• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/drivers/char/ipmi/
1/*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 *         Corey Minyard <minyard@mvista.com>
8 *         source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 *  This program is free software; you can redistribute it and/or modify it
13 *  under the terms of the GNU General Public License as published by the
14 *  Free Software Foundation; either version 2 of the License, or (at your
15 *  option) any later version.
16 *
17 *
18 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 *  You should have received a copy of the GNU General Public License along
30 *  with this program; if not, write to the Free Software Foundation, Inc.,
31 *  675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/module.h>
35#include <linux/errno.h>
36#include <asm/system.h>
37#include <linux/poll.h>
38#include <linux/sched.h>
39#include <linux/spinlock.h>
40#include <linux/mutex.h>
41#include <linux/slab.h>
42#include <linux/ipmi.h>
43#include <linux/ipmi_smi.h>
44#include <linux/notifier.h>
45#include <linux/init.h>
46#include <linux/proc_fs.h>
47#include <linux/rcupdate.h>
48
49#define PFX "IPMI message handler: "
50
51#define IPMI_DRIVER_VERSION "39.2"
52
53static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
54static int ipmi_init_msghandler(void);
55
56static int initialized;
57
58#ifdef CONFIG_PROC_FS
59static struct proc_dir_entry *proc_ipmi_root;
60#endif /* CONFIG_PROC_FS */
61
62/* Remain in auto-maintenance mode for this amount of time (in ms). */
63#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64
65#define MAX_EVENTS_IN_QUEUE	25
66
67/*
68 * Don't let a message sit in a queue forever, always time it with at lest
69 * the max message timer.  This is in milliseconds.
70 */
71#define MAX_MSG_TIMEOUT		60000
72
73/*
74 * The main "user" data structure.
75 */
76struct ipmi_user {
77	struct list_head link;
78
79	/* Set to "0" when the user is destroyed. */
80	int valid;
81
82	struct kref refcount;
83
84	/* The upper layer that handles receive messages. */
85	struct ipmi_user_hndl *handler;
86	void             *handler_data;
87
88	/* The interface this user is bound to. */
89	ipmi_smi_t intf;
90
91	/* Does this interface receive IPMI events? */
92	int gets_events;
93};
94
95struct cmd_rcvr {
96	struct list_head link;
97
98	ipmi_user_t   user;
99	unsigned char netfn;
100	unsigned char cmd;
101	unsigned int  chans;
102
103	/*
104	 * This is used to form a linked lised during mass deletion.
105	 * Since this is in an RCU list, we cannot use the link above
106	 * or change any data until the RCU period completes.  So we
107	 * use this next variable during mass deletion so we can have
108	 * a list and don't have to wait and restart the search on
109	 * every individual deletion of a command.
110	 */
111	struct cmd_rcvr *next;
112};
113
114struct seq_table {
115	unsigned int         inuse : 1;
116	unsigned int         broadcast : 1;
117
118	unsigned long        timeout;
119	unsigned long        orig_timeout;
120	unsigned int         retries_left;
121
122	/*
123	 * To verify on an incoming send message response that this is
124	 * the message that the response is for, we keep a sequence id
125	 * and increment it every time we send a message.
126	 */
127	long                 seqid;
128
129	/*
130	 * This is held so we can properly respond to the message on a
131	 * timeout, and it is used to hold the temporary data for
132	 * retransmission, too.
133	 */
134	struct ipmi_recv_msg *recv_msg;
135};
136
137/*
138 * Store the information in a msgid (long) to allow us to find a
139 * sequence table entry from the msgid.
140 */
141#define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142
143#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144	do {								\
145		seq = ((msgid >> 26) & 0x3f);				\
146		seqid = (msgid & 0x3fffff);				\
147	} while (0)
148
149#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150
151struct ipmi_channel {
152	unsigned char medium;
153	unsigned char protocol;
154
155	/*
156	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
157	 * but may be changed by the user.
158	 */
159	unsigned char address;
160
161	/*
162	 * My LUN.  This should generally stay the SMS LUN, but just in
163	 * case...
164	 */
165	unsigned char lun;
166};
167
168#ifdef CONFIG_PROC_FS
169struct ipmi_proc_entry {
170	char                   *name;
171	struct ipmi_proc_entry *next;
172};
173#endif
174
175struct bmc_device {
176	struct platform_device *dev;
177	struct ipmi_device_id  id;
178	unsigned char          guid[16];
179	int                    guid_set;
180
181	struct kref	       refcount;
182
183	/* bmc device attributes */
184	struct device_attribute device_id_attr;
185	struct device_attribute provides_dev_sdrs_attr;
186	struct device_attribute revision_attr;
187	struct device_attribute firmware_rev_attr;
188	struct device_attribute version_attr;
189	struct device_attribute add_dev_support_attr;
190	struct device_attribute manufacturer_id_attr;
191	struct device_attribute product_id_attr;
192	struct device_attribute guid_attr;
193	struct device_attribute aux_firmware_rev_attr;
194};
195
196/*
197 * Various statistics for IPMI, these index stats[] in the ipmi_smi
198 * structure.
199 */
200enum ipmi_stat_indexes {
201	/* Commands we got from the user that were invalid. */
202	IPMI_STAT_sent_invalid_commands = 0,
203
204	/* Commands we sent to the MC. */
205	IPMI_STAT_sent_local_commands,
206
207	/* Responses from the MC that were delivered to a user. */
208	IPMI_STAT_handled_local_responses,
209
210	/* Responses from the MC that were not delivered to a user. */
211	IPMI_STAT_unhandled_local_responses,
212
213	/* Commands we sent out to the IPMB bus. */
214	IPMI_STAT_sent_ipmb_commands,
215
216	/* Commands sent on the IPMB that had errors on the SEND CMD */
217	IPMI_STAT_sent_ipmb_command_errs,
218
219	/* Each retransmit increments this count. */
220	IPMI_STAT_retransmitted_ipmb_commands,
221
222	/*
223	 * When a message times out (runs out of retransmits) this is
224	 * incremented.
225	 */
226	IPMI_STAT_timed_out_ipmb_commands,
227
228	/*
229	 * This is like above, but for broadcasts.  Broadcasts are
230	 * *not* included in the above count (they are expected to
231	 * time out).
232	 */
233	IPMI_STAT_timed_out_ipmb_broadcasts,
234
235	/* Responses I have sent to the IPMB bus. */
236	IPMI_STAT_sent_ipmb_responses,
237
238	/* The response was delivered to the user. */
239	IPMI_STAT_handled_ipmb_responses,
240
241	/* The response had invalid data in it. */
242	IPMI_STAT_invalid_ipmb_responses,
243
244	/* The response didn't have anyone waiting for it. */
245	IPMI_STAT_unhandled_ipmb_responses,
246
247	/* Commands we sent out to the IPMB bus. */
248	IPMI_STAT_sent_lan_commands,
249
250	/* Commands sent on the IPMB that had errors on the SEND CMD */
251	IPMI_STAT_sent_lan_command_errs,
252
253	/* Each retransmit increments this count. */
254	IPMI_STAT_retransmitted_lan_commands,
255
256	/*
257	 * When a message times out (runs out of retransmits) this is
258	 * incremented.
259	 */
260	IPMI_STAT_timed_out_lan_commands,
261
262	/* Responses I have sent to the IPMB bus. */
263	IPMI_STAT_sent_lan_responses,
264
265	/* The response was delivered to the user. */
266	IPMI_STAT_handled_lan_responses,
267
268	/* The response had invalid data in it. */
269	IPMI_STAT_invalid_lan_responses,
270
271	/* The response didn't have anyone waiting for it. */
272	IPMI_STAT_unhandled_lan_responses,
273
274	/* The command was delivered to the user. */
275	IPMI_STAT_handled_commands,
276
277	/* The command had invalid data in it. */
278	IPMI_STAT_invalid_commands,
279
280	/* The command didn't have anyone waiting for it. */
281	IPMI_STAT_unhandled_commands,
282
283	/* Invalid data in an event. */
284	IPMI_STAT_invalid_events,
285
286	/* Events that were received with the proper format. */
287	IPMI_STAT_events,
288
289	/* Retransmissions on IPMB that failed. */
290	IPMI_STAT_dropped_rexmit_ipmb_commands,
291
292	/* Retransmissions on LAN that failed. */
293	IPMI_STAT_dropped_rexmit_lan_commands,
294
295	/* This *must* remain last, add new values above this. */
296	IPMI_NUM_STATS
297};
298
299
300#define IPMI_IPMB_NUM_SEQ	64
301#define IPMI_MAX_CHANNELS       16
302struct ipmi_smi {
303	/* What interface number are we? */
304	int intf_num;
305
306	struct kref refcount;
307
308	/* Used for a list of interfaces. */
309	struct list_head link;
310
311	/*
312	 * The list of upper layers that are using me.  seq_lock
313	 * protects this.
314	 */
315	struct list_head users;
316
317	/* Information to supply to users. */
318	unsigned char ipmi_version_major;
319	unsigned char ipmi_version_minor;
320
321	/* Used for wake ups at startup. */
322	wait_queue_head_t waitq;
323
324	struct bmc_device *bmc;
325	char *my_dev_name;
326	char *sysfs_name;
327
328	/*
329	 * This is the lower-layer's sender routine.  Note that you
330	 * must either be holding the ipmi_interfaces_mutex or be in
331	 * an umpreemptible region to use this.  You must fetch the
332	 * value into a local variable and make sure it is not NULL.
333	 */
334	struct ipmi_smi_handlers *handlers;
335	void                     *send_info;
336
337#ifdef CONFIG_PROC_FS
338	/* A list of proc entries for this interface. */
339	struct mutex           proc_entry_lock;
340	struct ipmi_proc_entry *proc_entries;
341#endif
342
343	/* Driver-model device for the system interface. */
344	struct device          *si_dev;
345
346	/*
347	 * A table of sequence numbers for this interface.  We use the
348	 * sequence numbers for IPMB messages that go out of the
349	 * interface to match them up with their responses.  A routine
350	 * is called periodically to time the items in this list.
351	 */
352	spinlock_t       seq_lock;
353	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
354	int curr_seq;
355
356	/*
357	 * Messages that were delayed for some reason (out of memory,
358	 * for instance), will go in here to be processed later in a
359	 * periodic timer interrupt.
360	 */
361	spinlock_t       waiting_msgs_lock;
362	struct list_head waiting_msgs;
363
364	/*
365	 * The list of command receivers that are registered for commands
366	 * on this interface.
367	 */
368	struct mutex     cmd_rcvrs_mutex;
369	struct list_head cmd_rcvrs;
370
371	/*
372	 * Events that were queues because no one was there to receive
373	 * them.
374	 */
375	spinlock_t       events_lock; /* For dealing with event stuff. */
376	struct list_head waiting_events;
377	unsigned int     waiting_events_count; /* How many events in queue? */
378	char             delivering_events;
379	char             event_msg_printed;
380
381	/*
382	 * The event receiver for my BMC, only really used at panic
383	 * shutdown as a place to store this.
384	 */
385	unsigned char event_receiver;
386	unsigned char event_receiver_lun;
387	unsigned char local_sel_device;
388	unsigned char local_event_generator;
389
390	/* For handling of maintenance mode. */
391	int maintenance_mode;
392	int maintenance_mode_enable;
393	int auto_maintenance_timeout;
394	spinlock_t maintenance_mode_lock; /* Used in a timer... */
395
396	/*
397	 * A cheap hack, if this is non-null and a message to an
398	 * interface comes in with a NULL user, call this routine with
399	 * it.  Note that the message will still be freed by the
400	 * caller.  This only works on the system interface.
401	 */
402	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
403
404	/*
405	 * When we are scanning the channels for an SMI, this will
406	 * tell which channel we are scanning.
407	 */
408	int curr_channel;
409
410	/* Channel information */
411	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
412
413	/* Proc FS stuff. */
414	struct proc_dir_entry *proc_dir;
415	char                  proc_dir_name[10];
416
417	atomic_t stats[IPMI_NUM_STATS];
418
419	/*
420	 * run_to_completion duplicate of smb_info, smi_info
421	 * and ipmi_serial_info structures. Used to decrease numbers of
422	 * parameters passed by "low" level IPMI code.
423	 */
424	int run_to_completion;
425};
426#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
427
428/**
429 * The driver model view of the IPMI messaging driver.
430 */
431static struct platform_driver ipmidriver = {
432	.driver = {
433		.name = "ipmi",
434		.bus = &platform_bus_type
435	}
436};
437static DEFINE_MUTEX(ipmidriver_mutex);
438
439static LIST_HEAD(ipmi_interfaces);
440static DEFINE_MUTEX(ipmi_interfaces_mutex);
441
442/*
443 * List of watchers that want to know when smi's are added and deleted.
444 */
445static LIST_HEAD(smi_watchers);
446static DEFINE_MUTEX(smi_watchers_mutex);
447
448
449#define ipmi_inc_stat(intf, stat) \
450	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
451#define ipmi_get_stat(intf, stat) \
452	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
453
454static int is_lan_addr(struct ipmi_addr *addr)
455{
456	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
457}
458
459static int is_ipmb_addr(struct ipmi_addr *addr)
460{
461	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
462}
463
464static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
465{
466	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
467}
468
469static void free_recv_msg_list(struct list_head *q)
470{
471	struct ipmi_recv_msg *msg, *msg2;
472
473	list_for_each_entry_safe(msg, msg2, q, link) {
474		list_del(&msg->link);
475		ipmi_free_recv_msg(msg);
476	}
477}
478
479static void free_smi_msg_list(struct list_head *q)
480{
481	struct ipmi_smi_msg *msg, *msg2;
482
483	list_for_each_entry_safe(msg, msg2, q, link) {
484		list_del(&msg->link);
485		ipmi_free_smi_msg(msg);
486	}
487}
488
489static void clean_up_interface_data(ipmi_smi_t intf)
490{
491	int              i;
492	struct cmd_rcvr  *rcvr, *rcvr2;
493	struct list_head list;
494
495	free_smi_msg_list(&intf->waiting_msgs);
496	free_recv_msg_list(&intf->waiting_events);
497
498	/*
499	 * Wholesale remove all the entries from the list in the
500	 * interface and wait for RCU to know that none are in use.
