• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/char/
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, and the entire permission notice in its entirety,
14 *    including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior
20 *    written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions.  (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices.  Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm.  Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable.  So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers.  In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure.  Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool".  The SHA hash avoids
80 * exposing the internal state of the entropy pool.  It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output.  Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable.  For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs.  This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * 	void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom.  /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested.  As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong.  For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * 	void add_input_randomness(unsigned int type, unsigned int code,
129 *                                unsigned int value);
130 * 	void add_interrupt_randomness(int irq);
131 *
132 * add_input_randomness() uses the input layer interrupt timing, as well as
133 * the event type information from the hardware.
134 *
135 * add_interrupt_randomness() uses the inter-interrupt timing as random
136 * inputs to the entropy pool.  Note that not all interrupts are good
137 * sources of randomness!  For example, the timer interrupts is not a
138 * good choice, because the periodicity of the interrupts is too
139 * regular, and hence predictable to an attacker.  Disk interrupts are
140 * a better measure, since the timing of the disk interrupts are more
141 * unpredictable.
142 *
143 * All of these routines try to estimate how many bits of randomness a
144 * particular randomness source.  They do this by keeping track of the
145 * first and second order deltas of the event timings.
146 *
147 * Ensuring unpredictability at system startup
148 * ============================================
149 *
150 * When any operating system starts up, it will go through a sequence
151 * of actions that are fairly predictable by an adversary, especially
152 * if the start-up does not involve interaction with a human operator.
153 * This reduces the actual number of bits of unpredictability in the
154 * entropy pool below the value in entropy_count.  In order to
155 * counteract this effect, it helps to carry information in the
156 * entropy pool across shut-downs and start-ups.  To do this, put the
157 * following lines an appropriate script which is run during the boot
158 * sequence:
159 *
160 *	echo "Initializing random number generator..."
161 *	random_seed=/var/run/random-seed
162 *	# Carry a random seed from start-up to start-up
163 *	# Load and then save the whole entropy pool
164 *	if [ -f $random_seed ]; then
165 *		cat $random_seed >/dev/urandom
166 *	else
167 *		touch $random_seed
168 *	fi
169 *	chmod 600 $random_seed
170 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171 *
172 * and the following lines in an appropriate script which is run as
173 * the system is shutdown:
174 *
175 *	# Carry a random seed from shut-down to start-up
176 *	# Save the whole entropy pool
177 *	echo "Saving random seed..."
178 *	random_seed=/var/run/random-seed
179 *	touch $random_seed
180 *	chmod 600 $random_seed
181 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182 *
183 * For example, on most modern systems using the System V init
184 * scripts, such code fragments would be found in
185 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187 *
188 * Effectively, these commands cause the contents of the entropy pool
189 * to be saved at shut-down time and reloaded into the entropy pool at
190 * start-up.  (The 'dd' in the addition to the bootup script is to
191 * make sure that /etc/random-seed is different for every start-up,
192 * even if the system crashes without executing rc.0.)  Even with
193 * complete knowledge of the start-up activities, predicting the state
194 * of the entropy pool requires knowledge of the previous history of
195 * the system.
196 *
197 * Configuring the /dev/random driver under Linux
198 * ==============================================
199 *
200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201 * the /dev/mem major number (#1).  So if your system does not have
202 * /dev/random and /dev/urandom created already, they can be created
203 * by using the commands:
204 *
205 * 	mknod /dev/random c 1 8
206 * 	mknod /dev/urandom c 1 9
207 *
208 * Acknowledgements:
209 * =================
210 *
211 * Ideas for constructing this random number generator were derived
212 * from Pretty Good Privacy's random number generator, and from private
213 * discussions with Phil Karn.  Colin Plumb provided a faster random
214 * number generator, which speed up the mixing function of the entropy
215 * pool, taken from PGPfone.  Dale Worley has also contributed many
216 * useful ideas and suggestions to improve this driver.
217 *
218 * Any flaws in the design are solely my responsibility, and should
219 * not be attributed to the Phil, Colin, or any of authors of PGP.
220 *
221 * Further background information on this topic may be obtained from
222 * RFC 1750, "Randomness Recommendations for Security", by Donald
223 * Eastlake, Steve Crocker, and Jeff Schiller.
224 */
225
226#include <linux/utsname.h>
227#include <linux/module.h>
228#include <linux/kernel.h>
229#include <linux/major.h>
230#include <linux/string.h>
231#include <linux/fcntl.h>
232#include <linux/slab.h>
233#include <linux/random.h>
234#include <linux/poll.h>
235#include <linux/init.h>
236#include <linux/fs.h>
237#include <linux/genhd.h>
238#include <linux/interrupt.h>
239#include <linux/mm.h>
240#include <linux/spinlock.h>
241#include <linux/percpu.h>
242#include <linux/cryptohash.h>
243#include <linux/fips.h>
244
245#ifdef CONFIG_GENERIC_HARDIRQS
246# include <linux/irq.h>
247#endif
248
249#include <asm/processor.h>
250#include <asm/uaccess.h>
251#include <asm/irq.h>
252#include <asm/io.h>
253
254/*
255 * Configuration information
256 */
257#define INPUT_POOL_WORDS 128
258#define OUTPUT_POOL_WORDS 32
259#define SEC_XFER_SIZE 512
260#define EXTRACT_SIZE 10
261
262/*
263 * The minimum number of bits of entropy before we wake up a read on
264 * /dev/random.  Should be enough to do a significant reseed.
265 */
266static int random_read_wakeup_thresh = 64;
267
268/*
269 * If the entropy count falls under this number of bits, then we
270 * should wake up processes which are selecting or polling on write
271 * access to /dev/random.
