanf(buf, "%u", &input);
286
287	mutex_lock(&dbs_mutex);
288	/* cannot be lower than 11 otherwise freq will not fall */
289	if (ret != 1 || input < 11 || input > 100 ||
290			input >= dbs_tuners_ins.up_threshold) {
291		mutex_unlock(&dbs_mutex);
292		return -EINVAL;
293	}
294
295	dbs_tuners_ins.down_threshold = input;
296	mutex_unlock(&dbs_mutex);
297
298	return count;
299}
300
301static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
302				      const char *buf, size_t count)
303{
304	unsigned int input;
305	int ret;
306
307	unsigned int j;
308
309	ret = sscanf(buf, "%u", &input);
310	if (ret != 1)
311		return -EINVAL;
312
313	if (input > 1)
314		input = 1;
315
316	mutex_lock(&dbs_mutex);
317	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
318		mutex_unlock(&dbs_mutex);
319		return count;
320	}
321	dbs_tuners_ins.ignore_nice = input;
322
323	/* we need to re-evaluate prev_cpu_idle */
324	for_each_online_cpu(j) {
325		struct cpu_dbs_info_s *dbs_info;
326		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
327		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
328						&dbs_info->prev_cpu_wall);
329		if (dbs_tuners_ins.ignore_nice)
330			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
331	}
332	mutex_unlock(&dbs_mutex);
333
334	return count;
335}
336
337static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
338			       const char *buf, size_t count)
339{
340	unsigned int input;
341	int ret;
342	ret = sscanf(buf, "%u", &input);
343
344	if (ret != 1)
345		return -EINVAL;
346
347	if (input > 100)
348		input = 100;
349
350	/* no need to test here if freq_step is zero as the user might actually
351	 * want this, they would be crazy though :) */
352	mutex_lock(&dbs_mutex);
353	dbs_tuners_ins.freq_step = input;
354	mutex_unlock(&dbs_mutex);
355
356	return count;
357}
358
359define_one_global_rw(sampling_rate);
360define_one_global_rw(sampling_down_factor);
361define_one_global_rw(up_threshold);
362define_one_global_rw(down_threshold);
363define_one_global_rw(ignore_nice_load);
364define_one_global_rw(freq_step);
365
366static struct attribute *dbs_attributes[] = {
367	&sampling_rate_max.attr,
368	&sampling_rate_min.attr,
369	&sampling_rate.attr,
370	&sampling_down_factor.attr,
371	&up_threshold.attr,
372	&down_threshold.attr,
373	&ignore_nice_load.attr,
374	&freq_step.attr,
375	NULL
376};
377
378static struct attribute_group dbs_attr_group = {
379	.attrs = dbs_attributes,
380	.name = "conservative",
381};
382
383/*** delete after deprecation time ***/
384
385#define write_one_old(file_name)					\
386static ssize_t store_##file_name##_old					\
387(struct cpufreq_policy *unused, const char *buf, size_t count)		\
388{									\
389	printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs "	\
390		"interface is deprecated - " #file_name "\n");	\
391	return store_##file_name(NULL, NULL, buf, count);		\
392}
393write_one_old(sampling_rate);
394write_one_old(sampling_down_factor);
395write_one_old(up_threshold);
396write_one_old(down_threshold);
397write_one_old(ignore_nice_load);
398write_one_old(freq_step);
399
400cpufreq_freq_attr_rw_old(sampling_rate);
401cpufreq_freq_attr_rw_old(sampling_down_factor);
402cpufreq_freq_attr_rw_old(up_threshold);
403cpufreq_freq_attr_rw_old(down_threshold);
404cpufreq_freq_attr_rw_old(ignore_nice_load);
405cpufreq_freq_attr_rw_old(freq_step);
406
407static struct attribute *dbs_attributes_old[] = {
408	&sampling_rate_max_old.attr,
409	&sampling_rate_min_old.attr,
410	&sampling_rate_old.attr,
411	&sampling_down_factor_old.attr,
412	&up_threshold_old.attr,
413	&down_threshold_old.attr,
414	&ignore_nice_load_old.attr,
415	&freq_step_old.attr,
416	NULL
417};
418
419static struct attribute_group dbs_attr_group_old = {
420	.attrs = dbs_attributes_old,
421	.name = "conservative",
422};
423
424/*** delete after deprecation time ***/
425
426/************************** sysfs end ************************/
427
428static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
429{
430	unsigned int load = 0;
431	unsigned int max_load = 0;
432	unsigned int freq_target;
433
434	struct cpufreq_policy *policy;
435	unsigned int j;
436
437	policy = this_dbs_info->cur_policy;
438
439	/*
440	 * Every sampling_rate, we check, if current idle time is less
441	 * than 20% (default), then we try to increase frequency
442	 * Every sampling_rate*sampling_down_factor, we check, if current
443	 * idle time is more than 80%, then we try to decrease frequency
444	 *
445	 * Any frequency increase takes it to the maximum frequency.