501	 */
502	mutex_lock(&intf->cmd_rcvrs_mutex);
503	INIT_LIST_HEAD(&list);
504	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
505	mutex_unlock(&intf->cmd_rcvrs_mutex);
506
507	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
508		kfree(rcvr);
509
510	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
511		if ((intf->seq_table[i].inuse)
512					&& (intf->seq_table[i].recv_msg))
513			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
514	}
515}
516
517static void intf_free(struct kref *ref)
518{
519	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
520
521	clean_up_interface_data(intf);
522	kfree(intf);
523}
524
525struct watcher_entry {
526	int              intf_num;
527	ipmi_smi_t       intf;
528	struct list_head link;
529};
530
531int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
532{
533	ipmi_smi_t intf;
534	LIST_HEAD(to_deliver);
535	struct watcher_entry *e, *e2;
536
537	mutex_lock(&smi_watchers_mutex);
538
539	mutex_lock(&ipmi_interfaces_mutex);
540
541	/* Build a list of things to deliver. */
542	list_for_each_entry(intf, &ipmi_interfaces, link) {
543		if (intf->intf_num == -1)
544			continue;
545		e = kmalloc(sizeof(*e), GFP_KERNEL);
546		if (!e)
547			goto out_err;
548		kref_get(&intf->refcount);
549		e->intf = intf;
550		e->intf_num = intf->intf_num;
551		list_add_tail(&e->link, &to_deliver);
552	}
553
554	/* We will succeed, so add it to the list. */
555	list_add(&watcher->link, &smi_watchers);
556
557	mutex_unlock(&ipmi_interfaces_mutex);
558
559	list_for_each_entry_safe(e, e2, &to_deliver, link) {
560		list_del(&e->link);
561		watcher->new_smi(e->intf_num, e->intf->si_dev);
562		kref_put(&e->intf->refcount, intf_free);
563		kfree(e);
564	}
565
566	mutex_unlock(&smi_watchers_mutex);
567
568	return 0;
569
570 out_err:
571	mutex_unlock(&ipmi_interfaces_mutex);
572	mutex_unlock(&smi_watchers_mutex);
573	list_for_each_entry_safe(e, e2, &to_deliver, link) {
574		list_del(&e->link);
575		kref_put(&e->intf->refcount, intf_free);
576		kfree(e);
577	}
578	return -ENOMEM;
579}
580EXPORT_SYMBOL(ipmi_smi_watcher_register);
581
582int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
583{
584	mutex_lock(&smi_watchers_mutex);
585	list_del(&(watcher->link));
586	mutex_unlock(&smi_watchers_mutex);
587	return 0;
588}
589EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
590
591/*
592 * Must be called with smi_watchers_mutex held.
593 */
594static void
595call_smi_watchers(int i, struct device *dev)
596{
597	struct ipmi_smi_watcher *w;
598
599	list_for_each_entry(w, &smi_watchers, link) {
600		if (try_module_get(w->owner)) {
601			w->new_smi(i, dev);
602			module_put(w->owner);
603		}
604	}
605}
606
607static int
608ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
609{
610	if (addr1->addr_type != addr2->addr_type)
611		return 0;
612
613	if (addr1->channel != addr2->channel)
614		return 0;
615
616	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
617		struct ipmi_system_interface_addr *smi_addr1
618		    = (struct ipmi_system_interface_addr *) addr1;
619		struct ipmi_system_interface_addr *smi_addr2
620		    = (struct ipmi_system_interface_addr *) addr2;
621		return (smi_addr1->lun == smi_addr2->lun);
622	}
623
624	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
625		struct ipmi_ipmb_addr *ipmb_addr1
626		    = (struct ipmi_ipmb_addr *) addr1;
627		struct ipmi_ipmb_addr *ipmb_addr2
628		    = (struct ipmi_ipmb_addr *) addr2;
629
630		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
631			&& (ipmb_addr1->lun == ipmb_addr2->lun));
632	}
633
634	if (is_lan_addr(addr1)) {
635		struct ipmi_lan_addr *lan_addr1
636			= (struct ipmi_lan_addr *) addr1;
637		struct ipmi_lan_addr *lan_addr2
638		    = (struct ipmi_lan_addr *) addr2;
639
640		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
641			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
642			&& (lan_addr1->session_handle
643			    == lan_addr2->session_handle)
644			&& (lan_addr1->lun == lan_addr2->lun));
645	}
646
647	return 1;
648}
649
650int ipmi_validate_addr(struct ipmi_addr *addr, int len)
651{
652	if (len < sizeof(struct ipmi_system_interface_addr))
653		return -EINVAL;
654
655	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
656		if (addr->channel != IPMI_BMC_CHANNEL)
657			return -EINVAL;
658		return 0;
659	}
660
661	if ((addr->channel == IPMI_BMC_CHANNEL)
662	    || (addr->channel >= IPMI_MAX_CHANNELS)
663	    || (addr->channel < 0))
664		return -EINVAL;
665
666	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
667		if (len < sizeof(struct ipmi_ipmb_addr))
668			return -EINVAL;
669		return 0;
670	}
671
672	if (is_lan_addr(addr)) {
673		if (len < sizeof(struct ipmi_lan_addr))
674			return -EINVAL;
675		return 0;
676	}
677
678	return -EINVAL;
679}
680EXPORT_SYMBOL(ipmi_validate_addr);
681
682unsigned int ipmi_addr_length(int addr_type)
683{
684	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
685		return sizeof(struct ipmi_system_interface_addr);
686
687	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
688			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
689		return sizeof(struct ipmi_ipmb_addr);
690
691	if (addr_type == IPMI_LAN_ADDR_TYPE)
692		return sizeof(struct ipmi_lan_addr);
693
694	return 0;
695}
696EXPORT_SYMBOL(ipmi_addr_length);
697
698static void deliver_response(struct ipmi_recv_msg *msg)
699{
700	if (!msg->user) {
701		ipmi_smi_t    intf = msg->user_msg_data;
702
703		/* Special handling for NULL users. */
704		if (intf->null_user_handler) {
705			intf->null_user_handler(intf, msg);
706			ipmi_inc_stat(intf, handled_local_responses);
707		} else {
708			/* No handler, so give up. */
709			ipmi_inc_stat(intf, unhandled_local_responses);
710		}
711		ipmi_free_recv_msg(msg);
712	} else {
713		ipmi_user_t user = msg->user;
714		user->handler->ipmi_recv_hndl(msg, user->handler_data);
715	}
716}
717
718static void
719deliver_err_response(struct ipmi_recv_msg *msg, int err)
720{
721	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
722	msg->msg_data[0] = err;
723	msg->msg.netfn |= 1; /* Convert to a response. */
724	msg->msg.data_len = 1;
725	msg->msg.data = msg->msg_data;
726	deliver_response(msg);
727}
728
729/*
730 * Find the next sequence number not being used and add the given
731 * message with the given timeout to the sequence table.  This must be
732 * called with the interface's seq_lock held.
733 */
734static int intf_next_seq(ipmi_smi_t           intf,
735			 struct ipmi_recv_msg *recv_msg,
736			 unsigned long        timeout,
737			 int                  retries,
738			 int                  broadcast,
739			 unsigned char        *seq,
740			 long                 *seqid)
741{
742	int          rv = 0;
743	unsigned int i;
744
745	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
746					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
747		if (!intf->seq_table[i].inuse)
748			break;
749	}
750
751	if (!intf->seq_table[i].inuse) {
752		intf->seq_table[i].recv_msg = recv_msg;
753
754		/*
755		 * Start with the maximum timeout, when the send response
756		 * comes in we will start the real timer.
757		 */
758		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
759		intf->seq_table[i].orig_timeout = timeout;
760		intf->seq_table[i].retries_left = retries;
761		intf->seq_table[i].broadcast = broadcast;
762		intf->seq_table[i].inuse = 1;
763		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
764		*seq = i;
765		*seqid = intf->seq_table[i].seqid;
766		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
767	} else {
768		rv = -EAGAIN;
769	}
770
771	return rv;
772}
773
774/*
775 * Return the receive message for the given sequence number and
776 * release the sequence number so it can be reused.  Some other data
777 * is passed in to be sure the message matches up correctly (to help
778 * guard against message coming in after their timeout and the
779 * sequence number being reused).
780 */
781static int intf_find_seq(ipmi_smi_t           intf,
782			 unsigned char        seq,
783			 short                channel,
784			 unsigned char        cmd,
785			 unsigned char        netfn,
786			 struct ipmi_addr     *addr,
787			 struct ipmi_recv_msg **recv_msg)
788{
789	int           rv = -ENODEV;
790	unsigned long flags;
791
792	if (seq >= IPMI_IPMB_NUM_SEQ)
793		return -EINVAL;
794
795	spin_lock_irqsave(&(intf->seq_lock), flags);
796	if (intf->seq_table[seq].inuse) {
797		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
798
799		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
800				&& (msg->msg.netfn == netfn)
801				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
802			*recv_msg = msg;
803			intf->seq_table[seq].inuse = 0;
804			rv = 0;
805		}
806	}
807	spin_unlock_irqrestore(&(intf->seq_lock), flags);
808
809	return rv;
810}
811
812
813/* Start the timer for a specific sequence table entry. */
814static int intf_start_seq_timer(ipmi_smi_t intf,
815				long       msgid)
816{
817	int           rv = -ENODEV;
818	unsigned long flags;
819	unsigned char seq;
820	unsigned long seqid;
821
822
823	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
824
825	spin_lock_irqsave(&(intf->seq_lock), flags);
826	/*
827	 * We do this verification because the user can be deleted
828	 * while a message is outstanding.
829	 */
830	if ((intf->seq_table[seq].inuse)
831				&& (intf->seq_table[seq].seqid == seqid)) {
832		struct seq_table *ent = &(intf->seq_table[seq]);
833		ent->timeout = ent->orig_timeout;
834		rv = 0;
835	}
836	spin_unlock_irqrestore(&(intf->seq_lock), flags);
837
838	return rv;
839}
840
841/* Got an error for the send message for a specific sequence number. */
842static int intf_err_seq(ipmi_smi_t   intf,
843			long         msgid,
844			unsigned int err)
845{
846	int                  rv = -ENODEV;
847	unsigned long        flags;
848	unsigned char        seq;
849	unsigned long        seqid;
850	struct ipmi_recv_msg *msg = NULL;
851
852
853	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
854
855	spin_lock_irqsave(&(intf->seq_lock), flags);
856	/*
857	 * We do this verification because the user can be deleted
858	 * while a message is outstanding.
859	 */
860	if ((intf->seq_table[seq].inuse)
861				&& (intf->seq_table[seq].seqid == seqid)) {
862		struct seq_table *ent = &(intf->seq_table[seq]);
863
864		ent->inuse = 0;
865		msg = ent->recv_msg;
866		rv = 0;
867	}
868	spin_unlock_irqrestore(&(intf->seq_lock), flags);
869
870	if (msg)
871		deliver_err_response(msg, err);
872
873	return rv;
874}
875
876
877int ipmi_create_user(unsigned int          if_num,
878		     struct ipmi_user_hndl *handler,
879		     void                  *handler_data,
880		     ipmi_user_t           *user)
881{
882	unsigned long flags;
883	ipmi_user_t   new_user;
884	int           rv = 0;
885	ipmi_smi_t    intf;
886
887	/*
888	 * There is no module usecount here, because it's not
889	 * required.  Since this can only be used by and called from
890	 * other modules, they will implicitly use this module, and
891	 * thus this can't be removed unless the other modules are
892	 * removed.
893	 */
894
895	if (handler == NULL)
896		return -EINVAL;
897
898	/*
899	 * Make sure the driver is actually initialized, this handles
900	 * problems with initialization order.
901	 */
902	if (!initialized) {
903		rv = ipmi_init_msghandler();
904		if (rv)
905			return rv;
906
907		/*
908		 * The init code doesn't return an error if it was turned
909		 * off, but it won't initialize.  Check that.
910		 */
911		if (!initialized)
912			return -ENODEV;
913	}
914
915	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
916	if (!new_user)
917		return -ENOMEM;
918
919	mutex_lock(&ipmi_interfaces_mutex);
920	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
921		if (intf->intf_num == if_num)
922			goto found;
923	}
924	/* Not found, return an error */
925	rv = -EINVAL;
926	goto out_kfree;
927
928 found:
929	/* Note that each existing user holds a refcount to the interface. */
930	kref_get(&intf->refcount);
931
932	kref_init(&new_user->refcount);
933	new_user->handler = handler;
934	new_user->handler_data = handler_data;
935	new_user->intf = intf;
936	new_user->gets_events = 0;
937
938	if (!try_module_get(intf->handlers->owner)) {
939		rv = -ENODEV;
940		goto out_kref;
941	}
942
943	if (intf->handlers->inc_usecount) {
944		rv = intf->handlers->inc_usecount(intf->send_info);
945		if (rv) {
946			module_put(intf->handlers->owner);
947			goto out_kref;
948		}
949	}
950
951	/*
952	 * Hold the lock so intf->handlers is guaranteed to be good
953	 * until now
954	 */
955	mutex_unlock(&ipmi_interfaces_mutex);
956
957	new_user->valid = 1;
958	spin_lock_irqsave(&intf->seq_lock, flags);
959	list_add_rcu(&new_user->link, &intf->users);
960	spin_unlock_irqrestore(&intf->seq_lock, flags);
961	*user = new_user;
962	return 0;
963
964out_kref:
965	kref_put(&intf->refcount, intf_free);
966out_kfree:
967	mutex_unlock(&ipmi_interfaces_mutex);
968	kfree(new_user);
969	return rv;
970}
971EXPORT_SYMBOL(ipmi_create_user);
972
973static void free_user(struct kref *ref)
974{
975	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
976	kfree(user);
977}
978
979int ipmi_destroy_user(ipmi_user_t user)
980{
981	ipmi_smi_t       intf = user->intf;
982	int              i;
983	unsigned long    flags;
984	struct cmd_rcvr  *rcvr;
985	struct cmd_rcvr  *rcvrs = NULL;
986
987	user->valid = 0;
988
989	/* Remove the user from the interface's sequence table. */
990	spin_lock_irqsave(&intf->seq_lock, flags);
991	list_del_rcu(&user->link);
992
993	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
994		if (intf->seq_table[i].inuse
995		    && (intf->seq_table[i].recv_msg->user == user)) {
996			intf->seq_table[i].inuse = 0;
997			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
998		}
999	}
1000	spin_unlock_irqrestore(&intf->seq_lock, flags);
1001
1002	/*
1003	 * Remove the user from the command receiver's table.  First
1004	 * we build a list of everything (not using the standard link,
1005	 * since other things may be using it till we do
1006	 * synchronize_rcu()) then free everything in that list.