272 */
273static int random_write_wakeup_thresh = 128;
274
275/*
276 * When the input pool goes over trickle_thresh, start dropping most
277 * samples to avoid wasting CPU time and reduce lock contention.
278 */
279
280static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
281
282static DEFINE_PER_CPU(int, trickle_count);
283
284/*
285 * A pool of size .poolwords is stirred with a primitive polynomial
286 * of degree .poolwords over GF(2).  The taps for various sizes are
287 * defined below.  They are chosen to be evenly spaced (minimum RMS
288 * distance from evenly spaced; the numbers in the comments are a
289 * scaled squared error sum) except for the last tap, which is 1 to
290 * get the twisting happening as fast as possible.
291 */
292static struct poolinfo {
293	int poolwords;
294	int tap1, tap2, tap3, tap4, tap5;
295} poolinfo_table[] = {
296	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
297	{ 128,	103,	76,	51,	25,	1 },
298	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
299	{ 32,	26,	20,	14,	7,	1 },
300};
301
302#define POOLBITS	poolwords*32
303#define POOLBYTES	poolwords*4
304
305/*
306 * For the purposes of better mixing, we use the CRC-32 polynomial as
307 * well to make a twisted Generalized Feedback Shift Reigster
308 *
309 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
310 * Transactions on Modeling and Computer Simulation 2(3):179-194.
311 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
312 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
313 *
314 * Thanks to Colin Plumb for suggesting this.
315 *
316 * We have not analyzed the resultant polynomial to prove it primitive;
317 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
318 * of a random large-degree polynomial over GF(2) are more than large enough
319 * that periodicity is not a concern.
320 *
321 * The input hash is much less sensitive than the output hash.  All
322 * that we want of it is that it be a good non-cryptographic hash;
323 * i.e. it not produce collisions when fed "random" data of the sort
324 * we expect to see.  As long as the pool state differs for different
325 * inputs, we have preserved the input entropy and done a good job.
326 * The fact that an intelligent attacker can construct inputs that
327 * will produce controlled alterations to the pool's state is not
328 * important because we don't consider such inputs to contribute any
329 * randomness.  The only property we need with respect to them is that
330 * the attacker can't increase his/her knowledge of the pool's state.
331 * Since all additions are reversible (knowing the final state and the
332 * input, you can reconstruct the initial state), if an attacker has
333 * any uncertainty about the initial state, he/she can only shuffle
334 * that uncertainty about, but never cause any collisions (which would
335 * decrease the uncertainty).
336 *
337 * The chosen system lets the state of the pool be (essentially) the input
338 * modulo the generator polymnomial.  Now, for random primitive polynomials,
339 * this is a universal class of hash functions, meaning that the chance
340 * of a collision is limited by the attacker's knowledge of the generator
341 * polynomail, so if it is chosen at random, an attacker can never force
342 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
343 * ###--> it is unknown to the processes generating the input entropy. <-###
344 * Because of this important property, this is a good, collision-resistant
345 * hash; hash collisions will occur no more often than chance.
346 */
347
348/*
349 * Static global variables
350 */
351static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
352static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
353static struct fasync_struct *fasync;
354
355#define DEBUG_ENT(fmt, arg...) do {} while (0)
356
357/**********************************************************************
358 *
359 * OS independent entropy store.   Here are the functions which handle
360 * storing entropy in an entropy pool.
361 *
362 **********************************************************************/
363
364struct entropy_store;
365struct entropy_store {
366	/* read-only data: */
367	struct poolinfo *poolinfo;
368	__u32 *pool;
369	const char *name;
370	struct entropy_store *pull;
371	int limit;
372
373	/* read-write data: */
374	spinlock_t lock;
375	unsigned add_ptr;
376	int entropy_count;
377	int input_rotate;
378	__u8 last_data[EXTRACT_SIZE];
379};
380
381static __u32 input_pool_data[INPUT_POOL_WORDS];
382static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
383static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
384
385static struct entropy_store input_pool = {
386	.poolinfo = &poolinfo_table[0],
387	.name = "input",
388	.limit = 1,
389	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
390	.pool = input_pool_data
391};
392
393static struct entropy_store blocking_pool = {
394	.poolinfo = &poolinfo_table[1],
395	.name = "blocking",
396	.limit = 1,
397	.pull = &input_pool,
398	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
399	.pool = blocking_pool_data
400};
401
402static struct entropy_store nonblocking_pool = {
403	.poolinfo = &poolinfo_table[1],
404	.name = "nonblocking",
405	.pull = &input_pool,
406	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
407	.pool = nonblocking_pool_data
408};
409
410/*
411 * This function adds bytes into the entropy "pool".  It does not
412 * update the entropy estimate.  The caller should call
413 * credit_entropy_bits if this is appropriate.
414 *
415 * The pool is stirred with a primitive polynomial of the appropriate
416 * degree, and then twisted.  We twist by three bits at a time because
417 * it's cheap to do so and helps slightly in the expected case where
418 * the entropy is concentrated in the low-order bits.
419 */
420static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
421				   int nbytes, __u8 out[64])
422{
423	static __u32 const twist_table[8] = {
424		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
425		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
426	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
427	int input_rotate;
428	int wordmask = r->poolinfo->poolwords - 1;
429	const char *bytes = in;
430	__u32 w;
431	unsigned long flags;
432
433	/* Taps are constant, so we can load them without holding r->lock.  */
434	tap1 = r->poolinfo->tap1;
435	tap2 = r->poolinfo->tap2;
436	tap3 = r->poolinfo->tap3;
437	tap4 = r->poolinfo->tap4;
438	tap5 = r->poolinfo->tap5;
439
440	spin_lock_irqsave(&r->lock, flags);
441	input_rotate = r->input_rotate;
442	i = r->add_ptr;
443
444	/* mix one byte at a time to simplify size handling and churn faster */
445	while (nbytes--) {
446		w = rol32(*bytes++, input_rotate & 31);
447		i = (i - 1) & wordmask;
448
449		/* XOR in the various taps */
450		w ^= r->pool[i];
451		w ^= r->pool[(i + tap1) & wordmask];
452		w ^= r->pool[(i + tap2) & wordmask];
453		w ^= r->pool[(i + tap3) & wordmask];
454		w ^= r->pool[(i + tap4) & wordmask];
455		w ^= r->pool[(i + tap5) & wordmask];
456
457		/* Mix the result back in with a twist */
458		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
459
460		/*
461		 * Normally, we add 7 bits of rotation to the pool.
