• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/char/rio/
1/*
2** -----------------------------------------------------------------------------
3**
4**  Perle Specialix driver for Linux
5**  Ported from existing RIO Driver for SCO sources.
6 *
7 *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
8 *
9 *      This program is free software; you can redistribute it and/or modify
10 *      it under the terms of the GNU General Public License as published by
11 *      the Free Software Foundation; either version 2 of the License, or
12 *      (at your option) any later version.
13 *
14 *      This program is distributed in the hope that it will be useful,
15 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *      GNU General Public License for more details.
18 *
19 *      You should have received a copy of the GNU General Public License
20 *      along with this program; if not, write to the Free Software
21 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22**
23**	Module		: rioboot.c
24**	SID		: 1.3
25**	Last Modified	: 11/6/98 10:33:36
26**	Retrieved	: 11/6/98 10:33:48
27**
28**  ident @(#)rioboot.c	1.3
29**
30** -----------------------------------------------------------------------------
31*/
32
33#include <linux/module.h>
34#include <linux/slab.h>
35#include <linux/termios.h>
36#include <linux/serial.h>
37#include <linux/vmalloc.h>
38#include <linux/generic_serial.h>
39#include <linux/errno.h>
40#include <linux/interrupt.h>
41#include <linux/delay.h>
42#include <asm/io.h>
43#include <asm/system.h>
44#include <asm/string.h>
45#include <asm/uaccess.h>
46
47
48#include "linux_compat.h"
49#include "rio_linux.h"
50#include "pkt.h"
51#include "daemon.h"
52#include "rio.h"
53#include "riospace.h"
54#include "cmdpkt.h"
55#include "map.h"
56#include "rup.h"
57#include "port.h"
58#include "riodrvr.h"
59#include "rioinfo.h"
60#include "func.h"
61#include "errors.h"
62#include "pci.h"
63
64#include "parmmap.h"
65#include "unixrup.h"
66#include "board.h"
67#include "host.h"
68#include "phb.h"
69#include "link.h"
70#include "cmdblk.h"
71#include "route.h"
72
73static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
74
75static const unsigned char RIOAtVec2Ctrl[] = {
76	/* 0 */ INTERRUPT_DISABLE,
77	/* 1 */ INTERRUPT_DISABLE,
78	/* 2 */ INTERRUPT_DISABLE,
79	/* 3 */ INTERRUPT_DISABLE,
80	/* 4 */ INTERRUPT_DISABLE,
81	/* 5 */ INTERRUPT_DISABLE,
82	/* 6 */ INTERRUPT_DISABLE,
83	/* 7 */ INTERRUPT_DISABLE,
84	/* 8 */ INTERRUPT_DISABLE,
85	/* 9 */ IRQ_9 | INTERRUPT_ENABLE,
86	/* 10 */ INTERRUPT_DISABLE,
87	/* 11 */ IRQ_11 | INTERRUPT_ENABLE,
88	/* 12 */ IRQ_12 | INTERRUPT_ENABLE,
89	/* 13 */ INTERRUPT_DISABLE,
90	/* 14 */ INTERRUPT_DISABLE,
91	/* 15 */ IRQ_15 | INTERRUPT_ENABLE
92};
93
94/**
95 *	RIOBootCodeRTA		-	Load RTA boot code
96 *	@p: RIO to load
97 *	@rbp: Download descriptor
98 *
99 *	Called when the user process initiates booting of the card firmware.
100 *	Lads the firmware
101 */
102
103int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
104{
105	int offset;
106
107	func_enter();
108
109	rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
110
111	/*
112	 ** Check that we have set asside enough memory for this
113	 */
114	if (rbp->Count > SIXTY_FOUR_K) {
115		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
116		p->RIOError.Error = HOST_FILE_TOO_LARGE;
117		func_exit();
118		return -ENOMEM;
119	}
120
121	if (p->RIOBooting) {
122		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
123		p->RIOError.Error = BOOT_IN_PROGRESS;
124		func_exit();
125		return -EBUSY;
126	}
127
128	/*
129	 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
130	 ** so calculate how far we have to move the data up the buffer
131	 ** to achieve this.