1007	 */
1008	mutex_lock(&intf->cmd_rcvrs_mutex);
1009	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1010		if (rcvr->user == user) {
1011			list_del_rcu(&rcvr->link);
1012			rcvr->next = rcvrs;
1013			rcvrs = rcvr;
1014		}
1015	}
1016	mutex_unlock(&intf->cmd_rcvrs_mutex);
1017	synchronize_rcu();
1018	while (rcvrs) {
1019		rcvr = rcvrs;
1020		rcvrs = rcvr->next;
1021		kfree(rcvr);
1022	}
1023
1024	mutex_lock(&ipmi_interfaces_mutex);
1025	if (intf->handlers) {
1026		module_put(intf->handlers->owner);
1027		if (intf->handlers->dec_usecount)
1028			intf->handlers->dec_usecount(intf->send_info);
1029	}
1030	mutex_unlock(&ipmi_interfaces_mutex);
1031
1032	kref_put(&intf->refcount, intf_free);
1033
1034	kref_put(&user->refcount, free_user);
1035
1036	return 0;
1037}
1038EXPORT_SYMBOL(ipmi_destroy_user);
1039
1040void ipmi_get_version(ipmi_user_t   user,
1041		      unsigned char *major,
1042		      unsigned char *minor)
1043{
1044	*major = user->intf->ipmi_version_major;
1045	*minor = user->intf->ipmi_version_minor;
1046}
1047EXPORT_SYMBOL(ipmi_get_version);
1048
1049int ipmi_set_my_address(ipmi_user_t   user,
1050			unsigned int  channel,
1051			unsigned char address)
1052{
1053	if (channel >= IPMI_MAX_CHANNELS)
1054		return -EINVAL;
1055	user->intf->channels[channel].address = address;
1056	return 0;
1057}
1058EXPORT_SYMBOL(ipmi_set_my_address);
1059
1060int ipmi_get_my_address(ipmi_user_t   user,
1061			unsigned int  channel,
1062			unsigned char *address)
1063{
1064	if (channel >= IPMI_MAX_CHANNELS)
1065		return -EINVAL;
1066	*address = user->intf->channels[channel].address;
1067	return 0;
1068}
1069EXPORT_SYMBOL(ipmi_get_my_address);
1070
1071int ipmi_set_my_LUN(ipmi_user_t   user,
1072		    unsigned int  channel,
1073		    unsigned char LUN)
1074{
1075	if (channel >= IPMI_MAX_CHANNELS)
1076		return -EINVAL;
1077	user->intf->channels[channel].lun = LUN & 0x3;
1078	return 0;
1079}
1080EXPORT_SYMBOL(ipmi_set_my_LUN);
1081
1082int ipmi_get_my_LUN(ipmi_user_t   user,
1083		    unsigned int  channel,
1084		    unsigned char *address)
1085{
1086	if (channel >= IPMI_MAX_CHANNELS)
1087		return -EINVAL;
1088	*address = user->intf->channels[channel].lun;
1089	return 0;
1090}
1091EXPORT_SYMBOL(ipmi_get_my_LUN);
1092
1093int ipmi_get_maintenance_mode(ipmi_user_t user)
1094{
1095	int           mode;
1096	unsigned long flags;
1097
1098	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1099	mode = user->intf->maintenance_mode;
1100	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1101
1102	return mode;
1103}
1104EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1105
1106static void maintenance_mode_update(ipmi_smi_t intf)
1107{
1108	if (intf->handlers->set_maintenance_mode)
1109		intf->handlers->set_maintenance_mode(
1110			intf->send_info, intf->maintenance_mode_enable);
1111}
1112
1113int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1114{
1115	int           rv = 0;
1116	unsigned long flags;
1117	ipmi_smi_t    intf = user->intf;
1118
1119	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1120	if (intf->maintenance_mode != mode) {
1121		switch (mode) {
1122		case IPMI_MAINTENANCE_MODE_AUTO:
1123			intf->maintenance_mode = mode;
1124			intf->maintenance_mode_enable
1125				= (intf->auto_maintenance_timeout > 0);
1126			break;
1127
1128		case IPMI_MAINTENANCE_MODE_OFF:
1129			intf->maintenance_mode = mode;
1130			intf->maintenance_mode_enable = 0;
1131			break;
1132
1133		case IPMI_MAINTENANCE_MODE_ON:
1134			intf->maintenance_mode = mode;
1135			intf->maintenance_mode_enable = 1;
1136			break;
1137
1138		default:
1139			rv = -EINVAL;
1140			goto out_unlock;
1141		}
1142
1143		maintenance_mode_update(intf);
1144	}
1145 out_unlock:
1146	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1147
1148	return rv;
1149}
1150EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1151
1152int ipmi_set_gets_events(ipmi_user_t user, int val)
1153{
1154	unsigned long        flags;
1155	ipmi_smi_t           intf = user->intf;
1156	struct ipmi_recv_msg *msg, *msg2;
1157	struct list_head     msgs;
1158
1159	INIT_LIST_HEAD(&msgs);
1160
1161	spin_lock_irqsave(&intf->events_lock, flags);
1162	user->gets_events = val;
1163
1164	if (intf->delivering_events)
1165		/*
1166		 * Another thread is delivering events for this, so
1167		 * let it handle any new events.
1168		 */
1169		goto out;
1170
1171	/* Deliver any queued events. */
1172	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1173		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1174			list_move_tail(&msg->link, &msgs);
1175		intf->waiting_events_count = 0;
1176		if (intf->event_msg_printed) {
1177			printk(KERN_WARNING PFX "Event queue no longer"
1178			       " full\n");
1179			intf->event_msg_printed = 0;
1180		}
1181
1182		intf->delivering_events = 1;
1183		spin_unlock_irqrestore(&intf->events_lock, flags);
1184
1185		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1186			msg->user = user;
1187			kref_get(&user->refcount);
1188			deliver_response(msg);
1189		}
1190
1191		spin_lock_irqsave(&intf->events_lock, flags);
1192		intf->delivering_events = 0;
1193	}
1194
1195 out:
1196	spin_unlock_irqrestore(&intf->events_lock, flags);
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL(ipmi_set_gets_events);
1201
1202static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1203				      unsigned char netfn,
1204				      unsigned char cmd,
1205				      unsigned char chan)
1206{
1207	struct cmd_rcvr *rcvr;
1208
1209	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1210		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1211					&& (rcvr->chans & (1 << chan)))
1212			return rcvr;
1213	}
1214	return NULL;
1215}
1216
1217static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1218				 unsigned char netfn,
1219				 unsigned char cmd,
1220				 unsigned int  chans)
1221{
1222	struct cmd_rcvr *rcvr;
1223
1224	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1225		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1226					&& (rcvr->chans & chans))
1227			return 0;
1228	}
1229	return 1;
1230}
1231
1232int ipmi_register_for_cmd(ipmi_user_t   user,
1233			  unsigned char netfn,
1234			  unsigned char cmd,
1235			  unsigned int  chans)
1236{
1237	ipmi_smi_t      intf = user->intf;
1238	struct cmd_rcvr *rcvr;
1239	int             rv = 0;
1240
1241
1242	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1243	if (!rcvr)
1244		return -ENOMEM;
1245	rcvr->cmd = cmd;
1246	rcvr->netfn = netfn;
1247	rcvr->chans = chans;
1248	rcvr->user = user;
1249
1250	mutex_lock(&intf->cmd_rcvrs_mutex);
1251	/* Make sure the command/netfn is not already registered. */
1252	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1253		rv = -EBUSY;
1254		goto out_unlock;
1255	}
1256
1257	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1258
1259 out_unlock:
1260	mutex_unlock(&intf->cmd_rcvrs_mutex);
1261	if (rv)
1262		kfree(rcvr);
1263
1264	return rv;
1265}
1266EXPORT_SYMBOL(ipmi_register_for_cmd);
1267
1268int ipmi_unregister_for_cmd(ipmi_user_t   user,
1269			    unsigned char netfn,
1270			    unsigned char cmd,
1271			    unsigned int  chans)
1272{
1273	ipmi_smi_t      intf = user->intf;
1274	struct cmd_rcvr *rcvr;
1275	struct cmd_rcvr *rcvrs = NULL;
1276	int i, rv = -ENOENT;
1277
1278	mutex_lock(&intf->cmd_rcvrs_mutex);
1279	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1280		if (((1 << i) & chans) == 0)
1281			continue;
1282		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1283		if (rcvr == NULL)
1284			continue;
1285		if (rcvr->user == user) {
1286			rv = 0;
1287			rcvr->chans &= ~chans;
1288			if (rcvr->chans == 0) {
1289				list_del_rcu(&rcvr->link);
1290				rcvr->next = rcvrs;
1291				rcvrs = rcvr;
1292			}
1293		}
1294	}
1295	mutex_unlock(&intf->cmd_rcvrs_mutex);
1296	synchronize_rcu();
1297	while (rcvrs) {
1298		rcvr = rcvrs;
1299		rcvrs = rcvr->next;
1300		kfree(rcvr);
1301	}
1302	return rv;
1303}
1304EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1305
1306static unsigned char
1307ipmb_checksum(unsigned char *data, int size)
1308{
1309	unsigned char csum = 0;
1310
1311	for (; size > 0; size--, data++)
1312		csum += *data;
1313
1314	return -csum;
1315}
1316
1317static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1318				   struct kernel_ipmi_msg *msg,
1319				   struct ipmi_ipmb_addr *ipmb_addr,
1320				   long                  msgid,
1321				   unsigned char         ipmb_seq,
1322				   int                   broadcast,
1323				   unsigned char         source_address,
1324				   unsigned char         source_lun)
1325{
1326	int i = broadcast;
1327
1328	/* Format the IPMB header data. */
1329	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1330	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1331	smi_msg->data[2] = ipmb_addr->channel;
1332	if (broadcast)
1333		smi_msg->data[3] = 0;
1334	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1335	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1336	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1337	smi_msg->data[i+6] = source_address;
1338	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1339	smi_msg->data[i+8] = msg->cmd;
1340
1341	/* Now tack on the data to the message. */
1342	if (msg->data_len > 0)
1343		memcpy(&(smi_msg->data[i+9]), msg->data,
1344		       msg->data_len);
1345	smi_msg->data_size = msg->data_len + 9;
1346
1347	/* Now calculate the checksum and tack it on. */
1348	smi_msg->data[i+smi_msg->data_size]
1349		= ipmb_checksum(&(smi_msg->data[i+6]),
1350				smi_msg->data_size-6);
1351
1352	/*
1353	 * Add on the checksum size and the offset from the
1354	 * broadcast.
1355	 */
1356	smi_msg->data_size += 1 + i;
1357
1358	smi_msg->msgid = msgid;
1359}
1360
1361static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1362				  struct kernel_ipmi_msg *msg,
1363				  struct ipmi_lan_addr  *lan_addr,
1364				  long                  msgid,
1365				  unsigned char         ipmb_seq,
1366				  unsigned char         source_lun)
1367{
1368	/* Format the IPMB header data. */
1369	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1370	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1371	smi_msg->data[2] = lan_addr->channel;
1372	smi_msg->data[3] = lan_addr->session_handle;
1373	smi_msg->data[4] = lan_addr->remote_SWID;
1374	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1375	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1376	smi_msg->data[7] = lan_addr->local_SWID;
1377	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1378	smi_msg->data[9] = msg->cmd;
1379
1380	/* Now tack on the data to the message. */
1381	if (msg->data_len > 0)
1382		memcpy(&(smi_msg->data[10]), msg->data,
1383		       msg->data_len);
1384	smi_msg->data_size = msg->data_len + 10;
1385
1386	/* Now calculate the checksum and tack it on. */
1387	smi_msg->data[smi_msg->data_size]
1388		= ipmb_checksum(&(smi_msg->data[7]),
1389				smi_msg->data_size-7);
1390
1391	/*
1392	 * Add on the checksum size and the offset from the
1393	 * broadcast.
1394	 */
1395	smi_msg->data_size += 1;
1396
1397	smi_msg->msgid = msgid;
1398}
1399
1400/*
1401 * Separate from ipmi_request so that the user does not have to be
1402 * supplied in certain circumstances (mainly at panic time).  If
1403 * messages are supplied, they will be freed, even if an error
1404 * occurs.
1405 */
1406static int i_ipmi_request(ipmi_user_t          user,
1407			  ipmi_smi_t           intf,
1408			  struct ipmi_addr     *addr,
1409			  long                 msgid,
1410			  struct kernel_ipmi_msg *msg,
1411			  void                 *user_msg_data,
1412			  void                 *supplied_smi,
1413			  struct ipmi_recv_msg *supplied_recv,
1414			  int                  priority,
1415			  unsigned char        source_address,
1416			  unsigned char        source_lun,
1417			  int                  retries,
1418			  unsigned int         retry_time_ms)
1419{
1420	int                      rv = 0;
1421	struct ipmi_smi_msg      *smi_msg;
1422	struct ipmi_recv_msg     *recv_msg;
1423	unsigned long            flags;
1424	struct ipmi_smi_handlers *handlers;
1425
1426
1427	if (supplied_recv)
1428		recv_msg = supplied_recv;
1429	else {
1430		recv_msg = ipmi_alloc_recv_msg();
1431		if (recv_msg == NULL)
1432			return -ENOMEM;
1433	}
1434	recv_msg->user_msg_data = user_msg_data;
1435
1436	if (supplied_smi)
1437		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1438	else {
1439		smi_msg = ipmi_alloc_smi_msg();
1440		if (smi_msg == NULL) {
1441			ipmi_free_recv_msg(recv_msg);
1442			return -ENOMEM;
1443		}
1444	}
1445
1446	rcu_read_lock();
1447	handlers = intf->handlers;
1448	if (!handlers) {
1449		rv = -ENODEV;
1450		goto out_err;
1451	}
1452
1453	recv_msg->user = user;
1454	if (user)
1455		kref_get(&user->refcount);
1456	recv_msg->msgid = msgid;
1457	/*
1458	 * Store the message to send in the receive message so timeout
1459	 * responses can get the proper response data.
1460	 */
1461	recv_msg->msg = *msg;
1462
1463	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1464		struct ipmi_system_interface_addr *smi_addr;
1465
1466		if (msg->netfn & 1) {
1467			/* Responses are not allowed to the SMI. */
1468			rv = -EINVAL;
1469			goto out_err;
1470		}
1471
1472		smi_addr = (struct ipmi_system_interface_addr *) addr;
1473		if (smi_addr->lun > 3) {
1474			ipmi_inc_stat(intf, sent_invalid_commands);
1475			rv = -EINVAL;
1476			goto out_err;
1477		}
1478
1479		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1480
1481		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1482		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1483			|| (msg->cmd == IPMI_GET_MSG_CMD)
1484			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1485			/*
1486			 * We don't let the user do these, since we manage
1487			 * the sequence numbers.