462		 * At the beginning of the pool, add an extra 7 bits
463		 * rotation, so that successive passes spread the
464		 * input bits across the pool evenly.
465		 */
466		input_rotate += i ? 7 : 14;
467	}
468
469	r->input_rotate = input_rotate;
470	r->add_ptr = i;
471
472	if (out)
473		for (j = 0; j < 16; j++)
474			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
475
476	spin_unlock_irqrestore(&r->lock, flags);
477}
478
479static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
480{
481       mix_pool_bytes_extract(r, in, bytes, NULL);
482}
483
484/*
485 * Credit (or debit) the entropy store with n bits of entropy
486 */
487static void credit_entropy_bits(struct entropy_store *r, int nbits)
488{
489	unsigned long flags;
490	int entropy_count;
491
492	if (!nbits)
493		return;
494
495	spin_lock_irqsave(&r->lock, flags);
496
497	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
498	entropy_count = r->entropy_count;
499	entropy_count += nbits;
500	if (entropy_count < 0) {
501		DEBUG_ENT("negative entropy/overflow\n");
502		entropy_count = 0;
503	} else if (entropy_count > r->poolinfo->POOLBITS)
504		entropy_count = r->poolinfo->POOLBITS;
505	r->entropy_count = entropy_count;
506
507	/* should we wake readers? */
508	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
509		wake_up_interruptible(&random_read_wait);
510		kill_fasync(&fasync, SIGIO, POLL_IN);
511	}
512	spin_unlock_irqrestore(&r->lock, flags);
513}
514
515/*********************************************************************
516 *
517 * Entropy input management
518 *
519 *********************************************************************/
520
521/* There is one of these per entropy source */
522struct timer_rand_state {
523	cycles_t last_time;
524	long last_delta, last_delta2;
525	unsigned dont_count_entropy:1;
526};
527
528#ifndef CONFIG_GENERIC_HARDIRQS
529
530static struct timer_rand_state *irq_timer_state[NR_IRQS];
531
532static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
533{
534	return irq_timer_state[irq];
535}
536
537static void set_timer_rand_state(unsigned int irq,
538				 struct timer_rand_state *state)
539{
540	irq_timer_state[irq] = state;
541}
542
543#else
544
545static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
546{
547	struct irq_desc *desc;
548
549	desc = irq_to_desc(irq);
550
551	return desc->timer_rand_state;
552}
553
554static void set_timer_rand_state(unsigned int irq,
555				 struct timer_rand_state *state)
556{
557	struct irq_desc *desc;
558
559	desc = irq_to_desc(irq);
560
561	desc->timer_rand_state = state;
562}
563#endif
564
565static struct timer_rand_state input_timer_state;
566
567/*
568 * This function adds entropy to the entropy "pool" by using timing
569 * delays.  It uses the timer_rand_state structure to make an estimate
570 * of how many bits of entropy this call has added to the pool.
571 *
572 * The number "num" is also added to the pool - it should somehow describe
573 * the type of event which just happened.  This is currently 0-255 for
574 * keyboard scan codes, and 256 upwards for interrupts.
575 *
576 */
577static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
578{
579	struct {
580		cycles_t cycles;
581		long jiffies;
582		unsigned num;
583	} sample;
584	long delta, delta2, delta3;
585
586	preempt_disable();
587	/* if over the trickle threshold, use only 1 in 4096 samples */
588	if (input_pool.entropy_count > trickle_thresh &&
589	    (__get_cpu_var(trickle_count)++ & 0xfff))
590		goto out;
591
592	sample.jiffies = jiffies;
593	sample.cycles = get_cycles();
594	sample.num = num;
595	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
596
597	/*
598	 * Calculate number of bits of randomness we probably added.
599	 * We take into account the first, second and third-order deltas
600	 * in order to make our estimate.
601	 */
602
603	if (!state->dont_count_entropy) {
604		delta = sample.jiffies - state->last_time;
605		state->last_time = sample.jiffies;
606
607		delta2 = delta - state->last_delta;
608		state->last_delta = delta;
609
610		delta3 = delta2 - state->last_delta2;
611		state->last_delta2 = delta2;
612
613		if (delta < 0)
614			delta = -delta;
615		if (delta2 < 0)
616			delta2 = -delta2;
617		if (delta3 < 0)
618			delta3 = -delta3;
619		if (delta > delta2)
620			delta = delta2;
621		if (delta > delta3)
622			delta = delta3;
623
624		/*
625		 * delta is now minimum absolute delta.
626		 * Round down by 1 bit on general principles,
627		 * and limit entropy entimate to 12 bits.