446	 * Frequency reduction happens at minimum steps of
447	 * 5% (default) of maximum frequency
448	 */
449
450	/* Get Absolute Load */
451	for_each_cpu(j, policy->cpus) {
452		struct cpu_dbs_info_s *j_dbs_info;
453		cputime64_t cur_wall_time, cur_idle_time;
454		unsigned int idle_time, wall_time;
455
456		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
457
458		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
459
460		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
461				j_dbs_info->prev_cpu_wall);
462		j_dbs_info->prev_cpu_wall = cur_wall_time;
463
464		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
465				j_dbs_info->prev_cpu_idle);
466		j_dbs_info->prev_cpu_idle = cur_idle_time;
467
468		if (dbs_tuners_ins.ignore_nice) {
469			cputime64_t cur_nice;
470			unsigned long cur_nice_jiffies;
471
472			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
473					 j_dbs_info->prev_cpu_nice);
474			/*
475			 * Assumption: nice time between sampling periods will
476			 * be less than 2^32 jiffies for 32 bit sys
477			 */
478			cur_nice_jiffies = (unsigned long)
479					cputime64_to_jiffies64(cur_nice);
480
481			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
482			idle_time += jiffies_to_usecs(cur_nice_jiffies);
483		}
484
485		if (unlikely(!wall_time || wall_time < idle_time))
486			continue;
487
488		load = 100 * (wall_time - idle_time) / wall_time;
489
490		if (load > max_load)
491			max_load = load;
492	}
493
494	/*
495	 * break out if we 'cannot' reduce the speed as the user might
496	 * want freq_step to be zero
497	 */
498	if (dbs_tuners_ins.freq_step == 0)
499		return;
500
501	/* Check for frequency increase */
502	if (max_load > dbs_tuners_ins.up_threshold) {
503		this_dbs_info->down_skip = 0;
504
505		/* if we are already at full speed then break out early */
506		if (this_dbs_info->requested_freq == policy->max)
507			return;
508
509		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
510
511		/* max freq cannot be less than 100. But who knows.... */
512		if (unlikely(freq_target == 0))
513			freq_target = 5;
514
515		this_dbs_info->requested_freq += freq_target;
516		if (this_dbs_info->requested_freq > policy->max)
517			this_dbs_info->requested_freq = policy->max;
518
519		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
520			CPUFREQ_RELATION_H);
521		return;
522	}
523
524	/*
525	 * The optimal frequency is the frequency that is the lowest that
526	 * can support the current CPU usage without triggering the up
527	 * policy. To be safe, we focus 10 points under the threshold.
528	 */
529	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
530		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
531
532		this_dbs_info->requested_freq -= freq_target;
533		if (this_dbs_info->requested_freq < policy->min)
534			this_dbs_info->requested_freq = policy->min;
535
536		/*
537		 * if we cannot reduce the frequency anymore, break out early
538		 */
539		if (policy->cur == policy->min)
540			return;
541
542		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
543				CPUFREQ_RELATION_H);
544		return;
545	}
546}
547
548static void do_dbs_timer(struct work_struct *work)
549{
550	struct cpu_dbs_info_s *dbs_info =
551		container_of(work, struct cpu_dbs_info_s, work.work);
552	unsigned int cpu = dbs_info->cpu;
553
554	/* We want all CPUs to do sampling nearly on same jiffy */
555	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
556
557	delay -= jiffies % delay;
558
559	mutex_lock(&dbs_info->timer_mutex);
560
561	dbs_check_cpu(dbs_info);
562
563	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
564	mutex_unlock(&dbs_info->timer_mutex);
565}
566
567static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
568{
569	/* We want all CPUs to do sampling nearly on same jiffy */
570	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
571	delay -= jiffies % delay;
572
573	dbs_info->enable = 1;
574	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
575	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
576				delay);
577}
578
579static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
580{
581	dbs_info->enable = 0;
582	cancel_delayed_work_sync(&dbs_info->work);
583}
584
585static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
586				   unsigned int event)
587{
588	unsigned int cpu = policy->cpu;
589	struct cpu_dbs_info_s *this_dbs_info;
590	unsigned int j;
591	int rc;
592
593	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