1488			 */
1489			ipmi_inc_stat(intf, sent_invalid_commands);
1490			rv = -EINVAL;
1491			goto out_err;
1492		}
1493
1494		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1495		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1496			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1497		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1498			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1499			intf->auto_maintenance_timeout
1500				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1501			if (!intf->maintenance_mode
1502			    && !intf->maintenance_mode_enable) {
1503				intf->maintenance_mode_enable = 1;
1504				maintenance_mode_update(intf);
1505			}
1506			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1507					       flags);
1508		}
1509
1510		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1511			ipmi_inc_stat(intf, sent_invalid_commands);
1512			rv = -EMSGSIZE;
1513			goto out_err;
1514		}
1515
1516		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1517		smi_msg->data[1] = msg->cmd;
1518		smi_msg->msgid = msgid;
1519		smi_msg->user_data = recv_msg;
1520		if (msg->data_len > 0)
1521			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1522		smi_msg->data_size = msg->data_len + 2;
1523		ipmi_inc_stat(intf, sent_local_commands);
1524	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1525		struct ipmi_ipmb_addr *ipmb_addr;
1526		unsigned char         ipmb_seq;
1527		long                  seqid;
1528		int                   broadcast = 0;
1529
1530		if (addr->channel >= IPMI_MAX_CHANNELS) {
1531			ipmi_inc_stat(intf, sent_invalid_commands);
1532			rv = -EINVAL;
1533			goto out_err;
1534		}
1535
1536		if (intf->channels[addr->channel].medium
1537					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1538			ipmi_inc_stat(intf, sent_invalid_commands);
1539			rv = -EINVAL;
1540			goto out_err;
1541		}
1542
1543		if (retries < 0) {
1544		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1545			retries = 0; /* Don't retry broadcasts. */
1546		    else
1547			retries = 4;
1548		}
1549		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1550		    /*
1551		     * Broadcasts add a zero at the beginning of the
1552		     * message, but otherwise is the same as an IPMB
1553		     * address.
1554		     */
1555		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1556		    broadcast = 1;
1557		}
1558
1559
1560		/* Default to 1 second retries. */
1561		if (retry_time_ms == 0)
1562		    retry_time_ms = 1000;
1563
1564		/*
1565		 * 9 for the header and 1 for the checksum, plus
1566		 * possibly one for the broadcast.
1567		 */
1568		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1569			ipmi_inc_stat(intf, sent_invalid_commands);
1570			rv = -EMSGSIZE;
1571			goto out_err;
1572		}
1573
1574		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1575		if (ipmb_addr->lun > 3) {
1576			ipmi_inc_stat(intf, sent_invalid_commands);
1577			rv = -EINVAL;
1578			goto out_err;
1579		}
1580
1581		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1582
1583		if (recv_msg->msg.netfn & 0x1) {
1584			/*
1585			 * It's a response, so use the user's sequence
1586			 * from msgid.
1587			 */
1588			ipmi_inc_stat(intf, sent_ipmb_responses);
1589			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1590					msgid, broadcast,
1591					source_address, source_lun);
1592
1593			/*
1594			 * Save the receive message so we can use it
1595			 * to deliver the response.
1596			 */
1597			smi_msg->user_data = recv_msg;
1598		} else {
1599			/* It's a command, so get a sequence for it. */
1600
1601			spin_lock_irqsave(&(intf->seq_lock), flags);
1602
1603			/*
1604			 * Create a sequence number with a 1 second
1605			 * timeout and 4 retries.
1606			 */
1607			rv = intf_next_seq(intf,
1608					   recv_msg,
1609					   retry_time_ms,
1610					   retries,
1611					   broadcast,
1612					   &ipmb_seq,
1613					   &seqid);
1614			if (rv) {
1615				/*
1616				 * We have used up all the sequence numbers,
1617				 * probably, so abort.
1618				 */
1619				spin_unlock_irqrestore(&(intf->seq_lock),
1620						       flags);
1621				goto out_err;
1622			}
1623
1624			ipmi_inc_stat(intf, sent_ipmb_commands);
1625
1626			/*
1627			 * Store the sequence number in the message,
1628			 * so that when the send message response
1629			 * comes back we can start the timer.
1630			 */
1631			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1632					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1633					ipmb_seq, broadcast,
1634					source_address, source_lun);
1635
1636			/*
1637			 * Copy the message into the recv message data, so we
1638			 * can retransmit it later if necessary.
1639			 */
1640			memcpy(recv_msg->msg_data, smi_msg->data,
1641			       smi_msg->data_size);
1642			recv_msg->msg.data = recv_msg->msg_data;
1643			recv_msg->msg.data_len = smi_msg->data_size;
1644
1645			/*
1646			 * We don't unlock until here, because we need
1647			 * to copy the completed message into the
1648			 * recv_msg before we release the lock.
1649			 * Otherwise, race conditions may bite us.  I
1650			 * know that's pretty paranoid, but I prefer
1651			 * to be correct.
1652			 */
1653			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1654		}
1655	} else if (is_lan_addr(addr)) {
1656		struct ipmi_lan_addr  *lan_addr;
1657		unsigned char         ipmb_seq;
1658		long                  seqid;
1659
1660		if (addr->channel >= IPMI_MAX_CHANNELS) {
1661			ipmi_inc_stat(intf, sent_invalid_commands);
1662			rv = -EINVAL;
1663			goto out_err;
1664		}
1665
1666		if ((intf->channels[addr->channel].medium
1667				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1668		    && (intf->channels[addr->channel].medium
1669				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1670			ipmi_inc_stat(intf, sent_invalid_commands);
1671			rv = -EINVAL;
1672			goto out_err;
1673		}
1674
1675		retries = 4;
1676
1677		/* Default to 1 second retries. */
1678		if (retry_time_ms == 0)
1679		    retry_time_ms = 1000;
1680
1681		/* 11 for the header and 1 for the checksum. */
1682		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1683			ipmi_inc_stat(intf, sent_invalid_commands);
1684			rv = -EMSGSIZE;
1685			goto out_err;
1686		}
1687
1688		lan_addr = (struct ipmi_lan_addr *) addr;
1689		if (lan_addr->lun > 3) {
1690			ipmi_inc_stat(intf, sent_invalid_commands);
1691			rv = -EINVAL;
1692			goto out_err;
1693		}
1694
1695		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1696
1697		if (recv_msg->msg.netfn & 0x1) {
1698			/*
1699			 * It's a response, so use the user's sequence
1700			 * from msgid.
1701			 */
1702			ipmi_inc_stat(intf, sent_lan_responses);
1703			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1704				       msgid, source_lun);
1705
1706			/*
1707			 * Save the receive message so we can use it
1708			 * to deliver the response.
1709			 */
1710			smi_msg->user_data = recv_msg;
1711		} else {
1712			/* It's a command, so get a sequence for it. */
1713
1714			spin_lock_irqsave(&(intf->seq_lock), flags);
1715
1716			/*
1717			 * Create a sequence number with a 1 second
1718			 * timeout and 4 retries.
1719			 */
1720			rv = intf_next_seq(intf,
1721					   recv_msg,
1722					   retry_time_ms,
1723					   retries,
1724					   0,
1725					   &ipmb_seq,
1726					   &seqid);
1727			if (rv) {
1728				/*
1729				 * We have used up all the sequence numbers,
1730				 * probably, so abort.
1731				 */
1732				spin_unlock_irqrestore(&(intf->seq_lock),
1733						       flags);
1734				goto out_err;
1735			}
1736
1737			ipmi_inc_stat(intf, sent_lan_commands);
1738
1739			/*
1740			 * Store the sequence number in the message,
1741			 * so that when the send message response
1742			 * comes back we can start the timer.
1743			 */
1744			format_lan_msg(smi_msg, msg, lan_addr,
1745				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1746				       ipmb_seq, source_lun);
1747
1748			/*
1749			 * Copy the message into the recv message data, so we
1750			 * can retransmit it later if necessary.
1751			 */
1752			memcpy(recv_msg->msg_data, smi_msg->data,
1753			       smi_msg->data_size);
1754			recv_msg->msg.data = recv_msg->msg_data;
1755			recv_msg->msg.data_len = smi_msg->data_size;
1756
1757			/*
1758			 * We don't unlock until here, because we need
1759			 * to copy the completed message into the
1760			 * recv_msg before we release the lock.
1761			 * Otherwise, race conditions may bite us.  I
1762			 * know that's pretty paranoid, but I prefer
1763			 * to be correct.
1764			 */
1765			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1766		}
1767	} else {
1768	    /* Unknown address type. */
1769		ipmi_inc_stat(intf, sent_invalid_commands);
1770		rv = -EINVAL;
1771		goto out_err;
1772	}
1773
1774#ifdef DEBUG_MSGING
1775	{
1776		int m;
1777		for (m = 0; m < smi_msg->data_size; m++)
1778			printk(" %2.2x", smi_msg->data[m]);
1779		printk("\n");
1780	}
1781#endif
1782
1783	handlers->sender(intf->send_info, smi_msg, priority);
1784	rcu_read_unlock();
1785
1786	return 0;
1787
1788 out_err:
1789	rcu_read_unlock();
1790	ipmi_free_smi_msg(smi_msg);
1791	ipmi_free_recv_msg(recv_msg);
1792	return rv;
1793}
1794
1795static int check_addr(ipmi_smi_t       intf,
1796		      struct ipmi_addr *addr,
1797		      unsigned char    *saddr,
1798		      unsigned char    *lun)
1799{
1800	if (addr->channel >= IPMI_MAX_CHANNELS)
1801		return -EINVAL;
1802	*lun = intf->channels[addr->channel].lun;
1803	*saddr = intf->channels[addr->channel].address;
1804	return 0;
1805}
1806
1807int ipmi_request_settime(ipmi_user_t      user,
1808			 struct ipmi_addr *addr,
1809			 long             msgid,
1810			 struct kernel_ipmi_msg  *msg,
1811			 void             *user_msg_data,
1812			 int              priority,
1813			 int              retries,
1814			 unsigned int     retry_time_ms)
1815{
1816	unsigned char saddr, lun;
1817	int           rv;
1818
1819	if (!user)
1820		return -EINVAL;
1821	rv = check_addr(user->intf, addr, &saddr, &lun);
1822	if (rv)
1823		return rv;
1824	return i_ipmi_request(user,
1825			      user->intf,
1826			      addr,
1827			      msgid,
1828			      msg,
1829			      user_msg_data,
1830			      NULL, NULL,
1831			      priority,
1832			      saddr,
1833			      lun,
1834			      retries,
1835			      retry_time_ms);
1836}
1837EXPORT_SYMBOL(ipmi_request_settime);
1838
1839int ipmi_request_supply_msgs(ipmi_user_t          user,
1840			     struct ipmi_addr     *addr,
1841			     long                 msgid,
1842			     struct kernel_ipmi_msg *msg,
1843			     void                 *user_msg_data,
1844			     void                 *supplied_smi,
1845			     struct ipmi_recv_msg *supplied_recv,
1846			     int                  priority)
1847{
1848	unsigned char saddr, lun;
1849	int           rv;
1850
1851	if (!user)
1852		return -EINVAL;
1853	rv = check_addr(user->intf, addr, &saddr, &lun);
1854	if (rv)
1855		return rv;
1856	return i_ipmi_request(user,
1857			      user->intf,
1858			      addr,
1859			      msgid,
1860			      msg,
1861			      user_msg_data,
1862			      supplied_smi,
1863			      supplied_recv,
1864			      priority,
1865			      saddr,
1866			      lun,
1867			      -1, 0);
1868}
1869EXPORT_SYMBOL(ipmi_request_supply_msgs);
1870
1871#ifdef CONFIG_PROC_FS
1872static int ipmb_file_read_proc(char *page, char **start, off_t off,
1873			       int count, int *eof, void *data)
1874{
1875	char       *out = (char *) page;
1876	ipmi_smi_t intf = data;
1877	int        i;
1878	int        rv = 0;
1879
1880	for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1881		rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1882	out[rv-1] = '\n'; /* Replace the final space with a newline */
1883	out[rv] = '\0';
1884	rv++;
1885	return rv;
1886}
1887
1888static int version_file_read_proc(char *page, char **start, off_t off,
1889				  int count, int *eof, void *data)
1890{
1891	char       *out = (char *) page;
1892	ipmi_smi_t intf = data;
1893
1894	return sprintf(out, "%u.%u\n",
1895		       ipmi_version_major(&intf->bmc->id),
1896		       ipmi_version_minor(&intf->bmc->id));
1897}
1898
1899static int stat_file_read_proc(char *page, char **start, off_t off,
1900			       int count, int *eof, void *data)
1901{
1902	char       *out = (char *) page;
1903	ipmi_smi_t intf = data;
1904
1905	out += sprintf(out, "sent_invalid_commands:       %u\n",
1906		       ipmi_get_stat(intf, sent_invalid_commands));
1907	out += sprintf(out, "sent_local_commands:         %u\n",
1908		       ipmi_get_stat(intf, sent_local_commands));
1909	out += sprintf(out, "handled_local_responses:     %u\n",
1910		       ipmi_get_stat(intf, handled_local_responses));
1911	out += sprintf(out, "unhandled_local_responses:   %u\n",
1912		       ipmi_get_stat(intf, unhandled_local_responses));
1913	out += sprintf(out, "sent_ipmb_commands:          %u\n",
1914		       ipmi_get_stat(intf, sent_ipmb_commands));
1915	out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1916		       ipmi_get_stat(intf, sent_ipmb_command_errs));
1917	out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1918		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
1919	out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1920		       ipmi_get_stat(intf, timed_out_ipmb_commands));
1921	out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1922		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1923	out += sprintf(out, "sent_ipmb_responses:         %u\n",
1924		       ipmi_get_stat(intf, sent_ipmb_responses));
1925	out += sprintf(out, "handled_ipmb_responses:      %u\n",
1926		       ipmi_get_stat(intf, handled_ipmb_responses));
1927	out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1928		       ipmi_get_stat(intf, invalid_ipmb_responses));
1929	out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1930		       ipmi_get_stat(intf, unhandled_ipmb_responses));
1931	out += sprintf(out, "sent_lan_commands:           %u\n",
1932		       ipmi_get_stat(intf, sent_lan_commands));
1933	out += sprintf(out, "sent_lan_command_errs:       %u\n",
1934		       ipmi_get_stat(intf, sent_lan_command_errs));
1935	out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1936		       ipmi_get_stat(intf, retransmitted_lan_commands));
1937	out += sprintf(out, "timed_out_lan_commands:      %u\n",
1938		       ipmi_get_stat(intf, timed_out_lan_commands));
1939	out += sprintf(out, "sent_lan_responses:          %u\n",
1940		       ipmi_get_stat(intf, sent_lan_responses));
1941	out += sprintf(out, "handled_lan_responses:       %u\n",
1942		       ipmi_get_stat(intf, handled_lan_responses));
1943	out += sprintf(out, "invalid_lan_responses:       %u\n",
1944		       ipmi_get_stat(intf, invalid_lan_responses));
1945	out += sprintf(out, "unhandled_lan_responses:     %u\n",
1946		       ipmi_get_stat(intf, unhandled_lan_responses));
1947	out += sprintf(out, "handled_commands:            %u\n",
1948		       ipmi_get_stat(intf, handled_commands));
1949	out += sprintf(out, "invalid_commands:            %u\n",
1950		       ipmi_get_stat(intf, invalid_commands));
1951	out += sprintf(out, "unhandled_commands:          %u\n",
1952		       ipmi_get_stat(intf, unhandled_commands));