628		 */
629		credit_entropy_bits(&input_pool,
630				    min_t(int, fls(delta>>1), 11));
631	}
632out:
633	preempt_enable();
634}
635
636void add_input_randomness(unsigned int type, unsigned int code,
637				 unsigned int value)
638{
639	static unsigned char last_value;
640
641	/* ignore autorepeat and the like */
642	if (value == last_value)
643		return;
644
645	DEBUG_ENT("input event\n");
646	last_value = value;
647	add_timer_randomness(&input_timer_state,
648			     (type << 4) ^ code ^ (code >> 4) ^ value);
649}
650EXPORT_SYMBOL_GPL(add_input_randomness);
651
652void add_interrupt_randomness(int irq)
653{
654	struct timer_rand_state *state;
655
656	state = get_timer_rand_state(irq);
657
658	if (state == NULL)
659		return;
660
661	DEBUG_ENT("irq event %d\n", irq);
662	add_timer_randomness(state, 0x100 + irq);
663}
664
665#ifdef CONFIG_BLOCK
666void add_disk_randomness(struct gendisk *disk)
667{
668	if (!disk || !disk->random)
669		return;
670	/* first major is 1, so we get >= 0x200 here */
671	DEBUG_ENT("disk event %d:%d\n",
672		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
673
674	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
675}
676#endif
677
678/*********************************************************************
679 *
680 * Entropy extraction routines
681 *
682 *********************************************************************/
683
684static ssize_t extract_entropy(struct entropy_store *r, void *buf,
685			       size_t nbytes, int min, int rsvd);
686
687/*
688 * This utility inline function is responsible for transfering entropy
689 * from the primary pool to the secondary extraction pool. We make
690 * sure we pull enough for a 'catastrophic reseed'.
691 */
692static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
693{
694	__u32 tmp[OUTPUT_POOL_WORDS];
695
696	if (r->pull && r->entropy_count < nbytes * 8 &&
697	    r->entropy_count < r->poolinfo->POOLBITS) {
698		/* If we're limited, always leave two wakeup worth's BITS */
699		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
700		int bytes = nbytes;
701
702		/* pull at least as many as BYTES as wakeup BITS */
703		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
704		/* but never more than the buffer size */
705		bytes = min_t(int, bytes, sizeof(tmp));
706
707		DEBUG_ENT("going to reseed %s with %d bits "
708			  "(%d of %d requested)\n",
709			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
710
711		bytes = extract_entropy(r->pull, tmp, bytes,
712					random_read_wakeup_thresh / 8, rsvd);
713		mix_pool_bytes(r, tmp, bytes);
714		credit_entropy_bits(r, bytes*8);
715	}
716}
717
718/*
719 * These functions extracts randomness from the "entropy pool", and
720 * returns it in a buffer.
721 *
722 * The min parameter specifies the minimum amount we can pull before
723 * failing to avoid races that defeat catastrophic reseeding while the
724 * reserved parameter indicates how much entropy we must leave in the
725 * pool after each pull to avoid starving other readers.
726 *
727 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
728 */
729
730static size_t account(struct entropy_store *r, size_t nbytes, int min,
731		      int reserved)
732{
733	unsigned long flags;
734
735	/* Hold lock while accounting */
736	spin_lock_irqsave(&r->lock, flags);
737
738	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
739	DEBUG_ENT("trying to extract %d bits from %s\n",
740		  nbytes * 8, r->name);
741
742	/* Can we pull enough? */
743	if (r->entropy_count / 8 < min + reserved) {
744		nbytes = 0;
745	} else {
746		/* If limited, never pull more than available */
747		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
748			nbytes = r->entropy_count/8 - reserved;
749
750		if (r->entropy_count / 8 >= nbytes + reserved)
751			r->entropy_count -= nbytes*8;
752		else
753			r->entropy_count = reserved;
754
755		if (r->entropy_count < random_write_wakeup_thresh) {
756			wake_up_interruptible(&random_write_wait);
757			kill_fasync(&fasync, SIGIO, POLL_OUT);
758		}
759	}
760
761	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
762		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
763
764	spin_unlock_irqrestore(&r->lock, flags);
765
766	return nbytes;
767}
768
769static void extract_buf(struct entropy_store *r, __u8 *out)
770{
771	int i;
772	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
773	__u8 extract[64];
774
775	/* Generate a hash across the pool, 16 words (512 bits) at a time */
776	sha_init(hash);
777	for (i = 0; i < r->poolinfo->poolwords; i += 16)
778		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
779
780	/*
781	 * We mix the hash back into the pool to prevent backtracking
782	 * attacks (where the attacker knows the state of the pool
783	 * plus the current outputs, and attempts to find previous
784	 * ouputs), unless the hash function can be inverted. By
785	 * mixing at least a SHA1 worth of hash data back, we make
786	 * brute-forcing the feedback as hard as brute-forcing the
787	 * hash.
788	 */
789	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
790
791	/*
792	 * To avoid duplicates, we atomically extract a portion of the
793	 * pool while mixing, and hash one final time.
794	 */
795	sha_transform(hash, extract, workspace);
796	memset(extract, 0, sizeof(extract));
797	memset(workspace, 0, sizeof(workspace));
798
799	/*
800	 * In case the hash function has some recognizable output
801	 * pattern, we fold it in half. Thus, we always feed back
802	 * twice as much data as we output.