132	 */
133	offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
134
135	/*
136	 ** Be clean, and clear the 'unused' portion of the boot buffer,
137	 ** because it will (eventually) be part of the Rta run time environment
138	 ** and so should be zeroed.
139	 */
140	memset(p->RIOBootPackets, 0, offset);
141
142	/*
143	 ** Copy the data from user space into the array
144	 */
145
146	if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
147		rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
148		p->RIOError.Error = COPYIN_FAILED;
149		func_exit();
150		return -EFAULT;
151	}
152
153	/*
154	 ** Make sure that our copy of the size includes that offset we discussed
155	 ** earlier.
156	 */
157	p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
158	p->RIOBootCount = rbp->Count;
159
160	func_exit();
161	return 0;
162}
163
164/**
165 *	rio_start_card_running		-	host card start
166 *	@HostP: The RIO to kick off
167 *
168 *	Start a RIO processor unit running. Encapsulates the knowledge
169 *	of the card type.
170 */
171
172void rio_start_card_running(struct Host *HostP)
173{
174	switch (HostP->Type) {
175	case RIO_AT:
176		rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
177		writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
178		break;
179	case RIO_PCI:
180		/*
181		 ** PCI is much the same as MCA. Everything is once again memory
182		 ** mapped, so we are writing to memory registers instead of io
183		 ** ports.
184		 */
185		rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
186		writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
187		break;
188	default:
189		rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
190		break;
191	}
192	return;
193}
194
195/*
196** Load in the host boot code - load it directly onto all halted hosts
197** of the correct type.
198**
199** Put your rubber pants on before messing with this code - even the magic
200** numbers have trouble understanding what they are doing here.
201*/
202
203int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
204{
205	struct Host *HostP;
206	u8 __iomem *Cad;
207	PARM_MAP __iomem *ParmMapP;
208	int RupN;
209	int PortN;
210	unsigned int host;
211	u8 __iomem *StartP;
212	u8 __iomem *DestP;
213	int wait_count;
214	u16 OldParmMap;
215	u16 offset;		/* It is very important that this is a u16 */
216	u8 *DownCode = NULL;
217	unsigned long flags;
218
219	HostP = NULL;		/* Assure the compiler we've initialized it */
220
221
222	/* Walk the hosts */
223	for (host = 0; host < p->RIONumHosts; host++) {
224		rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
225		HostP = &p->RIOHosts[host];
226
227		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
228
229		/* Don't boot hosts already running */
230		if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
231			rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
232			continue;
233		}
234
235		/*
236		 ** Grab a pointer to the card (ioremapped)
237		 */
238		Cad = HostP->Caddr;
239
240		/*
241		 ** We are going to (try) and load in rbp->Count bytes.
242		 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
243		 ** Therefore, we need to start copying at address
244		 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
245		 */
246		StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
247
248		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
249		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
250		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
251		rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
252
253		/* Make sure it fits */
254		if (p->RIOConf.HostLoadBase < rbp->Count) {
255			rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
256			p->RIOError.Error = HOST_FILE_TOO_LARGE;
257			func_exit();
258			return -EFBIG;
259		}
260		/*
261		 ** Ensure that the host really is stopped.
262		 ** Disable it's external bus & twang its reset line.
263		 */
264		RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
265
266		/*
267		 ** Copy the data directly from user space to the SRAM.
268		 ** This ain't going to be none too clever if the download
269		 ** code is bigger than this segment.
270		 */
271		rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
272
273		/* Buffer to local memory as we want to use I/O space and
274		   some cards only do 8 or 16 bit I/O */
275
276		DownCode = vmalloc(rbp->Count);
277		if (!DownCode) {
278			p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
279			func_exit();
280			return -ENOMEM;
281		}
282		if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
283			kfree(DownCode);
284			p->RIOError.Error = COPYIN_FAILED;
285			func_exit();
286			return -EFAULT;
287		}
288		HostP->Copy(DownCode, StartP, rbp->Count);
289		vfree(DownCode);
290
291		rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
292
293		/*
294		 **                     S T O P !