1953	out += sprintf(out, "invalid_events:              %u\n",
1954		       ipmi_get_stat(intf, invalid_events));
1955	out += sprintf(out, "events:                      %u\n",
1956		       ipmi_get_stat(intf, events));
1957	out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
1958		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1959	out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
1960		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1961
1962	return (out - ((char *) page));
1963}
1964#endif /* CONFIG_PROC_FS */
1965
1966int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1967			    read_proc_t *read_proc,
1968			    void *data)
1969{
1970	int                    rv = 0;
1971#ifdef CONFIG_PROC_FS
1972	struct proc_dir_entry  *file;
1973	struct ipmi_proc_entry *entry;
1974
1975	/* Create a list element. */
1976	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1977	if (!entry)
1978		return -ENOMEM;
1979	entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1980	if (!entry->name) {
1981		kfree(entry);
1982		return -ENOMEM;
1983	}
1984	strcpy(entry->name, name);
1985
1986	file = create_proc_entry(name, 0, smi->proc_dir);
1987	if (!file) {
1988		kfree(entry->name);
1989		kfree(entry);
1990		rv = -ENOMEM;
1991	} else {
1992		file->data = data;
1993		file->read_proc = read_proc;
1994
1995		mutex_lock(&smi->proc_entry_lock);
1996		/* Stick it on the list. */
1997		entry->next = smi->proc_entries;
1998		smi->proc_entries = entry;
1999		mutex_unlock(&smi->proc_entry_lock);
2000	}
2001#endif /* CONFIG_PROC_FS */
2002
2003	return rv;
2004}
2005EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2006
2007static int add_proc_entries(ipmi_smi_t smi, int num)
2008{
2009	int rv = 0;
2010
2011#ifdef CONFIG_PROC_FS
2012	sprintf(smi->proc_dir_name, "%d", num);
2013	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2014	if (!smi->proc_dir)
2015		rv = -ENOMEM;
2016
2017	if (rv == 0)
2018		rv = ipmi_smi_add_proc_entry(smi, "stats",
2019					     stat_file_read_proc,
2020					     smi);
2021
2022	if (rv == 0)
2023		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2024					     ipmb_file_read_proc,
2025					     smi);
2026
2027	if (rv == 0)
2028		rv = ipmi_smi_add_proc_entry(smi, "version",
2029					     version_file_read_proc,
2030					     smi);
2031#endif /* CONFIG_PROC_FS */
2032
2033	return rv;
2034}
2035
2036static void remove_proc_entries(ipmi_smi_t smi)
2037{
2038#ifdef CONFIG_PROC_FS
2039	struct ipmi_proc_entry *entry;
2040
2041	mutex_lock(&smi->proc_entry_lock);
2042	while (smi->proc_entries) {
2043		entry = smi->proc_entries;
2044		smi->proc_entries = entry->next;
2045
2046		remove_proc_entry(entry->name, smi->proc_dir);
2047		kfree(entry->name);
2048		kfree(entry);
2049	}
2050	mutex_unlock(&smi->proc_entry_lock);
2051	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2052#endif /* CONFIG_PROC_FS */
2053}
2054
2055static int __find_bmc_guid(struct device *dev, void *data)
2056{
2057	unsigned char *id = data;
2058	struct bmc_device *bmc = dev_get_drvdata(dev);
2059	return memcmp(bmc->guid, id, 16) == 0;
2060}
2061
2062static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2063					     unsigned char *guid)
2064{
2065	struct device *dev;
2066
2067	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2068	if (dev)
2069		return dev_get_drvdata(dev);
2070	else
2071		return NULL;
2072}
2073
2074struct prod_dev_id {
2075	unsigned int  product_id;
2076	unsigned char device_id;
2077};
2078
2079static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2080{
2081	struct prod_dev_id *id = data;
2082	struct bmc_device *bmc = dev_get_drvdata(dev);
2083
2084	return (bmc->id.product_id == id->product_id
2085		&& bmc->id.device_id == id->device_id);
2086}
2087
2088static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2089	struct device_driver *drv,
2090	unsigned int product_id, unsigned char device_id)
2091{
2092	struct prod_dev_id id = {
2093		.product_id = product_id,
2094		.device_id = device_id,
2095	};
2096	struct device *dev;
2097
2098	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2099	if (dev)
2100		return dev_get_drvdata(dev);
2101	else
2102		return NULL;
2103}
2104
2105static ssize_t device_id_show(struct device *dev,
2106			      struct device_attribute *attr,
2107			      char *buf)
2108{
2109	struct bmc_device *bmc = dev_get_drvdata(dev);
2110
2111	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2112}
2113
2114static ssize_t provides_dev_sdrs_show(struct device *dev,
2115				      struct device_attribute *attr,
2116				      char *buf)
2117{
2118	struct bmc_device *bmc = dev_get_drvdata(dev);
2119
2120	return snprintf(buf, 10, "%u\n",
2121			(bmc->id.device_revision & 0x80) >> 7);
2122}
2123
2124static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2125			     char *buf)
2126{
2127	struct bmc_device *bmc = dev_get_drvdata(dev);
2128
2129	return snprintf(buf, 20, "%u\n",
2130			bmc->id.device_revision & 0x0F);
2131}
2132
2133static ssize_t firmware_rev_show(struct device *dev,
2134				 struct device_attribute *attr,
2135				 char *buf)
2136{
2137	struct bmc_device *bmc = dev_get_drvdata(dev);
2138
2139	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2140			bmc->id.firmware_revision_2);
2141}
2142
2143static ssize_t ipmi_version_show(struct device *dev,
2144				 struct device_attribute *attr,
2145				 char *buf)
2146{
2147	struct bmc_device *bmc = dev_get_drvdata(dev);
2148
2149	return snprintf(buf, 20, "%u.%u\n",
2150			ipmi_version_major(&bmc->id),
2151			ipmi_version_minor(&bmc->id));
2152}
2153
2154static ssize_t add_dev_support_show(struct device *dev,
2155				    struct device_attribute *attr,
2156				    char *buf)
2157{
2158	struct bmc_device *bmc = dev_get_drvdata(dev);
2159
2160	return snprintf(buf, 10, "0x%02x\n",
2161			bmc->id.additional_device_support);
2162}
2163
2164static ssize_t manufacturer_id_show(struct device *dev,
2165				    struct device_attribute *attr,
2166				    char *buf)
2167{
2168	struct bmc_device *bmc = dev_get_drvdata(dev);
2169
2170	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2171}
2172
2173static ssize_t product_id_show(struct device *dev,
2174			       struct device_attribute *attr,
2175			       char *buf)
2176{
2177	struct bmc_device *bmc = dev_get_drvdata(dev);
2178
2179	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2180}
2181
2182static ssize_t aux_firmware_rev_show(struct device *dev,
2183				     struct device_attribute *attr,
2184				     char *buf)
2185{
2186	struct bmc_device *bmc = dev_get_drvdata(dev);
2187
2188	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2189			bmc->id.aux_firmware_revision[3],
2190			bmc->id.aux_firmware_revision[2],
2191			bmc->id.aux_firmware_revision[1],
2192			bmc->id.aux_firmware_revision[0]);
2193}
2194
2195static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2196			 char *buf)
2197{
2198	struct bmc_device *bmc = dev_get_drvdata(dev);
2199
2200	return snprintf(buf, 100, "%Lx%Lx\n",
2201			(long long) bmc->guid[0],
2202			(long long) bmc->guid[8]);
2203}
2204
2205static void remove_files(struct bmc_device *bmc)
2206{
2207	if (!bmc->dev)
2208		return;
2209
2210	device_remove_file(&bmc->dev->dev,
2211			   &bmc->device_id_attr);
2212	device_remove_file(&bmc->dev->dev,
2213			   &bmc->provides_dev_sdrs_attr);
2214	device_remove_file(&bmc->dev->dev,
2215			   &bmc->revision_attr);
2216	device_remove_file(&bmc->dev->dev,
2217			   &bmc->firmware_rev_attr);
2218	device_remove_file(&bmc->dev->dev,
2219			   &bmc->version_attr);
2220	device_remove_file(&bmc->dev->dev,
2221			   &bmc->add_dev_support_attr);
2222	device_remove_file(&bmc->dev->dev,
2223			   &bmc->manufacturer_id_attr);
2224	device_remove_file(&bmc->dev->dev,
2225			   &bmc->product_id_attr);
2226
2227	if (bmc->id.aux_firmware_revision_set)
2228		device_remove_file(&bmc->dev->dev,
2229				   &bmc->aux_firmware_rev_attr);
2230	if (bmc->guid_set)
2231		device_remove_file(&bmc->dev->dev,
2232				   &bmc->guid_attr);
2233}
2234
2235static void
2236cleanup_bmc_device(struct kref *ref)
2237{
2238	struct bmc_device *bmc;
2239
2240	bmc = container_of(ref, struct bmc_device, refcount);
2241
2242	remove_files(bmc);
2243	platform_device_unregister(bmc->dev);
2244	kfree(bmc);
2245}
2246
2247static void ipmi_bmc_unregister(ipmi_smi_t intf)
2248{
2249	struct bmc_device *bmc = intf->bmc;
2250
2251	if (intf->sysfs_name) {
2252		sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2253		kfree(intf->sysfs_name);
2254		intf->sysfs_name = NULL;
2255	}
2256	if (intf->my_dev_name) {
2257		sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2258		kfree(intf->my_dev_name);
2259		intf->my_dev_name = NULL;
2260	}
2261
2262	mutex_lock(&ipmidriver_mutex);
2263	kref_put(&bmc->refcount, cleanup_bmc_device);
2264	intf->bmc = NULL;
2265	mutex_unlock(&ipmidriver_mutex);
2266}
2267
2268static int create_files(struct bmc_device *bmc)
2269{
2270	int err;
2271
2272	bmc->device_id_attr.attr.name = "device_id";
2273	bmc->device_id_attr.attr.mode = S_IRUGO;
2274	bmc->device_id_attr.show = device_id_show;
2275	sysfs_attr_init(&bmc->device_id_attr.attr);
2276
2277	bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2278	bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2279	bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2280	sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2281
2282	bmc->revision_attr.attr.name = "revision";
2283	bmc->revision_attr.attr.mode = S_IRUGO;
2284	bmc->revision_attr.show = revision_show;
2285	sysfs_attr_init(&bmc->revision_attr.attr);
2286
2287	bmc->firmware_rev_attr.attr.name = "firmware_revision";
2288	bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2289	bmc->firmware_rev_attr.show = firmware_rev_show;
2290	sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2291
2292	bmc->version_attr.attr.name = "ipmi_version";
2293	bmc->version_attr.attr.mode = S_IRUGO;
2294	bmc->version_attr.show = ipmi_version_show;
2295	sysfs_attr_init(&bmc->version_attr.attr);
2296
2297	bmc->add_dev_support_attr.attr.name = "additional_device_support";
2298	bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2299	bmc->add_dev_support_attr.show = add_dev_support_show;
2300	sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2301
2302	bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2303	bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2304	bmc->manufacturer_id_attr.show = manufacturer_id_show;
2305	sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2306
2307	bmc->product_id_attr.attr.name = "product_id";
2308	bmc->product_id_attr.attr.mode = S_IRUGO;
2309	bmc->product_id_attr.show = product_id_show;
2310	sysfs_attr_init(&bmc->product_id_attr.attr);
2311
2312	bmc->guid_attr.attr.name = "guid";
2313	bmc->guid_attr.attr.mode = S_IRUGO;
2314	bmc->guid_attr.show = guid_show;
2315	sysfs_attr_init(&bmc->guid_attr.attr);
2316
2317	bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2318	bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2319	bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2320	sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2321
2322	err = device_create_file(&bmc->dev->dev,
2323			   &bmc->device_id_attr);
2324	if (err)
2325		goto out;
2326	err = device_create_file(&bmc->dev->dev,
2327			   &bmc->provides_dev_sdrs_attr);
2328	if (err)
2329		goto out_devid;
2330	err = device_create_file(&bmc->dev->dev,
2331			   &bmc->revision_attr);
2332	if (err)
2333		goto out_sdrs;
2334	err = device_create_file(&bmc->dev->dev,
2335			   &bmc->firmware_rev_attr);
2336	if (err)
2337		goto out_rev;
2338	err = device_create_file(&bmc->dev->dev,
2339			   &bmc->version_attr);
2340	if (err)
2341		goto out_firm;
2342	err = device_create_file(&bmc->dev->dev,
2343			   &bmc->add_dev_support_attr);
2344	if (err)
2345		goto out_version;
2346	err = device_create_file(&bmc->dev->dev,
2347			   &bmc->manufacturer_id_attr);
2348	if (err)
2349		goto out_add_dev;
2350	err = device_create_file(&bmc->dev->dev,
2351			   &bmc->product_id_attr);
2352	if (err)
2353		goto out_manu;
2354	if (bmc->id.aux_firmware_revision_set) {
2355		err = device_create_file(&bmc->dev->dev,
2356				   &bmc->aux_firmware_rev_attr);
2357		if (err)
2358			goto out_prod_id;
2359	}
2360	if (bmc->guid_set) {
2361		err = device_create_file(&bmc->dev->dev,
2362				   &bmc->guid_attr);
2363		if (err)
2364			goto out_aux_firm;
2365	}
2366
2367	return 0;
2368
2369out_aux_firm:
2370	if (bmc->id.aux_firmware_revision_set)
2371		device_remove_file(&bmc->dev->dev,
2372				   &bmc->aux_firmware_rev_attr);
2373out_prod_id:
2374	device_remove_file(&bmc->dev->dev,
2375			   &bmc->product_id_attr);
2376out_manu:
2377	device_remove_file(&bmc->dev->dev,
2378			   &bmc->manufacturer_id_attr);
2379out_add_dev:
2380	device_remove_file(&bmc->dev->dev,
2381			   &bmc->add_dev_support_attr);
2382out_version:
2383	device_remove_file(&bmc->dev->dev,
2384			   &bmc->version_attr);
2385out_firm:
2386	device_remove_file(&bmc->dev->dev,
2387			   &bmc->firmware_rev_attr);
2388out_rev:
2389	device_remove_file(&bmc->dev->dev,
2390			   &bmc->revision_attr);
2391out_sdrs:
2392	device_remove_file(&bmc->dev->dev,
2393			   &bmc->provides_dev_sdrs_attr);
2394out_devid:
2395	device_remove_file(&bmc->dev->dev,
2396			   &bmc->device_id_attr);
2397out:
2398	return err;
2399}
2400
2401static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2402			     const char *sysfs_name)
2403{
2404	int               rv;
2405	struct bmc_device *bmc = intf->bmc;
2406	struct bmc_device *old_bmc;
2407	int               size;
2408	char              dummy[1];
2409
2410	mutex_lock(&ipmidriver_mutex);
2411
2412	/*
2413	 * Try to find if there is an bmc_device struct
2414	 * representing the interfaced BMC already
2415	 */
2416	if (bmc->guid_set)
2417		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2418	else
2419		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2420						    bmc->id.product_id,
2421						    bmc->id.device_id);
2422
2423	/*
2424	 * If there is already an bmc_device, free the new one,
2425	 * otherwise register the new BMC device
2426	 */
2427	if (old_bmc) {
2428		kfree(bmc);
2429		intf->bmc = old_bmc;
2430		bmc = old_bmc;
2431
2432		kref_get(&bmc->refcount);
2433		mutex_unlock(&ipmidriver_mutex);
2434
2435		printk(KERN_INFO
2436		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2437		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2438		       bmc->id.manufacturer_id,
2439		       bmc->id.product_id,
2440		       bmc->id.device_id);
2441	} else {
2442		char name[14];
2443		unsigned char orig_dev_id = bmc->id.device_id;
2444		int warn_printed = 0;
2445
2446		snprintf(name, sizeof(name),
2447			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2448
2449		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2450						 bmc->id.product_id,
2451						 bmc->id.device_id)) {
2452			if (!warn_printed) {
2453				printk(KERN_WARNING PFX
2454				       "This machine has two different BMCs"
2455				       " with the same product id and device"
2456				       " id.  This is an error in the"
2457				       " firmware, but incrementing the"
2458				       " device id to work around the problem."