803	 */
804	hash[0] ^= hash[3];
805	hash[1] ^= hash[4];
806	hash[2] ^= rol32(hash[2], 16);
807	memcpy(out, hash, EXTRACT_SIZE);
808	memset(hash, 0, sizeof(hash));
809}
810
811static ssize_t extract_entropy(struct entropy_store *r, void *buf,
812			       size_t nbytes, int min, int reserved)
813{
814	ssize_t ret = 0, i;
815	__u8 tmp[EXTRACT_SIZE];
816	unsigned long flags;
817
818	xfer_secondary_pool(r, nbytes);
819	nbytes = account(r, nbytes, min, reserved);
820
821	while (nbytes) {
822		extract_buf(r, tmp);
823
824		if (fips_enabled) {
825			spin_lock_irqsave(&r->lock, flags);
826			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
827				panic("Hardware RNG duplicated output!\n");
828			memcpy(r->last_data, tmp, EXTRACT_SIZE);
829			spin_unlock_irqrestore(&r->lock, flags);
830		}
831		i = min_t(int, nbytes, EXTRACT_SIZE);
832		memcpy(buf, tmp, i);
833		nbytes -= i;
834		buf += i;
835		ret += i;
836	}
837
838	/* Wipe data just returned from memory */
839	memset(tmp, 0, sizeof(tmp));
840
841	return ret;
842}
843
844static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
845				    size_t nbytes)
846{
847	ssize_t ret = 0, i;
848	__u8 tmp[EXTRACT_SIZE];
849
850	xfer_secondary_pool(r, nbytes);
851	nbytes = account(r, nbytes, 0, 0);
852
853	while (nbytes) {
854		if (need_resched()) {
855			if (signal_pending(current)) {
856				if (ret == 0)
857					ret = -ERESTARTSYS;
858				break;
859			}
860			schedule();
861		}
862
863		extract_buf(r, tmp);
864		i = min_t(int, nbytes, EXTRACT_SIZE);
865		if (copy_to_user(buf, tmp, i)) {
866			ret = -EFAULT;
867			break;
868		}
869
870		nbytes -= i;
871		buf += i;
872		ret += i;
873	}
874
875	/* Wipe data just returned from memory */
876	memset(tmp, 0, sizeof(tmp));
877
878	return ret;
879}
880
881/*
882 * This function is the exported kernel interface.  It returns some
883 * number of good random numbers, suitable for seeding TCP sequence
884 * numbers, etc.
885 */
886void get_random_bytes(void *buf, int nbytes)
887{
888	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
889}
890EXPORT_SYMBOL(get_random_bytes);
891
892/*
893 * init_std_data - initialize pool with system data
894 *
895 * @r: pool to initialize
896 *
897 * This function clears the pool's entropy count and mixes some system
898 * data into the pool to prepare it for use. The pool is not cleared
899 * as that can only decrease the entropy in the pool.
900 */
901static void init_std_data(struct entropy_store *r)
902{
903	ktime_t now;
904	unsigned long flags;
905
906	spin_lock_irqsave(&r->lock, flags);
907	r->entropy_count = 0;
908	spin_unlock_irqrestore(&r->lock, flags);
909
910	now = ktime_get_real();
911	mix_pool_bytes(r, &now, sizeof(now));
912	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
913}
914
915static int rand_initialize(void)
916{
917	init_std_data(&input_pool);
918	init_std_data(&blocking_pool);
919	init_std_data(&nonblocking_pool);
920	return 0;
921}
922module_init(rand_initialize);
923
924void rand_initialize_irq(int irq)
925{
926	struct timer_rand_state *state;
927
928	state = get_timer_rand_state(irq);
929
930	if (state)
931		return;
932
933	/*
934	 * If kzalloc returns null, we just won't use that entropy
935	 * source.
936	 */
937	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
938	if (state)
939		set_timer_rand_state(irq, state);
940}
941
942#ifdef CONFIG_BLOCK
943void rand_initialize_disk(struct gendisk *disk)
944{
945	struct timer_rand_state *state;
946
947	/*
948	 * If kzalloc returns null, we just won't use that entropy
949	 * source.
950	 */
951	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
952	if (state)
953		disk->random = state;
954}
955#endif
956
957static ssize_t
958random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
959{
960	ssize_t n, retval = 0, count = 0;
961
962	if (nbytes == 0)
963		return 0;
964
965	while (nbytes > 0) {
966		n = nbytes;
967		if (n > SEC_XFER_SIZE)
968			n = SEC_XFER_SIZE;
969
970		DEBUG_ENT("reading %d bits\n", n*8);
971
972		n = extract_entropy_user(&blocking_pool, buf, n);
973
974		DEBUG_ENT("read got %d bits (%d still needed)\n",
975			  n*8, (nbytes-n)*8);
976
977		if (n == 0) {
978			if (file->f_flags & O_NONBLOCK) {
979				retval = -EAGAIN;
980				break;
981			}
982
983			DEBUG_ENT("sleeping?\n");
984
985			wait_event_interruptible(random_read_wait,
986				input_pool.entropy_count >=
987						 random_read_wakeup_thresh);
988
989			DEBUG_ENT("awake\n");
990
991			if (signal_pending(current)) {
992				retval = -ERESTARTSYS;
993				break;
994			}
995
996			continue;
997		}
998
999		if (n < 0) {
1000			retval = n;
1001			break;
1002		}
1003		count += n;
1004		buf += n;
1005		nbytes -= n;
1006		break;		/* This break makes the device work */
1007				/* like a named pipe */
1008	}
1009
1010	return (count ? count : retval);
1011}
1012
1013static ssize_t
1014urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1015{
1016	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1017}
1018
1019static unsigned int
1020random_poll(struct file *file, poll_table * wait)
1021{
1022	unsigned int mask;
1023
1024	poll_wait(file, &random_read_wait, wait);
1025	poll_wait(file, &random_write_wait, wait);
1026	mask = 0;
1027	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1028		mask |= POLLIN | POLLRDNORM;
1029	if (input_pool.entropy_count < random_write_wakeup_thresh)
1030		mask |= POLLOUT | POLLWRNORM;
1031	return mask;
1032}
1033
1034static int
1035write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1036{
1037	size_t bytes;
1038	__u32 buf[16];
1039	const char __user *p = buffer;
1040
1041	while (count > 0) {
1042		bytes = min(count, sizeof(buf));
1043		if (copy_from_user(&buf, p, bytes))
1044			return -EFAULT;
1045
1046		count -= bytes;
1047		p += bytes;
1048
1049		mix_pool_bytes(r, buf, bytes);
1050		cond_resched();
1051	}
1052
1053	return 0;
1054}
1055
1056static ssize_t random_write(struct file *file, const char __user *buffer,
1057			    size_t count, loff_t *ppos)
1058{