295		 **
296		 ** Upto this point the code has been fairly rational, and possibly
297		 ** even straight forward. What follows is a pile of crud that will
298		 ** magically turn into six bytes of transputer assembler. Normally
299		 ** you would expect an array or something, but, being me, I have
300		 ** chosen [been told] to use a technique whereby the startup code
301		 ** will be correct if we change the loadbase for the code. Which
302		 ** brings us onto another issue - the loadbase is the *end* of the
303		 ** code, not the start.
304		 **
305		 ** If I were you I wouldn't start from here.
306		 */
307
308		/*
309		 ** We now need to insert a short boot section into
310		 ** the memory at the end of Sram2. This is normally (de)composed
311		 ** of the last eight bytes of the download code. The
312		 ** download has been assembled/compiled to expect to be
313		 ** loaded from 0x7FFF downwards. We have loaded it
314		 ** at some other address. The startup code goes into the small
315		 ** ram window at Sram2, in the last 8 bytes, which are really
316		 ** at addresses 0x7FF8-0x7FFF.
317		 **
318		 ** If the loadbase is, say, 0x7C00, then we need to branch to
319		 ** address 0x7BFE to run the host.bin startup code. We assemble
320		 ** this jump manually.
321		 **
322		 ** The two byte sequence 60 08 is loaded into memory at address
323		 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
324		 ** which adds '0' to the .O register, complements .O, and then shifts
325		 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
326		 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
327		 ** location. Now, the branch starts from the value of .PC (or .IP or
328		 ** whatever the bloody register is called on this chip), and the .PC
329		 ** will be pointing to the location AFTER the branch, in this case
330		 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
331		 **
332		 ** A long branch is coded at 0x7FF8. This consists of loading a four
333		 ** byte offset into .O using nfix (as above) and pfix operators. The
334		 ** pfix operates in exactly the same way as the nfix operator, but
335		 ** without the complement operation. The offset, of course, must be
336		 ** relative to the address of the byte AFTER the branch instruction,
337		 ** which will be (urm) 0x7FFC, so, our final destination of the branch
338		 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
339		 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
340		 ** is the first byte of the initial two byte short local branch of the
341		 ** download code).
342		 **
343		 ** To code a jump from 0x7FFC (which is where the branch will start
344		 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
345		 ** 0x7BFE.
346		 ** This will be coded as four bytes:
347		 ** 60 2C 20 02
348		 ** being nfix .O+0
349		 **        pfix .O+C
350		 **        pfix .O+0
351		 **        jump .O+2
352		 **
353		 ** The nfix operator is used, so that the startup code will be
354		 ** compatible with the whole Tp family. (lies, damn lies, it'll never
355		 ** work in a month of Sundays).
356		 **
357		 ** The nfix nyble is the 1s complement of the nyble value you
358		 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
359		 */
360
361
362		/*
363		 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
364		 ** to 0x7FFE at reset time, and starts executing. This is
365		 ** a short branch to 0x7FF8, where a long branch is coded.
366		 */
367
368		DestP = &Cad[0x7FF8];	/* <<<---- READ THE ABOVE COMMENTS */
369
370#define	NFIX(N)	(0x60 | (N))	/* .O  = (~(.O + N))<<4 */
371#define	PFIX(N)	(0x20 | (N))	/* .O  =   (.O + N)<<4  */
372#define	JUMP(N)	(0x00 | (N))	/* .PC =   .PC + .O      */
373
374		/*
375		 ** 0x7FFC is the address of the location following the last byte of
376		 ** the four byte jump instruction.
377		 ** READ THE ABOVE COMMENTS
378		 **
379		 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
380		 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
381		 ** cos I don't understand 2's complement).