594
595	switch (event) {
596	case CPUFREQ_GOV_START:
597		if ((!cpu_online(cpu)) || (!policy->cur))
598			return -EINVAL;
599
600		mutex_lock(&dbs_mutex);
601
602		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
603		if (rc) {
604			mutex_unlock(&dbs_mutex);
605			return rc;
606		}
607
608		for_each_cpu(j, policy->cpus) {
609			struct cpu_dbs_info_s *j_dbs_info;
610			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
611			j_dbs_info->cur_policy = policy;
612
613			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
614						&j_dbs_info->prev_cpu_wall);
615			if (dbs_tuners_ins.ignore_nice) {
616				j_dbs_info->prev_cpu_nice =
617						kstat_cpu(j).cpustat.nice;
618			}
619		}
620		this_dbs_info->down_skip = 0;
621		this_dbs_info->requested_freq = policy->cur;
622
623		mutex_init(&this_dbs_info->timer_mutex);
624		dbs_enable++;
625		/*
626		 * Start the timerschedule work, when this governor
627		 * is used for first time
628		 */
629		if (dbs_enable == 1) {
630			unsigned int latency;
631			/* policy latency is in nS. Convert it to uS first */
632			latency = policy->cpuinfo.transition_latency / 1000;
633			if (latency == 0)
634				latency = 1;
635
636			rc = sysfs_create_group(cpufreq_global_kobject,
637						&dbs_attr_group);
638			if (rc) {
639				mutex_unlock(&dbs_mutex);
640				return rc;
641			}
642
643			/*
644			 * conservative does not implement micro like ondemand
645			 * governor, thus we are bound to jiffes/HZ
646			 */
647			min_sampling_rate =
648				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
649			/* Bring kernel and HW constraints together */
650			min_sampling_rate = max(min_sampling_rate,
651					MIN_LATENCY_MULTIPLIER * latency);
652			dbs_tuners_ins.sampling_rate =
653				max(min_sampling_rate,
654				    latency * LATENCY_MULTIPLIER);
655
656			cpufreq_register_notifier(
657					&dbs_cpufreq_notifier_block,
658					CPUFREQ_TRANSITION_NOTIFIER);
659		}
660		mutex_unlock(&dbs_mutex);
661
662		dbs_timer_init(this_dbs_info);
663
664		break;
665
666	case CPUFREQ_GOV_STOP:
667		dbs_timer_exit(this_dbs_info);
668
669		mutex_lock(&dbs_mutex);
670		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
671		dbs_enable--;
672		mutex_destroy(&this_dbs_info->timer_mutex);
673
674		/*
675		 * Stop the timerschedule work, when this governor
676		 * is used for first time
677		 */
678		if (dbs_enable == 0)
679			cpufreq_unregister_notifier(
680					&dbs_cpufreq_notifier_block,
681					CPUFREQ_TRANSITION_NOTIFIER);
682
683		mutex_unlock(&dbs_mutex);
684		if (!dbs_enable)
685			sysfs_remove_group(cpufreq_global_kobject,
686					   &dbs_attr_group);
687
688		break;
689
690	case CPUFREQ_GOV_LIMITS:
691		mutex_lock(&this_dbs_info->timer_mutex);
692		if (policy->max < this_dbs_info->cur_policy->cur)
693			__cpufreq_driver_target(
694					this_dbs_info->cur_policy,
695					policy->max, CPUFREQ_RELATION_H);
696		else if (policy->min > this_dbs_info->cur_policy->cur)
697			__cpufreq_driver_target(
698					this_dbs_info->cur_policy,
699					policy->min, CPUFREQ_RELATION_L);
700		mutex_unlock(&this_dbs_info->timer_mutex);
701
702		break;
703	}
704	return 0;
705}
706
707#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
708static
709#endif
710struct cpufreq_governor cpufreq_gov_conservative = {
711	.name			= "conservative",
712	.governor		= cpufreq_governor_dbs,
713	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
714	.owner			= THIS_MODULE,
715};
716
717static int __init cpufreq_gov_dbs_init(void)
718{
719	int err;
720
721	kconservative_wq = create_workqueue("kconservative");
722	if (!kconservative_wq) {
723		printk(KERN_ERR "Creation of kconservative failed\n");
724		return -EFAULT;
725	}
726
727	err = cpufreq_register_governor(&cpufreq_gov_conservative);
728	if (err)
729		destroy_workqueue(kconservative_wq);
730
731	return err;
732}
733
734static void __exit cpufreq_gov_dbs_exit(void)
735{
736	cpufreq_unregister_governor(&cpufreq_gov_conservative);
737	destroy_workqueue(kconservative_wq);
738}
739
740
741MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
742MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
743		"Low Latency Frequency Transition capable processors "
744		"optimised for use in a battery environment");
745MODULE_LICENSE("GPL");
746
747#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
748fs_initcall(cpufreq_gov_dbs_init);
749#else
750module_init(cpufreq_gov_dbs_init);
751#endif
752module_exit(cpufreq_gov_dbs_exit);
753