1059	size_t ret;
1060
1061	ret = write_pool(&blocking_pool, buffer, count);
1062	if (ret)
1063		return ret;
1064	ret = write_pool(&nonblocking_pool, buffer, count);
1065	if (ret)
1066		return ret;
1067
1068	return (ssize_t)count;
1069}
1070
1071static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1072{
1073	int size, ent_count;
1074	int __user *p = (int __user *)arg;
1075	int retval;
1076
1077	switch (cmd) {
1078	case RNDGETENTCNT:
1079		/* inherently racy, no point locking */
1080		if (put_user(input_pool.entropy_count, p))
1081			return -EFAULT;
1082		return 0;
1083	case RNDADDTOENTCNT:
1084		if (!capable(CAP_SYS_ADMIN))
1085			return -EPERM;
1086		if (get_user(ent_count, p))
1087			return -EFAULT;
1088		credit_entropy_bits(&input_pool, ent_count);
1089		return 0;
1090	case RNDADDENTROPY:
1091		if (!capable(CAP_SYS_ADMIN))
1092			return -EPERM;
1093		if (get_user(ent_count, p++))
1094			return -EFAULT;
1095		if (ent_count < 0)
1096			return -EINVAL;
1097		if (get_user(size, p++))
1098			return -EFAULT;
1099		retval = write_pool(&input_pool, (const char __user *)p,
1100				    size);
1101		if (retval < 0)
1102			return retval;
1103		credit_entropy_bits(&input_pool, ent_count);
1104		return 0;
1105	case RNDZAPENTCNT:
1106	case RNDCLEARPOOL:
1107		/* Clear the entropy pool counters. */
1108		if (!capable(CAP_SYS_ADMIN))
1109			return -EPERM;
1110		rand_initialize();
1111		return 0;
1112	default:
1113		return -EINVAL;
1114	}
1115}
1116
1117static int random_fasync(int fd, struct file *filp, int on)
1118{
1119	return fasync_helper(fd, filp, on, &fasync);
1120}
1121
1122const struct file_operations random_fops = {
1123	.read  = random_read,
1124	.write = random_write,
1125	.poll  = random_poll,
1126	.unlocked_ioctl = random_ioctl,
1127	.fasync = random_fasync,
1128};
1129
1130const struct file_operations urandom_fops = {
1131	.read  = urandom_read,
1132	.write = random_write,
1133	.unlocked_ioctl = random_ioctl,
1134	.fasync = random_fasync,
1135};
1136
1137/***************************************************************
1138 * Random UUID interface
1139 *
1140 * Used here for a Boot ID, but can be useful for other kernel
1141 * drivers.
1142 ***************************************************************/
1143
1144/*
1145 * Generate random UUID
1146 */
1147void generate_random_uuid(unsigned char uuid_out[16])
1148{
1149	get_random_bytes(uuid_out, 16);
1150	/* Set UUID version to 4 --- truly random generation */
1151	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1152	/* Set the UUID variant to DCE */
1153	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1154}
1155EXPORT_SYMBOL(generate_random_uuid);
1156
1157/********************************************************************
1158 *
1159 * Sysctl interface
1160 *
1161 ********************************************************************/
1162
1163#ifdef CONFIG_SYSCTL
1164
1165#include <linux/sysctl.h>
1166
1167static int min_read_thresh = 8, min_write_thresh;
1168static int max_read_thresh = INPUT_POOL_WORDS * 32;
1169static int max_write_thresh = INPUT_POOL_WORDS * 32;
1170static char sysctl_bootid[16];
1171
1172/*
1173 * These functions is used to return both the bootid UUID, and random
1174 * UUID.  The difference is in whether table->data is NULL; if it is,
1175 * then a new UUID is generated and returned to the user.
1176 *
1177 * If the user accesses this via the proc interface, it will be returned
1178 * as an ASCII string in the standard UUID format.  If accesses via the
1179 * sysctl system call, it is returned as 16 bytes of binary data.
1180 */
1181static int proc_do_uuid(ctl_table *table, int write,
1182			void __user *buffer, size_t *lenp, loff_t *ppos)
1183{
1184	ctl_table fake_table;
1185	unsigned char buf[64], tmp_uuid[16], *uuid;
1186
1187	uuid = table->data;
1188	if (!uuid) {
1189		uuid = tmp_uuid;
1190		uuid[8] = 0;
1191	}
1192	if (uuid[8] == 0)
1193		generate_random_uuid(uuid);
1194
1195	sprintf(buf, "%pU", uuid);
1196
1197	fake_table.data = buf;
1198	fake_table.maxlen = sizeof(buf);
1199
1200	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1201}
1202
1203static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1204ctl_table random_table[] = {
1205	{
1206		.procname	= "poolsize",
1207		.data		= &sysctl_poolsize,
1208		.maxlen		= sizeof(int),
1209		.mode		= 0444,
1210		.proc_handler	= proc_dointvec,
1211	},
1212	{
1213		.procname	= "entropy_avail",
1214		.maxlen		= sizeof(int),
1215		.mode		= 0444,
1216		.proc_handler	= proc_dointvec,
1217		.data		= &input_pool.entropy_count,
1218	},
1219	{
1220		.procname	= "read_wakeup_threshold",
1221		.data		= &random_read_wakeup_thresh,
1222		.maxlen		= sizeof(int),
1223		.mode		= 0644,
1224		.proc_handler	= proc_dointvec_minmax,
1225		.extra1		= &min_read_thresh,
1226		.extra2		= &max_read_thresh,
1227	},
1228	{
1229		.procname	= "write_wakeup_threshold",
1230		.data		= &random_write_wakeup_thresh,
1231		.maxlen		= sizeof(int),
1232		.mode		= 0644,
1233		.proc_handler	= proc_dointvec_minmax,
1234		.extra1		= &min_write_thresh,
1235		.extra2		= &max_write_thresh,
1236	},
1237	{
1238		.procname	= "boot_id",
1239		.data		= &sysctl_bootid,
1240		.maxlen		= 16,
1241		.mode		= 0444,
1242		.proc_handler	= proc_do_uuid,
1243	},
1244	{
1245		.procname	= "uuid",
1246		.maxlen		= 16,
1247		.mode		= 0444,
1248		.proc_handler	= proc_do_uuid,
1249	},
1250	{ }
1251};
1252#endif 	/* CONFIG_SYSCTL */
1253
1254/********************************************************************
1255 *
1256 * Random functions for networking
1257 *
1258 ********************************************************************/
1259
1260/*
1261 * TCP initial sequence number picking.  This uses the random number
1262 * generator to pick an initial secret value.  This value is hashed
1263 * along with the TCP endpoint information to provide a unique
1264 * starting point for each pair of TCP endpoints.  This defeats
1265 * attacks which rely on guessing the initial TCP sequence number.