382		 */
383		offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
384
385		writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
386		writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
387		writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
388		writeb(JUMP(offset & 0xF), DestP + 3);
389
390		writeb(NFIX(0), DestP + 6);
391		writeb(JUMP(8), DestP + 7);
392
393		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
394		rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
395
396		/*
397		 ** Flag what is going on
398		 */
399		HostP->Flags &= ~RUN_STATE;
400		HostP->Flags |= RC_STARTUP;
401
402		/*
403		 ** Grab a copy of the current ParmMap pointer, so we
404		 ** can tell when it has changed.
405		 */
406		OldParmMap = readw(&HostP->__ParmMapR);
407
408		rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
409
410		/*
411		 ** And start it running (I hope).
412		 ** As there is nothing dodgy or obscure about the
413		 ** above code, this is guaranteed to work every time.
414		 */
415		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
416
417		rio_start_card_running(HostP);
418
419		rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
420
421		/*
422		 ** Now, wait for upto five seconds for the Tp to setup the parmmap
423		 ** pointer:
424		 */
425		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
426			rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
427			mdelay(100);
428
429		}
430
431		/*
432		 ** If the parmmap pointer is unchanged, then the host code
433		 ** has crashed & burned in a really spectacular way
434		 */
435		if (readw(&HostP->__ParmMapR) == OldParmMap) {
436			rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
437			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
438			HostP->Flags &= ~RUN_STATE;
439			HostP->Flags |= RC_STUFFED;
440			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
441			continue;
442		}
443
444		rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
445
446		/*
447		 ** Well, the board thought it was OK, and setup its parmmap
448		 ** pointer. For the time being, we will pretend that this
449		 ** board is running, and check out what the error flag says.
450		 */
451
452		/*
453		 ** Grab a 32 bit pointer to the parmmap structure
454		 */
455		ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
456		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
457		ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
458		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
459
460		/*
461		 ** The links entry should be 0xFFFF; we set it up
462		 ** with a mask to say how many PHBs to use, and
463		 ** which links to use.
464		 */
465		if (readw(&ParmMapP->links) != 0xFFFF) {
466			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
467			rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
468			HostP->Flags &= ~RUN_STATE;
469			HostP->Flags |= RC_STUFFED;
470			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
471			continue;
472		}
473
474		writew(RIO_LINK_ENABLE, &ParmMapP->links);
475
476		rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
477		HostP->timeout_id = 0;
478		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
479			rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
480			mdelay(100);
481		}
482		rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
483
484		if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
485			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
486			rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
487			HostP->Flags &= ~RUN_STATE;
488			HostP->Flags |= RC_STUFFED;
489			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
490			continue;
491		}
492
493		rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
494
495		/*
496		 ** It runs! It runs!
497		 */
498		rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
499
500		/*
501		 ** set the time period between interrupts.
502		 */
503		writew(p->RIOConf.Timer, &ParmMapP->timer);
504
505		/*
506		 ** Translate all the 16 bit pointers in the __ParmMapR into
507		 ** 32 bit pointers for the driver in ioremap space.
508		 */
509		HostP->ParmMapP = ParmMapP;
510		HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
511		HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
512		HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
513		HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
514
515		/*
516		 ** point the UnixRups at the real Rups
517		 */
518		for (RupN = 0; RupN < MAX_RUP; RupN++) {
519			HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
520			HostP->UnixRups[RupN].Id = RupN + 1;
521			HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
522			spin_lock_init(&HostP->UnixRups[RupN].RupLock);
523		}
524
525		for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
526			HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
527			HostP->UnixRups[RupN + MAX_RUP].Id = 0;
528			HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
529			spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
530		}
531
532		/*
533		 ** point the PortP->Phbs at the real Phbs
534		 */
535		for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
536			if (p->RIOPortp[PortN]->HostP == HostP) {
537				struct Port *PortP = p->RIOPortp[PortN];
538				struct PHB __iomem *PhbP;
539				/* int oldspl; */
540
541				if (!PortP->Mapped)
542					continue;
543
544				PhbP = &HostP->PhbP[PortP->HostPort];
545				rio_spin_lock_irqsave(&PortP->portSem, flags);
546
547				PortP->PhbP = PhbP;
548
549				PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
550				PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
551				PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
552				PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
553				PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
554				PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
555
556				rio_spin_unlock_irqrestore(&PortP->portSem, flags);
557				/*
558				 ** point the UnixRup at the base SysPort
559				 */
560				if (!(PortN % PORTS_PER_RTA))
561					HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
562			}
563		}
564
565		rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
566		/*
567		 ** last thing - show the world that everything is in place
568		 */
569		HostP->Flags &= ~RUN_STATE;
570		HostP->Flags |= RC_RUNNING;
571	}
572	/*
573	 ** MPX always uses a poller. This is actually patched into the system
574	 ** configuration and called directly from each clock tick.