2459				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2460				       bmc->id.product_id, bmc->id.device_id);
2461				warn_printed = 1;
2462			}
2463			bmc->id.device_id++; /* Wraps at 255 */
2464			if (bmc->id.device_id == orig_dev_id) {
2465				printk(KERN_ERR PFX
2466				       "Out of device ids!\n");
2467				break;
2468			}
2469		}
2470
2471		bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2472		if (!bmc->dev) {
2473			mutex_unlock(&ipmidriver_mutex);
2474			printk(KERN_ERR
2475			       "ipmi_msghandler:"
2476			       " Unable to allocate platform device\n");
2477			return -ENOMEM;
2478		}
2479		bmc->dev->dev.driver = &ipmidriver.driver;
2480		dev_set_drvdata(&bmc->dev->dev, bmc);
2481		kref_init(&bmc->refcount);
2482
2483		rv = platform_device_add(bmc->dev);
2484		mutex_unlock(&ipmidriver_mutex);
2485		if (rv) {
2486			platform_device_put(bmc->dev);
2487			bmc->dev = NULL;
2488			printk(KERN_ERR
2489			       "ipmi_msghandler:"
2490			       " Unable to register bmc device: %d\n",
2491			       rv);
2492			/*
2493			 * Don't go to out_err, you can only do that if
2494			 * the device is registered already.
2495			 */
2496			return rv;
2497		}
2498
2499		rv = create_files(bmc);
2500		if (rv) {
2501			mutex_lock(&ipmidriver_mutex);
2502			platform_device_unregister(bmc->dev);
2503			mutex_unlock(&ipmidriver_mutex);
2504
2505			return rv;
2506		}
2507
2508		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2509			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2510			 bmc->id.manufacturer_id,
2511			 bmc->id.product_id,
2512			 bmc->id.device_id);
2513	}
2514
2515	/*
2516	 * create symlink from system interface device to bmc device
2517	 * and back.
2518	 */
2519	intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2520	if (!intf->sysfs_name) {
2521		rv = -ENOMEM;
2522		printk(KERN_ERR
2523		       "ipmi_msghandler: allocate link to BMC: %d\n",
2524		       rv);
2525		goto out_err;
2526	}
2527
2528	rv = sysfs_create_link(&intf->si_dev->kobj,
2529			       &bmc->dev->dev.kobj, intf->sysfs_name);
2530	if (rv) {
2531		kfree(intf->sysfs_name);
2532		intf->sysfs_name = NULL;
2533		printk(KERN_ERR
2534		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2535		       rv);
2536		goto out_err;
2537	}
2538
2539	size = snprintf(dummy, 0, "ipmi%d", ifnum);
2540	intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2541	if (!intf->my_dev_name) {
2542		kfree(intf->sysfs_name);
2543		intf->sysfs_name = NULL;
2544		rv = -ENOMEM;
2545		printk(KERN_ERR
2546		       "ipmi_msghandler: allocate link from BMC: %d\n",
2547		       rv);
2548		goto out_err;
2549	}
2550	snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2551
2552	rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2553			       intf->my_dev_name);
2554	if (rv) {
2555		kfree(intf->sysfs_name);
2556		intf->sysfs_name = NULL;
2557		kfree(intf->my_dev_name);
2558		intf->my_dev_name = NULL;
2559		printk(KERN_ERR
2560		       "ipmi_msghandler:"
2561		       " Unable to create symlink to bmc: %d\n",
2562		       rv);
2563		goto out_err;
2564	}
2565
2566	return 0;
2567
2568out_err:
2569	ipmi_bmc_unregister(intf);
2570	return rv;
2571}
2572
2573static int
2574send_guid_cmd(ipmi_smi_t intf, int chan)
2575{
2576	struct kernel_ipmi_msg            msg;
2577	struct ipmi_system_interface_addr si;
2578
2579	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2580	si.channel = IPMI_BMC_CHANNEL;
2581	si.lun = 0;
2582
2583	msg.netfn = IPMI_NETFN_APP_REQUEST;
2584	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2585	msg.data = NULL;
2586	msg.data_len = 0;
2587	return i_ipmi_request(NULL,
2588			      intf,
2589			      (struct ipmi_addr *) &si,
2590			      0,
2591			      &msg,
2592			      intf,
2593			      NULL,
2594			      NULL,
2595			      0,
2596			      intf->channels[0].address,
2597			      intf->channels[0].lun,
2598			      -1, 0);
2599}
2600
2601static void
2602guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2603{
2604	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2605	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2606	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2607		/* Not for me */
2608		return;
2609
2610	if (msg->msg.data[0] != 0) {
2611		/* Error from getting the GUID, the BMC doesn't have one. */
2612		intf->bmc->guid_set = 0;
2613		goto out;
2614	}
2615
2616	if (msg->msg.data_len < 17) {
2617		intf->bmc->guid_set = 0;
2618		printk(KERN_WARNING PFX
2619		       "guid_handler: The GUID response from the BMC was too"
2620		       " short, it was %d but should have been 17.  Assuming"
2621		       " GUID is not available.\n",
2622		       msg->msg.data_len);
2623		goto out;
2624	}
2625
2626	memcpy(intf->bmc->guid, msg->msg.data, 16);
2627	intf->bmc->guid_set = 1;
2628 out:
2629	wake_up(&intf->waitq);
2630}
2631
2632static void
2633get_guid(ipmi_smi_t intf)
2634{
2635	int rv;
2636
2637	intf->bmc->guid_set = 0x2;
2638	intf->null_user_handler = guid_handler;
2639	rv = send_guid_cmd(intf, 0);
2640	if (rv)
2641		/* Send failed, no GUID available. */
2642		intf->bmc->guid_set = 0;
2643	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2644	intf->null_user_handler = NULL;
2645}
2646
2647static int
2648send_channel_info_cmd(ipmi_smi_t intf, int chan)
2649{
2650	struct kernel_ipmi_msg            msg;
2651	unsigned char                     data[1];
2652	struct ipmi_system_interface_addr si;
2653
2654	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2655	si.channel = IPMI_BMC_CHANNEL;
2656	si.lun = 0;
2657
2658	msg.netfn = IPMI_NETFN_APP_REQUEST;
2659	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2660	msg.data = data;
2661	msg.data_len = 1;
2662	data[0] = chan;
2663	return i_ipmi_request(NULL,
2664			      intf,
2665			      (struct ipmi_addr *) &si,
2666			      0,
2667			      &msg,
2668			      intf,
2669			      NULL,
2670			      NULL,
2671			      0,
2672			      intf->channels[0].address,
2673			      intf->channels[0].lun,
2674			      -1, 0);
2675}
2676
2677static void
2678channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2679{
2680	int rv = 0;
2681	int chan;
2682
2683	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2684	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2685	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2686		/* It's the one we want */
2687		if (msg->msg.data[0] != 0) {
2688			/* Got an error from the channel, just go on. */
2689
2690			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2691				/*
2692				 * If the MC does not support this
2693				 * command, that is legal.  We just
2694				 * assume it has one IPMB at channel
2695				 * zero.
2696				 */
2697				intf->channels[0].medium
2698					= IPMI_CHANNEL_MEDIUM_IPMB;
2699				intf->channels[0].protocol
2700					= IPMI_CHANNEL_PROTOCOL_IPMB;
2701				rv = -ENOSYS;
2702
2703				intf->curr_channel = IPMI_MAX_CHANNELS;
2704				wake_up(&intf->waitq);
2705				goto out;
2706			}
2707			goto next_channel;
2708		}
2709		if (msg->msg.data_len < 4) {
2710			/* Message not big enough, just go on. */
2711			goto next_channel;
2712		}
2713		chan = intf->curr_channel;
2714		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2715		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2716
2717 next_channel:
2718		intf->curr_channel++;
2719		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2720			wake_up(&intf->waitq);
2721		else
2722			rv = send_channel_info_cmd(intf, intf->curr_channel);
2723
2724		if (rv) {
2725			/* Got an error somehow, just give up. */
2726			intf->curr_channel = IPMI_MAX_CHANNELS;
2727			wake_up(&intf->waitq);
2728
2729			printk(KERN_WARNING PFX
2730			       "Error sending channel information: %d\n",
2731			       rv);
2732		}
2733	}
2734 out:
2735	return;
2736}
2737
2738void ipmi_poll_interface(ipmi_user_t user)
2739{
2740	ipmi_smi_t intf = user->intf;
2741
2742	if (intf->handlers->poll)
2743		intf->handlers->poll(intf->send_info);
2744}
2745EXPORT_SYMBOL(ipmi_poll_interface);
2746
2747int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2748		      void		       *send_info,
2749		      struct ipmi_device_id    *device_id,
2750		      struct device            *si_dev,
2751		      const char               *sysfs_name,
2752		      unsigned char            slave_addr)
2753{
2754	int              i, j;
2755	int              rv;
2756	ipmi_smi_t       intf;
2757	ipmi_smi_t       tintf;
2758	struct list_head *link;
2759
2760	/*
2761	 * Make sure the driver is actually initialized, this handles
2762	 * problems with initialization order.
2763	 */
2764	if (!initialized) {
2765		rv = ipmi_init_msghandler();
2766		if (rv)
2767			return rv;
2768		/*
2769		 * The init code doesn't return an error if it was turned
2770		 * off, but it won't initialize.  Check that.
2771		 */
2772		if (!initialized)
2773			return -ENODEV;
2774	}
2775
2776	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2777	if (!intf)
2778		return -ENOMEM;
2779
2780	intf->ipmi_version_major = ipmi_version_major(device_id);
2781	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2782
2783	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2784	if (!intf->bmc) {
2785		kfree(intf);
2786		return -ENOMEM;
2787	}
2788	intf->intf_num = -1; /* Mark it invalid for now. */
2789	kref_init(&intf->refcount);
2790	intf->bmc->id = *device_id;
2791	intf->si_dev = si_dev;
2792	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2793		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2794		intf->channels[j].lun = 2;
2795	}
2796	if (slave_addr != 0)
2797		intf->channels[0].address = slave_addr;
2798	INIT_LIST_HEAD(&intf->users);
2799	intf->handlers = handlers;
2800	intf->send_info = send_info;
2801	spin_lock_init(&intf->seq_lock);
2802	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2803		intf->seq_table[j].inuse = 0;
2804		intf->seq_table[j].seqid = 0;
2805	}
2806	intf->curr_seq = 0;
2807#ifdef CONFIG_PROC_FS
2808	mutex_init(&intf->proc_entry_lock);
2809#endif
2810	spin_lock_init(&intf->waiting_msgs_lock);
2811	INIT_LIST_HEAD(&intf->waiting_msgs);
2812	spin_lock_init(&intf->events_lock);
2813	INIT_LIST_HEAD(&intf->waiting_events);
2814	intf->waiting_events_count = 0;
2815	mutex_init(&intf->cmd_rcvrs_mutex);
2816	spin_lock_init(&intf->maintenance_mode_lock);
2817	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2818	init_waitqueue_head(&intf->waitq);
2819	for (i = 0; i < IPMI_NUM_STATS; i++)
2820		atomic_set(&intf->stats[i], 0);
2821
2822	intf->proc_dir = NULL;
2823
2824	mutex_lock(&smi_watchers_mutex);
2825	mutex_lock(&ipmi_interfaces_mutex);
2826	/* Look for a hole in the numbers. */
2827	i = 0;
2828	link = &ipmi_interfaces;
2829	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2830		if (tintf->intf_num != i) {
2831			link = &tintf->link;
2832			break;
2833		}
2834		i++;
2835	}
2836	/* Add the new interface in numeric order. */
2837	if (i == 0)
2838		list_add_rcu(&intf->link, &ipmi_interfaces);
2839	else
2840		list_add_tail_rcu(&intf->link, link);
2841
2842	rv = handlers->start_processing(send_info, intf);
2843	if (rv)
2844		goto out;
2845
2846	get_guid(intf);
2847
2848	if ((intf->ipmi_version_major > 1)
2849			|| ((intf->ipmi_version_major == 1)
2850			    && (intf->ipmi_version_minor >= 5))) {
2851		/*
2852		 * Start scanning the channels to see what is
2853		 * available.