1266 * This algorithm was suggested by Steve Bellovin.
1267 *
1268 * Using a very strong hash was taking an appreciable amount of the total
1269 * TCP connection establishment time, so this is a weaker hash,
1270 * compensated for by changing the secret periodically.
1271 */
1272
1273/* F, G and H are basic MD4 functions: selection, majority, parity */
1274#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1275#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1276#define H(x, y, z) ((x) ^ (y) ^ (z))
1277
1278/*
1279 * The generic round function.  The application is so specific that
1280 * we don't bother protecting all the arguments with parens, as is generally
1281 * good macro practice, in favor of extra legibility.
1282 * Rotation is separate from addition to prevent recomputation
1283 */
1284#define ROUND(f, a, b, c, d, x, s)	\
1285	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1286#define K1 0
1287#define K2 013240474631UL
1288#define K3 015666365641UL
1289
1290#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1291
1292static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1293{
1294	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1295
1296	/* Round 1 */
1297	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1298	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1299	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1300	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1301	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1302	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1303	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1304	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1305	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1306	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1307	ROUND(F, c, d, a, b, in[10] + K1, 11);
1308	ROUND(F, b, c, d, a, in[11] + K1, 19);
1309
1310	/* Round 2 */
1311	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1312	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1313	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1314	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1315	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1316	ROUND(G, d, a, b, c, in[11] + K2,  5);
1317	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1318	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1319	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1320	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1321	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1322	ROUND(G, b, c, d, a, in[10] + K2, 13);
1323
1324	/* Round 3 */
1325	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1326	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1327	ROUND(H, c, d, a, b, in[11] + K3, 11);
1328	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1329	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1330	ROUND(H, d, a, b, c, in[10] + K3,  9);
1331	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1332	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1333	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1334	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1335	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1336	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1337
1338	return buf[1] + b; /* "most hashed" word */
1339	/* Alternative: return sum of all words? */
1340}
1341#endif
1342
1343#undef ROUND
1344#undef F
1345#undef G
1346#undef H
1347#undef K1
1348#undef K2
1349#undef K3
1350
1351/* This should not be decreased so low that ISNs wrap too fast. */
1352#define REKEY_INTERVAL (300 * HZ)
1353/*
1354 * Bit layout of the tcp sequence numbers (before adding current time):
1355 * bit 24-31: increased after every key exchange
1356 * bit 0-23: hash(source,dest)
1357 *
1358 * The implementation is similar to the algorithm described
1359 * in the Appendix of RFC 1185, except that
1360 * - it uses a 1 MHz clock instead of a 250 kHz clock
1361 * - it performs a rekey every 5 minutes, which is equivalent
1362 * 	to a (source,dest) tulple dependent forward jump of the
1363 * 	clock by 0..2^(HASH_BITS+1)
1364 *
1365 * Thus the average ISN wraparound time is 68 minutes instead of
1366 * 4.55 hours.
1367 *
1368 * SMP cleanup and lock avoidance with poor man's RCU.
1369 * 			Manfred Spraul <manfred@colorfullife.com>
1370 *
1371 */
1372#define COUNT_BITS 8
1373#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1374#define HASH_BITS 24
1375#define HASH_MASK ((1 << HASH_BITS) - 1)
1376
1377static struct keydata {
1378	__u32 count; /* already shifted to the final position */
1379	__u32 secret[12];
1380} ____cacheline_aligned ip_keydata[2];
1381
1382static unsigned int ip_cnt;
1383
1384static void rekey_seq_generator(struct work_struct *work);
1385
1386static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1387
1388/*
1389 * Lock avoidance:
1390 * The ISN generation runs lockless - it's just a hash over random data.
1391 * State changes happen every 5 minutes when the random key is replaced.
1392 * Synchronization is performed by having two copies of the hash function
1393 * state and rekey_seq_generator always updates the inactive copy.
1394 * The copy is then activated by updating ip_cnt.
1395 * The implementation breaks down if someone blocks the thread
1396 * that processes SYN requests for more than 5 minutes. Should never
1397 * happen, and even if that happens only a not perfectly compliant
1398 * ISN is generated, nothing fatal.
1399 */
1400static void rekey_seq_generator(struct work_struct *work)
1401{
1402	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1403
1404	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1405	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1406	smp_wmb();
1407	ip_cnt++;
1408	schedule_delayed_work(&rekey_work,
1409			      round_jiffies_relative(REKEY_INTERVAL));
1410}
1411
1412static inline struct keydata *get_keyptr(void)
1413{
1414	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1415
1416	smp_rmb();
1417
1418	return keyptr;
1419}
1420
1421static __init int seqgen_init(void)
1422{
1423	rekey_seq_generator(NULL);
1424	return 0;
1425}
1426late_initcall(seqgen_init);
1427
1428#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1429__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1430				   __be16 sport, __be16 dport)
1431{
1432	__u32 seq;
1433	__u32 hash[12];
1434	struct keydata *keyptr = get_keyptr();
1435
1436	/* The procedure is the same as for IPv4, but addresses are longer.