575	 **
576	 */
577	p->RIOPolling = 1;
578
579	p->RIOSystemUp++;
580
581	rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
582	func_exit();
583	return 0;
584}
585
586
587
588/**
589 *	RIOBootRup		-	Boot an RTA
590 *	@p: rio we are working with
591 *	@Rup: Rup number
592 *	@HostP: host object
593 *	@PacketP: packet to use
594 *
595 *	If we have successfully processed this boot, then
596 *	return 1. If we havent, then return 0.
597 */
598
599int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
600{
601	struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
602	struct PktCmd_M *PktReplyP;
603	struct CmdBlk *CmdBlkP;
604	unsigned int sequence;
605
606	/*
607	 ** If we haven't been told what to boot, we can't boot it.
608	 */
609	if (p->RIONumBootPkts == 0) {
610		rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
611		return 0;
612	}
613
614	/*
615	 ** Special case of boot completed - if we get one of these then we
616	 ** don't need a command block. For all other cases we do, so handle
617	 ** this first and then get a command block, then handle every other
618	 ** case, relinquishing the command block if disaster strikes!
619	 */
620	if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
621		return RIOBootComplete(p, HostP, Rup, PktCmdP);
622
623	/*
624	 ** Try to allocate a command block. This is in kernel space
625	 */
626	if (!(CmdBlkP = RIOGetCmdBlk())) {
627		rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
628		return 0;
629	}
630
631	/*
632	 ** Fill in the default info on the command block
633	 */
634	CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
635	CmdBlkP->Packet.dest_port = BOOT_RUP;
636	CmdBlkP->Packet.src_unit = 0;
637	CmdBlkP->Packet.src_port = BOOT_RUP;
638
639	CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
640	PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
641
642	/*
643	 ** process COMMANDS on the boot rup!
644	 */
645	if (readb(&PacketP->len) & PKT_CMD_BIT) {
646		/*
647		 ** We only expect one type of command - a BOOT_REQUEST!
648		 */
649		if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
650			rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
651			RIOFreeCmdBlk(CmdBlkP);
652			return 1;
653		}
654
655		/*
656		 ** Build a Boot Sequence command block
657		 **
658		 ** We no longer need to use "Boot Mode", we'll always allow
659		 ** boot requests - the boot will not complete if the device
660		 ** appears in the bindings table.
661		 **
662		 ** We'll just (always) set the command field in packet reply
663		 ** to allow an attempted boot sequence :
664		 */
665		PktReplyP->Command = BOOT_SEQUENCE;
666
667		PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
668		PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
669		PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
670
671		CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
672
673		memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
674
675		rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
676
677		/*
678		 ** If this host is in slave mode, send the RTA an invalid boot
679		 ** sequence command block to force it to kill the boot. We wait
680		 ** for half a second before sending this packet to prevent the RTA
681		 ** attempting to boot too often. The master host should then grab
682		 ** the RTA and make it its own.
683		 */
684		p->RIOBooting++;
685		RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
686		return 1;
687	}
688
689	/*
690	 ** It is a request for boot data.