2854		 */
2855		intf->null_user_handler = channel_handler;
2856		intf->curr_channel = 0;
2857		rv = send_channel_info_cmd(intf, 0);
2858		if (rv)
2859			goto out;
2860
2861		/* Wait for the channel info to be read. */
2862		wait_event(intf->waitq,
2863			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2864		intf->null_user_handler = NULL;
2865	} else {
2866		/* Assume a single IPMB channel at zero. */
2867		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2868		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2869		intf->curr_channel = IPMI_MAX_CHANNELS;
2870	}
2871
2872	if (rv == 0)
2873		rv = add_proc_entries(intf, i);
2874
2875	rv = ipmi_bmc_register(intf, i, sysfs_name);
2876
2877 out:
2878	if (rv) {
2879		if (intf->proc_dir)
2880			remove_proc_entries(intf);
2881		intf->handlers = NULL;
2882		list_del_rcu(&intf->link);
2883		mutex_unlock(&ipmi_interfaces_mutex);
2884		mutex_unlock(&smi_watchers_mutex);
2885		synchronize_rcu();
2886		kref_put(&intf->refcount, intf_free);
2887	} else {
2888		/*
2889		 * Keep memory order straight for RCU readers.  Make
2890		 * sure everything else is committed to memory before
2891		 * setting intf_num to mark the interface valid.
2892		 */
2893		smp_wmb();
2894		intf->intf_num = i;
2895		mutex_unlock(&ipmi_interfaces_mutex);
2896		/* After this point the interface is legal to use. */
2897		call_smi_watchers(i, intf->si_dev);
2898		mutex_unlock(&smi_watchers_mutex);
2899	}
2900
2901	return rv;
2902}
2903EXPORT_SYMBOL(ipmi_register_smi);
2904
2905static void cleanup_smi_msgs(ipmi_smi_t intf)
2906{
2907	int              i;
2908	struct seq_table *ent;
2909
2910	/* No need for locks, the interface is down. */
2911	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2912		ent = &(intf->seq_table[i]);
2913		if (!ent->inuse)
2914			continue;
2915		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2916	}
2917}
2918
2919int ipmi_unregister_smi(ipmi_smi_t intf)
2920{
2921	struct ipmi_smi_watcher *w;
2922	int    intf_num = intf->intf_num;
2923
2924	ipmi_bmc_unregister(intf);
2925
2926	mutex_lock(&smi_watchers_mutex);
2927	mutex_lock(&ipmi_interfaces_mutex);
2928	intf->intf_num = -1;
2929	intf->handlers = NULL;
2930	list_del_rcu(&intf->link);
2931	mutex_unlock(&ipmi_interfaces_mutex);
2932	synchronize_rcu();
2933
2934	cleanup_smi_msgs(intf);
2935
2936	remove_proc_entries(intf);
2937
2938	/*
2939	 * Call all the watcher interfaces to tell them that
2940	 * an interface is gone.
2941	 */
2942	list_for_each_entry(w, &smi_watchers, link)
2943		w->smi_gone(intf_num);
2944	mutex_unlock(&smi_watchers_mutex);
2945
2946	kref_put(&intf->refcount, intf_free);
2947	return 0;
2948}
2949EXPORT_SYMBOL(ipmi_unregister_smi);
2950
2951static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2952				   struct ipmi_smi_msg *msg)
2953{
2954	struct ipmi_ipmb_addr ipmb_addr;
2955	struct ipmi_recv_msg  *recv_msg;
2956
2957	/*
2958	 * This is 11, not 10, because the response must contain a
2959	 * completion code.
2960	 */
2961	if (msg->rsp_size < 11) {
2962		/* Message not big enough, just ignore it. */
2963		ipmi_inc_stat(intf, invalid_ipmb_responses);
2964		return 0;
2965	}
2966
2967	if (msg->rsp[2] != 0) {
2968		/* An error getting the response, just ignore it. */
2969		return 0;
2970	}
2971
2972	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2973	ipmb_addr.slave_addr = msg->rsp[6];
2974	ipmb_addr.channel = msg->rsp[3] & 0x0f;
2975	ipmb_addr.lun = msg->rsp[7] & 3;
2976
2977	/*
2978	 * It's a response from a remote entity.  Look up the sequence
2979	 * number and handle the response.
2980	 */
2981	if (intf_find_seq(intf,
2982			  msg->rsp[7] >> 2,
2983			  msg->rsp[3] & 0x0f,
2984			  msg->rsp[8],
2985			  (msg->rsp[4] >> 2) & (~1),
2986			  (struct ipmi_addr *) &(ipmb_addr),
2987			  &recv_msg)) {
2988		/*
2989		 * We were unable to find the sequence number,
2990		 * so just nuke the message.
2991		 */
2992		ipmi_inc_stat(intf, unhandled_ipmb_responses);
2993		return 0;
2994	}
2995
2996	memcpy(recv_msg->msg_data,
2997	       &(msg->rsp[9]),
2998	       msg->rsp_size - 9);
2999	/*
3000	 * The other fields matched, so no need to set them, except
3001	 * for netfn, which needs to be the response that was
3002	 * returned, not the request value.
3003	 */
3004	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3005	recv_msg->msg.data = recv_msg->msg_data;
3006	recv_msg->msg.data_len = msg->rsp_size - 10;
3007	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3008	ipmi_inc_stat(intf, handled_ipmb_responses);
3009	deliver_response(recv_msg);
3010
3011	return 0;
3012}
3013
3014static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3015				   struct ipmi_smi_msg *msg)
3016{
3017	struct cmd_rcvr          *rcvr;
3018	int                      rv = 0;
3019	unsigned char            netfn;
3020	unsigned char            cmd;
3021	unsigned char            chan;
3022	ipmi_user_t              user = NULL;
3023	struct ipmi_ipmb_addr    *ipmb_addr;
3024	struct ipmi_recv_msg     *recv_msg;
3025	struct ipmi_smi_handlers *handlers;
3026
3027	if (msg->rsp_size < 10) {
3028		/* Message not big enough, just ignore it. */
3029		ipmi_inc_stat(intf, invalid_commands);
3030		return 0;
3031	}
3032
3033	if (msg->rsp[2] != 0) {
3034		/* An error getting the response, just ignore it. */
3035		return 0;
3036	}
3037
3038	netfn = msg->rsp[4] >> 2;
3039	cmd = msg->rsp[8];
3040	chan = msg->rsp[3] & 0xf;
3041
3042	rcu_read_lock();
3043	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3044	if (rcvr) {
3045		user = rcvr->user;
3046		kref_get(&user->refcount);
3047	} else
3048		user = NULL;
3049	rcu_read_unlock();
3050
3051	if (user == NULL) {
3052		/* We didn't find a user, deliver an error response. */
3053		ipmi_inc_stat(intf, unhandled_commands);
3054
3055		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3056		msg->data[1] = IPMI_SEND_MSG_CMD;
3057		msg->data[2] = msg->rsp[3];
3058		msg->data[3] = msg->rsp[6];
3059		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3060		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3061		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3062		/* rqseq/lun */
3063		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3064		msg->data[8] = msg->rsp[8]; /* cmd */
3065		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3066		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3067		msg->data_size = 11;
3068
3069#ifdef DEBUG_MSGING
3070	{
3071		int m;
3072		printk("Invalid command:");
3073		for (m = 0; m < msg->data_size; m++)
3074			printk(" %2.2x", msg->data[m]);
3075		printk("\n");
3076	}
3077#endif
3078		rcu_read_lock();
3079		handlers = intf->handlers;
3080		if (handlers) {
3081			handlers->sender(intf->send_info, msg, 0);
3082			/*
3083			 * We used the message, so return the value
3084			 * that causes it to not be freed or
3085			 * queued.
3086			 */
3087			rv = -1;
3088		}
3089		rcu_read_unlock();
3090	} else {
3091		/* Deliver the message to the user. */
3092		ipmi_inc_stat(intf, handled_commands);
3093
3094		recv_msg = ipmi_alloc_recv_msg();
3095		if (!recv_msg) {
3096			/*
3097			 * We couldn't allocate memory for the
3098			 * message, so requeue it for handling
3099			 * later.
3100			 */
3101			rv = 1;
3102			kref_put(&user->refcount, free_user);
3103		} else {
3104			/* Extract the source address from the data. */
3105			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3106			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3107			ipmb_addr->slave_addr = msg->rsp[6];
3108			ipmb_addr->lun = msg->rsp[7] & 3;
3109			ipmb_addr->channel = msg->rsp[3] & 0xf;
3110
3111			/*
3112			 * Extract the rest of the message information
3113			 * from the IPMB header.
3114			 */
3115			recv_msg->user = user;
3116			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3117			recv_msg->msgid = msg->rsp[7] >> 2;
3118			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3119			recv_msg->msg.cmd = msg->rsp[8];
3120			recv_msg->msg.data = recv_msg->msg_data;
3121
3122			/*
3123			 * We chop off 10, not 9 bytes because the checksum
3124			 * at the end also needs to be removed.
3125			 */
3126			recv_msg->msg.data_len = msg->rsp_size - 10;
3127			memcpy(recv_msg->msg_data,
3128			       &(msg->rsp[9]),
3129			       msg->rsp_size - 10);
3130			deliver_response(recv_msg);
3131		}
3132	}
3133
3134	return rv;
3135}
3136
3137static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3138				  struct ipmi_smi_msg *msg)
3139{
3140	struct ipmi_lan_addr  lan_addr;
3141	struct ipmi_recv_msg  *recv_msg;
3142
3143
3144	/*
3145	 * This is 13, not 12, because the response must contain a
3146	 * completion code.
3147	 */
3148	if (msg->rsp_size < 13) {
3149		/* Message not big enough, just ignore it. */
3150		ipmi_inc_stat(intf, invalid_lan_responses);
3151		return 0;
3152	}
3153
3154	if (msg->rsp[2] != 0) {
3155		/* An error getting the response, just ignore it. */
3156		return 0;
3157	}
3158
3159	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3160	lan_addr.session_handle = msg->rsp[4];
3161	lan_addr.remote_SWID = msg->rsp[8];
3162	lan_addr.local_SWID = msg->rsp[5];
3163	lan_addr.channel = msg->rsp[3] & 0x0f;
3164	lan_addr.privilege = msg->rsp[3] >> 4;
3165	lan_addr.lun = msg->rsp[9] & 3;
3166
3167	/*
3168	 * It's a response from a remote entity.  Look up the sequence
3169	 * number and handle the response.
3170	 */
3171	if (intf_find_seq(intf,
3172			  msg->rsp[9] >> 2,
3173			  msg->rsp[3] & 0x0f,
3174			  msg->rsp[10],
3175			  (msg->rsp[6] >> 2) & (~1),
3176			  (struct ipmi_addr *) &(lan_addr),
3177			  &recv_msg)) {
3178		/*
3179		 * We were unable to find the sequence number,
3180		 * so just nuke the message.
3181		 */
3182		ipmi_inc_stat(intf, unhandled_lan_responses);
3183		return 0;
3184	}
3185
3186	memcpy(recv_msg->msg_data,
3187	       &(msg->rsp[11]),
3188	       msg->rsp_size - 11);
3189	/*
3190	 * The other fields matched, so no need to set them, except
3191	 * for netfn, which needs to be the response that was
3192	 * returned, not the request value.
3193	 */
3194	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3195	recv_msg->msg.data = recv_msg->msg_data;
3196	recv_msg->msg.data_len = msg->rsp_size - 12;
3197	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3198	ipmi_inc_stat(intf, handled_lan_responses);
3199	deliver_response(recv_msg);
3200
3201	return 0;
3202}
3203
3204static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3205				  struct ipmi_smi_msg *msg)
3206{
3207	struct cmd_rcvr          *rcvr;
3208	int                      rv = 0;
3209	unsigned char            netfn;
3210	unsigned char            cmd;
3211	unsigned char            chan;
3212	ipmi_user_t              user = NULL;
3213	struct ipmi_lan_addr     *lan_addr;
3214	struct ipmi_recv_msg     *recv_msg;
3215
3216	if (msg->rsp_size < 12) {
3217		/* Message not big enough, just ignore it. */
3218		ipmi_inc_stat(intf, invalid_commands);
3219		return 0;
3220	}
3221
3222	if (msg->rsp[2] != 0) {
3223		/* An error getting the response, just ignore it. */
3224		return 0;
3225	}
3226
3227	netfn = msg->rsp[6] >> 2;
3228	cmd = msg->rsp[10];
3229	chan = msg->rsp[3] & 0xf;
3230
3231	rcu_read_lock();
3232	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3233	if (rcvr) {
3234		user = rcvr->user;
3235		kref_get(&user->refcount);
3236	} else
3237		user = NULL;
3238	rcu_read_unlock();
3239
3240	if (user == NULL) {
3241		/* We didn't find a user, just give up. */
3242		ipmi_inc_stat(intf, unhandled_commands);
3243
3244		/*
3245		 * Don't do anything with these messages, just allow
3246		 * them to be freed.
3247		 */
3248		rv = 0;
3249	} else {
3250		/* Deliver the message to the user. */
3251		ipmi_inc_stat(intf, handled_commands);
3252
3253		recv_msg = ipmi_alloc_recv_msg();
3254		if (!recv_msg) {
3255			/*
3256			 * We couldn't allocate memory for the
3257			 * message, so requeue it for handling later.
3258			 */
3259			rv = 1;
3260			kref_put(&user->refcount, free_user);
3261		} else {
3262			/* Extract the source address from the data. */
3263			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3264			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3265			lan_addr->session_handle = msg->rsp[4];
3266			lan_addr->remote_SWID = msg->rsp[8];
3267			lan_addr->local_SWID = msg->rsp[5];
3268			lan_addr->lun = msg->rsp[9] & 3;
3269			lan_addr->channel = msg->rsp[3] & 0xf;
3270			lan_addr->privilege = msg->rsp[3] >> 4;
3271
3272			/*
3273			 * Extract the rest of the message information
3274			 * from the IPMB header.