1437	 * Thus we must use twothirdsMD4Transform.
1438	 */
1439
1440	memcpy(hash, saddr, 16);
1441	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1442	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1443
1444	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1445	seq += keyptr->count;
1446
1447	seq += ktime_to_ns(ktime_get_real());
1448
1449	return seq;
1450}
1451EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1452#endif
1453
1454/*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1455 *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1456 */
1457__u32 secure_ip_id(__be32 daddr)
1458{
1459	struct keydata *keyptr;
1460	__u32 hash[4];
1461
1462	keyptr = get_keyptr();
1463
1464	/*
1465	 *  Pick a unique starting offset for each IP destination.
1466	 *  The dest ip address is placed in the starting vector,
1467	 *  which is then hashed with random data.
1468	 */
1469	hash[0] = (__force __u32)daddr;
1470	hash[1] = keyptr->secret[9];
1471	hash[2] = keyptr->secret[10];
1472	hash[3] = keyptr->secret[11];
1473
1474	return half_md4_transform(hash, keyptr->secret);
1475}
1476
1477#ifdef CONFIG_INET
1478
1479__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1480				 __be16 sport, __be16 dport)
1481{
1482	__u32 seq;
1483	__u32 hash[4];
1484	struct keydata *keyptr = get_keyptr();
1485
1486	/*
1487	 *  Pick a unique starting offset for each TCP connection endpoints
1488	 *  (saddr, daddr, sport, dport).
1489	 *  Note that the words are placed into the starting vector, which is
1490	 *  then mixed with a partial MD4 over random data.
1491	 */
1492	hash[0] = (__force u32)saddr;
1493	hash[1] = (__force u32)daddr;
1494	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1495	hash[3] = keyptr->secret[11];
1496
1497	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1498	seq += keyptr->count;
1499	/*
1500	 *	As close as possible to RFC 793, which
1501	 *	suggests using a 250 kHz clock.
1502	 *	Further reading shows this assumes 2 Mb/s networks.
1503	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1504	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1505	 *	we also need to limit the resolution so that the u32 seq
1506	 *	overlaps less than one time per MSL (2 minutes).
1507	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1508	 */
1509	seq += ktime_to_ns(ktime_get_real()) >> 6;
1510
1511	return seq;
1512}
1513
1514/* Generate secure starting point for ephemeral IPV4 transport port search */
1515u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1516{
1517	struct keydata *keyptr = get_keyptr();
1518	u32 hash[4];
1519
1520	/*
1521	 *  Pick a unique starting offset for each ephemeral port search
1522	 *  (saddr, daddr, dport) and 48bits of random data.
1523	 */
1524	hash[0] = (__force u32)saddr;
1525	hash[1] = (__force u32)daddr;
1526	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1527	hash[3] = keyptr->secret[11];
1528
1529	return half_md4_transform(hash, keyptr->secret);
1530}
1531EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1532
1533#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1534u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1535			       __be16 dport)
1536{
1537	struct keydata *keyptr = get_keyptr();
1538	u32 hash[12];
1539
1540	memcpy(hash, saddr, 16);
1541	hash[4] = (__force u32)dport;
1542	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1543
1544	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1545}
1546#endif
1547
1548#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1549/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1550 * bit's 32-47 increase every key exchange
1551 *       0-31  hash(source, dest)
1552 */
1553u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1554				__be16 sport, __be16 dport)
1555{
1556	u64 seq;
1557	__u32 hash[4];
1558	struct keydata *keyptr = get_keyptr();
1559
1560	hash[0] = (__force u32)saddr;
1561	hash[1] = (__force u32)daddr;
1562	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1563	hash[3] = keyptr->secret[11];
1564
1565	seq = half_md4_transform(hash, keyptr->secret);
1566	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1567
1568	seq += ktime_to_ns(ktime_get_real());
1569	seq &= (1ull << 48) - 1;
1570
1571	return seq;
1572}
1573EXPORT_SYMBOL(secure_dccp_sequence_number);
1574#endif
1575
1576#endif /* CONFIG_INET */
1577
1578
1579/*
1580 * Get a random word for internal kernel use only. Similar to urandom but
1581 * with the goal of minimal entropy pool depletion. As a result, the random
1582 * value is not cryptographically secure but for several uses the cost of
1583 * depleting entropy is too high
1584 */
1585DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
1586unsigned int get_random_int(void)
1587{
1588	struct keydata *keyptr;
1589	__u32 *hash = get_cpu_var(get_random_int_hash);
1590	int ret;
1591
1592	keyptr = get_keyptr();
1593	hash[0] += current->pid + jiffies + get_cycles();
1594
1595	ret = half_md4_transform(hash, keyptr->secret);
1596	put_cpu_var(get_random_int_hash);
1597
1598	return ret;
1599}
1600
1601/*
1602 * randomize_range() returns a start address such that
1603 *
1604 *    [...... <range> .....]
1605 *  start                  end
1606 *
1607 * a <range> with size "len" starting at the return value is inside in the
1608 * area defined by [start, end], but is otherwise randomized.
1609 */
1610unsigned long
1611randomize_range(unsigned long start, unsigned long end, unsigned long len)
1612{
1613	unsigned long range = end - len - start;
1614
1615	if (end <= start + len)
1616		return 0;
1617	return PAGE_ALIGN(get_random_int() % range + start);
1618}
1619