691	 */
692	sequence = readw(&PktCmdP->Sequence);
693
694	rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
695
696	if (sequence >= p->RIONumBootPkts) {
697		rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
698	}
699
700	PktReplyP->Sequence = sequence;
701	memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
702	CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
703	RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
704	return 1;
705}
706
707/**
708 *	RIOBootComplete		-	RTA boot is done
709 *	@p: RIO we are working with
710 *	@HostP: Host structure
711 *	@Rup: RUP being used
712 *	@PktCmdP: Packet command that was used
713 *
714 *	This function is called when an RTA been booted.
715 *	If booted by a host, HostP->HostUniqueNum is the booting host.
716 *	If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
717 *	RtaUniq is the booted RTA.
718 */
719
720static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
721{
722	struct Map *MapP = NULL;
723	struct Map *MapP2 = NULL;
724	int Flag;
725	int found;
726	int host, rta;
727	int EmptySlot = -1;
728	int entry, entry2;
729	char *MyType, *MyName;
730	unsigned int MyLink;
731	unsigned short RtaType;
732	u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
733
734	p->RIOBooting = 0;
735
736	rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
737
738	/*
739	 ** Determine type of unit (16/8 port RTA).
740	 */
741
742	RtaType = GetUnitType(RtaUniq);
743	if (Rup >= (unsigned short) MAX_RUP)
744		rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
745	else
746		rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
747
748	rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
749
750	if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
751		rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
752		return 1;
753	}
754
755	/*
756	 ** If this RTA has just booted an RTA which doesn't belong to this
757	 ** system, or the system is in slave mode, do not attempt to create
758	 ** a new table entry for it.
759	 */
760
761	if (!RIOBootOk(p, HostP, RtaUniq)) {
762		MyLink = readb(&PktCmdP->LinkNum);
763		if (Rup < (unsigned short) MAX_RUP) {
764			/*
765			 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
766			 ** to hold off further attempts to boot on this link for 30
767			 ** seconds.
768			 */
769			if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
770				rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
771			}
772		} else
773			/*
774			 ** RtaUniq was booted by this host. Set the booting link
775			 ** to hold off for 30 seconds to give another unit a
776			 ** chance to boot it.
777			 */
778			writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
779		rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
780		return 1;
781	}
782
783	/*
784	 ** Check for a SLOT_IN_USE entry for this RTA attached to the
785	 ** current host card in the driver table.
786	 **
787	 ** If it exists, make a note that we have booted it. Other parts of
788	 ** the driver are interested in this information at a later date,
789	 ** in particular when the booting RTA asks for an ID for this unit,
790	 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
791	 ** to force an open on any ports that where previously open on this
792	 ** unit.
793	 */
794	for (entry = 0; entry < MAX_RUP; entry++) {
795		unsigned int sysport;
796
797		if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
798			HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
799			if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
800				if (sysport < p->RIOFirstPortsBooted)
801					p->RIOFirstPortsBooted = sysport;
802				if (sysport > p->RIOLastPortsBooted)
803					p->RIOLastPortsBooted = sysport;
804				/*
805				 ** For a 16 port RTA, check the second bank of 8 ports
806				 */
807				if (RtaType == TYPE_RTA16) {
808					entry2 = HostP->Mapping[entry].ID2 - 1;
809					HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
810					sysport = HostP->Mapping[entry2].SysPort;
811					if (sysport < p->RIOFirstPortsBooted)
812						p->RIOFirstPortsBooted = sysport;
813					if (sysport > p->RIOLastPortsBooted)
814						p->RIOLastPortsBooted = sysport;
815				}
816			}
817			if (RtaType == TYPE_RTA16)
818				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
819			else
820				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
821			return 1;
822		}
823	}
824
825	rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
826
827	if (Rup >= (unsigned short) MAX_RUP) {
828		/*
829		 ** It was a host that did the booting
830		 */
831		MyType = "Host";
832		MyName = HostP->Name;
833	} else {
834		/*
835		 ** It was an RTA that did the booting
836		 */
837		MyType = "RTA";
838		MyName = HostP->Mapping[Rup].Name;
839	}
840	MyLink = readb(&PktCmdP->LinkNum);
841
842	/*
843	 ** There is no SLOT_IN_USE entry for this RTA attached to the current
844	 ** host card in the driver table.
845	 **
846	 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
847	 ** current host card in the driver table.
848	 **
849	 ** If we find one, then we re-use that slot.
850	 */
851	for (entry = 0; entry < MAX_RUP; entry++) {
852		if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
853			if (RtaType == TYPE_RTA16) {
854				entry2 = HostP->Mapping[entry].ID2 - 1;
855				if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
856					rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
857				else
858					continue;
859			} else
860				rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
861			if (!p->RIONoMessage)
862				printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
863			return 1;
864		}
865	}
866
867	/*
868	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
869	 ** attached to the current host card in the driver table.
870	 **
871	 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
872	 ** host for this RTA in the driver table.
873	 **
874	 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
875	 ** entry from the other host and add it to this host (using some of
876	 ** the functions from table.c which do this).
877	 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
878	 ** following scenario:
879	 **
880	 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
881	 **   in table)
882	 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
883	 **   entries)
884	 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
885	 ** + Unplug RTA and plug back into host A.
886	 ** + Configure RTA on host A. We now have the same RTA configured
887	 **   with different ports on two different hosts.
888	 */
889	rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
890	found = 0;
891	Flag = 0;		/* Convince the compiler this variable is initialized */
892	for (host = 0; !found && (host < p->RIONumHosts); host++) {
893		for (rta = 0; rta < MAX_RUP; rta++) {
894			if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
895				Flag = p->RIOHosts[host].Mapping[rta].Flags;
896				MapP = &p->RIOHosts[host].Mapping[rta];
897				if (RtaType == TYPE_RTA16) {
898					MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
899					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
900				} else
901					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
902				found = 1;
903				break;
904			}
905		}
906	}
907
908	/*
909	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
910	 ** attached to the current host card in the driver table.
911	 **
912	 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
913	 ** another host for this RTA in the driver table...
914	 **
915	 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
916	 */
917	if (!MapP) {
918		rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
919		for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
920			rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
921
922			if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
923				MapP = &p->RIOSavedTable[rta];
924				Flag = p->RIOSavedTable[rta].Flags;
925				if (RtaType == TYPE_RTA16) {
926					for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
927						if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
928							break;
929					}
930					MapP2 = &p->RIOSavedTable[entry2];
931					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
932				} else
933					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
934				break;
935			}
936		}
937	}
938
939	/*
940	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
941	 ** attached to the current host card in the driver table.
942	 **
943	 ** We may have found a SLOT_IN_USE entry on another host for this
944	 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
945	 ** on another host for this RTA in the driver table.
946	 **
947	 ** Check the driver table for room to fit this newly discovered RTA.
948	 ** RIOFindFreeID() first looks for free slots and if it does not
949	 ** find any free slots it will then attempt to oust any
950	 ** tentative entry in the table.
951	 */
952	EmptySlot = 1;
953	if (RtaType == TYPE_RTA16) {
954		if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
955			RIODefaultName(p, HostP, entry);
956			rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
957			EmptySlot = 0;
958		}
959	} else {
960		if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
961			RIODefaultName(p, HostP, entry);
962			rio_fill_host_slot(entry, 0, RtaUniq, HostP);
963			EmptySlot = 0;
964		}
965	}
966
967	/*
968	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
969	 ** attached to the current host card in the driver table.
970	 **
971	 ** If we found a SLOT_IN_USE entry on another host for this
972	 ** RTA in the config or driver table, and there are enough free
973	 ** slots in the driver table, then we need to move it over and
974	 ** delete it from the other host.
975	 ** If we found a SLOT_TENTATIVE entry on another host for this
976	 ** RTA in the driver table, just delete the other host entry.
977	 */
978	if (EmptySlot == 0) {
979		if (MapP) {
980			if (Flag & SLOT_IN_USE) {
981				rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
982				HostP->Mapping[entry].SysPort = MapP->SysPort;
983				memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
984				HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
985				RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
986				if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
987					p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
988				if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
989					p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
990				rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
991			} else {
992				rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
993				HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
994			}
995			if (RtaType == TYPE_RTA16) {
996				if (Flag & SLOT_IN_USE) {
997					HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
998					HostP->Mapping[entry2].SysPort = MapP2->SysPort;
999					/*
1000					 ** Map second block of ttys for 16 port RTA
1001					 */
1002					RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
1003					if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1004						p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1005					if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1006						p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1007					rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
1008				} else
1009					HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1010				memset(MapP2, 0, sizeof(struct Map));
1011			}
1012			memset(MapP, 0, sizeof(struct Map));
1013			if (!p->RIONoMessage)
1014				printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
1015		} else if (!p->RIONoMessage)
1016			printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
1017		RIOSetChange(p);
1018		return 1;
1019	}
1020
1021	/*
1022	 ** There is no room in the driver table to make an entry for the
1023	 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1024	 ** so we can ignore it's ID requests.
1025	 */
1026	if (!p->RIONoMessage)
1027		printk("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
1028	for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
1029		if (HostP->ExtraUnits[entry] == RtaUniq) {
1030			/*
1031			 ** already got it!
1032			 */
1033			return 1;
1034		}
1035	}
1036	/*
1037	 ** If there is room, add the unit to the list of extras
1038	 */
1039	if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
1040		HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1041	return 1;
1042}
1043
1044
1045/*
1046** If the RTA or its host appears in the RIOBindTab[] structure then
1047** we mustn't boot the RTA and should return 0.
1048** This operation is slightly different from the other drivers for RIO
1049** in that this is designed to work with the new utilities
1050** not config.rio and is FAR SIMPLER.
1051** We no longer support the RIOBootMode variable. It is all done from the
1052** "boot/noboot" field in the rio.cf file.
1053*/
1054int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
1055{
1056	int Entry;
1057	unsigned int HostUniq = HostP->UniqueNum;
1058
1059	/*
1060	 ** Search bindings table for RTA or its parent.
1061	 ** If it exists, return 0, else 1.
1062	 */
1063	for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
1064		if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
1065			return 0;
1066	}
1067	return 1;
1068}
1069
1070/*
1071** Make an empty slot tentative. If this is a 16 port RTA, make both
1072** slots tentative, and the second one RTA_SECOND_SLOT as well.
1073*/
1074
1075void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
1076{
1077	int link;
1078
1079	rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
1080
1081	host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1082	host->Mapping[entry].SysPort = NO_PORT;
1083	host->Mapping[entry].RtaUniqueNum = rta_uniq;
1084	host->Mapping[entry].HostUniqueNum = host->UniqueNum;
1085	host->Mapping[entry].ID = entry + 1;
1086	host->Mapping[entry].ID2 = 0;
1087	if (entry2) {
1088		host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1089		host->Mapping[entry2].SysPort = NO_PORT;
1090		host->Mapping[entry2].RtaUniqueNum = rta_uniq;
1091		host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
1092		host->Mapping[entry2].Name[0] = '\0';
1093		host->Mapping[entry2].ID = entry2 + 1;
1094		host->Mapping[entry2].ID2 = entry + 1;
1095		host->Mapping[entry].ID2 = entry2 + 1;
1096	}
1097	/*
1098	 ** Must set these up, so that utilities show
1099	 ** topology of 16 port RTAs correctly
1100	 */
1101	for (link = 0; link < LINKS_PER_UNIT; link++) {
1102		host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1103		host->Mapping[entry].Topology[link].Link = NO_LINK;
1104		if (entry2) {
1105			host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1106			host->Mapping[entry2].Topology[link].Link = NO_LINK;
1107		}
1108	}
1109}
1110