3275			 */
3276			recv_msg->user = user;
3277			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3278			recv_msg->msgid = msg->rsp[9] >> 2;
3279			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3280			recv_msg->msg.cmd = msg->rsp[10];
3281			recv_msg->msg.data = recv_msg->msg_data;
3282
3283			/*
3284			 * We chop off 12, not 11 bytes because the checksum
3285			 * at the end also needs to be removed.
3286			 */
3287			recv_msg->msg.data_len = msg->rsp_size - 12;
3288			memcpy(recv_msg->msg_data,
3289			       &(msg->rsp[11]),
3290			       msg->rsp_size - 12);
3291			deliver_response(recv_msg);
3292		}
3293	}
3294
3295	return rv;
3296}
3297
3298/*
3299 * This routine will handle "Get Message" command responses with
3300 * channels that use an OEM Medium. The message format belongs to
3301 * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3302 * Chapter 22, sections 22.6 and 22.24 for more details.
3303 */
3304static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3305				  struct ipmi_smi_msg *msg)
3306{
3307	struct cmd_rcvr       *rcvr;
3308	int                   rv = 0;
3309	unsigned char         netfn;
3310	unsigned char         cmd;
3311	unsigned char         chan;
3312	ipmi_user_t           user = NULL;
3313	struct ipmi_system_interface_addr *smi_addr;
3314	struct ipmi_recv_msg  *recv_msg;
3315
3316	/*
3317	 * We expect the OEM SW to perform error checking
3318	 * so we just do some basic sanity checks
3319	 */
3320	if (msg->rsp_size < 4) {
3321		/* Message not big enough, just ignore it. */
3322		ipmi_inc_stat(intf, invalid_commands);
3323		return 0;
3324	}
3325
3326	if (msg->rsp[2] != 0) {
3327		/* An error getting the response, just ignore it. */
3328		return 0;
3329	}
3330
3331	/*
3332	 * This is an OEM Message so the OEM needs to know how
3333	 * handle the message. We do no interpretation.
3334	 */
3335	netfn = msg->rsp[0] >> 2;
3336	cmd = msg->rsp[1];
3337	chan = msg->rsp[3] & 0xf;
3338
3339	rcu_read_lock();
3340	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3341	if (rcvr) {
3342		user = rcvr->user;
3343		kref_get(&user->refcount);
3344	} else
3345		user = NULL;
3346	rcu_read_unlock();
3347
3348	if (user == NULL) {
3349		/* We didn't find a user, just give up. */
3350		ipmi_inc_stat(intf, unhandled_commands);
3351
3352		/*
3353		 * Don't do anything with these messages, just allow
3354		 * them to be freed.
3355		 */
3356
3357		rv = 0;
3358	} else {
3359		/* Deliver the message to the user. */
3360		ipmi_inc_stat(intf, handled_commands);
3361
3362		recv_msg = ipmi_alloc_recv_msg();
3363		if (!recv_msg) {
3364			/*
3365			 * We couldn't allocate memory for the
3366			 * message, so requeue it for handling
3367			 * later.
3368			 */
3369			rv = 1;
3370			kref_put(&user->refcount, free_user);
3371		} else {
3372			/*
3373			 * OEM Messages are expected to be delivered via
3374			 * the system interface to SMS software.  We might
3375			 * need to visit this again depending on OEM
3376			 * requirements
3377			 */
3378			smi_addr = ((struct ipmi_system_interface_addr *)
3379				    &(recv_msg->addr));
3380			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3381			smi_addr->channel = IPMI_BMC_CHANNEL;
3382			smi_addr->lun = msg->rsp[0] & 3;
3383
3384			recv_msg->user = user;
3385			recv_msg->user_msg_data = NULL;
3386			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3387			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3388			recv_msg->msg.cmd = msg->rsp[1];
3389			recv_msg->msg.data = recv_msg->msg_data;
3390
3391			/*
3392			 * The message starts at byte 4 which follows the
3393			 * the Channel Byte in the "GET MESSAGE" command
3394			 */
3395			recv_msg->msg.data_len = msg->rsp_size - 4;
3396			memcpy(recv_msg->msg_data,
3397			       &(msg->rsp[4]),
3398			       msg->rsp_size - 4);
3399			deliver_response(recv_msg);
3400		}
3401	}
3402
3403	return rv;
3404}
3405
3406static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3407				     struct ipmi_smi_msg  *msg)
3408{
3409	struct ipmi_system_interface_addr *smi_addr;
3410
3411	recv_msg->msgid = 0;
3412	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3413	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3414	smi_addr->channel = IPMI_BMC_CHANNEL;
3415	smi_addr->lun = msg->rsp[0] & 3;
3416	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3417	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3418	recv_msg->msg.cmd = msg->rsp[1];
3419	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3420	recv_msg->msg.data = recv_msg->msg_data;
3421	recv_msg->msg.data_len = msg->rsp_size - 3;
3422}
3423
3424static int handle_read_event_rsp(ipmi_smi_t          intf,
3425				 struct ipmi_smi_msg *msg)
3426{
3427	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3428	struct list_head     msgs;
3429	ipmi_user_t          user;
3430	int                  rv = 0;
3431	int                  deliver_count = 0;
3432	unsigned long        flags;
3433
3434	if (msg->rsp_size < 19) {
3435		/* Message is too small to be an IPMB event. */
3436		ipmi_inc_stat(intf, invalid_events);
3437		return 0;
3438	}
3439
3440	if (msg->rsp[2] != 0) {
3441		/* An error getting the event, just ignore it. */
3442		return 0;
3443	}
3444
3445	INIT_LIST_HEAD(&msgs);
3446
3447	spin_lock_irqsave(&intf->events_lock, flags);
3448
3449	ipmi_inc_stat(intf, events);
3450
3451	/*
3452	 * Allocate and fill in one message for every user that is
3453	 * getting events.
3454	 */
3455	rcu_read_lock();
3456	list_for_each_entry_rcu(user, &intf->users, link) {
3457		if (!user->gets_events)
3458			continue;
3459
3460		recv_msg = ipmi_alloc_recv_msg();
3461		if (!recv_msg) {
3462			rcu_read_unlock();
3463			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3464						 link) {
3465				list_del(&recv_msg->link);
3466				ipmi_free_recv_msg(recv_msg);
3467			}
3468			/*
3469			 * We couldn't allocate memory for the
3470			 * message, so requeue it for handling
3471			 * later.
3472			 */
3473			rv = 1;
3474			goto out;
3475		}
3476
3477		deliver_count++;
3478
3479		copy_event_into_recv_msg(recv_msg, msg);
3480		recv_msg->user = user;
3481		kref_get(&user->refcount);
3482		list_add_tail(&(recv_msg->link), &msgs);
3483	}
3484	rcu_read_unlock();
3485
3486	if (deliver_count) {
3487		/* Now deliver all the messages. */
3488		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3489			list_del(&recv_msg->link);
3490			deliver_response(recv_msg);
3491		}
3492	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3493		/*
3494		 * No one to receive the message, put it in queue if there's
3495		 * not already too many things in the queue.
3496		 */
3497		recv_msg = ipmi_alloc_recv_msg();
3498		if (!recv_msg) {
3499			/*
3500			 * We couldn't allocate memory for the
3501			 * message, so requeue it for handling
3502			 * later.
3503			 */
3504			rv = 1;
3505			goto out;
3506		}
3507
3508		copy_event_into_recv_msg(recv_msg, msg);
3509		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3510		intf->waiting_events_count++;
3511	} else if (!intf->event_msg_printed) {
3512		/*
3513		 * There's too many things in the queue, discard this
3514		 * message.
3515		 */
3516		printk(KERN_WARNING PFX "Event queue full, discarding"
3517		       " incoming events\n");
3518		intf->event_msg_printed = 1;
3519	}
3520
3521 out:
3522	spin_unlock_irqrestore(&(intf->events_lock), flags);
3523
3524	return rv;
3525}
3526
3527static int handle_bmc_rsp(ipmi_smi_t          intf,
3528			  struct ipmi_smi_msg *msg)
3529{
3530	struct ipmi_recv_msg *recv_msg;
3531	struct ipmi_user     *user;
3532
3533	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3534	if (recv_msg == NULL) {
3535		printk(KERN_WARNING
3536		       "IPMI message received with no owner. This\n"
3537		       "could be because of a malformed message, or\n"
3538		       "because of a hardware error.  Contact your\n"
3539		       "hardware vender for assistance\n");
3540		return 0;
3541	}
3542
3543	user = recv_msg->user;
3544	/* Make sure the user still exists. */
3545	if (user && !user->valid) {
3546		/* The user for the message went away, so give up. */
3547		ipmi_inc_stat(intf, unhandled_local_responses);
3548		ipmi_free_recv_msg(recv_msg);
3549	} else {
3550		struct ipmi_system_interface_addr *smi_addr;
3551
3552		ipmi_inc_stat(intf, handled_local_responses);
3553		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3554		recv_msg->msgid = msg->msgid;
3555		smi_addr = ((struct ipmi_system_interface_addr *)
3556			    &(recv_msg->addr));
3557		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3558		smi_addr->channel = IPMI_BMC_CHANNEL;
3559		smi_addr->lun = msg->rsp[0] & 3;
3560		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3561		recv_msg->msg.cmd = msg->rsp[1];
3562		memcpy(recv_msg->msg_data,
3563		       &(msg->rsp[2]),
3564		       msg->rsp_size - 2);
3565		recv_msg->msg.data = recv_msg->msg_data;
3566		recv_msg->msg.data_len = msg->rsp_size - 2;
3567		deliver_response(recv_msg);
3568	}
3569
3570	return 0;
3571}
3572
3573/*
3574 * Handle a new message.  Return 1 if the message should be requeued,
3575 * 0 if the message should be freed, or -1 if the message should not
3576 * be freed or requeued.
3577 */
3578static int handle_new_recv_msg(ipmi_smi_t          intf,
3579			       struct ipmi_smi_msg *msg)
3580{
3581	int requeue;
3582	int chan;
3583
3584#ifdef DEBUG_MSGING
3585	int m;
3586	printk("Recv:");
3587	for (m = 0; m < msg->rsp_size; m++)
3588		printk(" %2.2x", msg->rsp[m]);
3589	printk("\n");
3590#endif
3591	if (msg->rsp_size < 2) {
3592		/* Message is too small to be correct. */
3593		printk(KERN_WARNING PFX "BMC returned to small a message"
3594		       " for netfn %x cmd %x, got %d bytes\n",
3595		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3596
3597		/* Generate an error response for the message. */
3598		msg->rsp[0] = msg->data[0] | (1 << 2);
3599		msg->rsp[1] = msg->data[1];
3600		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3601		msg->rsp_size = 3;
3602	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3603		   || (msg->rsp[1] != msg->data[1])) {
3604		/*
3605		 * The NetFN and Command in the response is not even
3606		 * marginally correct.
3607		 */
3608		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3609		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3610		       (msg->data[0] >> 2) | 1, msg->data[1],
3611		       msg->rsp[0] >> 2, msg->rsp[1]);
3612
3613		/* Generate an error response for the message. */
3614		msg->rsp[0] = msg->data[0] | (1 << 2);
3615		msg->rsp[1] = msg->data[1];
3616		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3617		msg->rsp_size = 3;
3618	}
3619
3620	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3621	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3622	    && (msg->user_data != NULL)) {
3623		/*
3624		 * It's a response to a response we sent.  For this we
3625		 * deliver a send message response to the user.
3626		 */
3627		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3628
3629		requeue = 0;
3630		if (msg->rsp_size < 2)
3631			/* Message is too small to be correct. */
3632			goto out;
3633
3634		chan = msg->data[2] & 0x0f;
3635		if (chan >= IPMI_MAX_CHANNELS)
3636			/* Invalid channel number */
3637			goto out;
3638
3639		if (!recv_msg)
3640			goto out;
3641
3642		/* Make sure the user still exists. */
3643		if (!recv_msg->user || !recv_msg->user->valid)
3644			goto out;
3645
3646		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3647		recv_msg->msg.data = recv_msg->msg_data;
3648		recv_msg->msg.data_len = 1;
3649		recv_msg->msg_data[0] = msg->rsp[2];
3650		deliver_response(recv_msg);
3651	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3652		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3653		/* It's from the receive queue. */
3654		chan = msg->rsp[3] & 0xf;
3655		if (chan >= IPMI_MAX_CHANNELS) {
3656			/* Invalid channel number */
3657			requeue = 0;
3658			goto out;
3659		}
3660
3661		/*
3662		 * We need to make sure the channels have been initialized.
3663		 * The channel_handler routine will set the "curr_channel"
3664		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3665		 * channels for this interface have been initialized.
3666		 */
3667		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3668			requeue = 0; /* Throw the message away */
3669			goto out;
3670		}
3671
3672		switch (intf->channels[chan].medium) {
3673		case IPMI_CHANNEL_MEDIUM_IPMB:
3674			if (msg->rsp[4] & 0x04) {
3675				/*
3676				 * It's a response, so find the
3677				 * requesting message and send it up.
3678				 */
3679				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3680			} else {
3681				/*
3682				 * It's a command to the SMS from some other
3683				 * entity.  Handle that.
3684				 */
3685				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3686			}
3687			break;
3688
3689		case IPMI_CHANNEL_MEDIUM_8023LAN:
3690		case IPMI_CHANNEL_MEDIUM_ASYNC:
3691			if (msg->rsp[6] & 0x04) {
3692				/*
3693				 * It's a response, so find the
3694				 * requesting message and send it up.
3695				 */
3696				requeue = handle_lan_get_msg_rsp(intf, msg);
3697			} else {
3698				/*
3699				 * It's a command to the SMS from some other
3700				 * entity.  Handle that.
3701				 */
3702				requeue = handle_lan_get_msg_cmd(intf, msg);
3703			}
3704			break;
3705
3706		default:
3707			/* Check for OEM Channels.  Clients had better
3708			   register for these commands. */
3709			if ((intf->channels[chan].medium
3710			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3711			    && (intf->channels[chan].medium
3712				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3713				requeue = handle_oem_get_msg_cmd(intf, msg);
3714			} else {
3715				/*
3716				 * We don't handle the channel type, so just
3717				 * free the message.
3718				 */
3719				requeue = 0;
3720			}
3721		}
3722
3723	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3724		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3725		/* It's an asyncronous event. */
3726		requeue = handle_read_event_rsp(intf, msg);
3727	} else {
3728		/* It's a response from the local BMC. */
3729		requeue = handle_bmc_rsp(intf, msg);
3730	}
3731
3732 out:
3733	return requeue;
3734}
3735
3736/* Handle a new message from the lower layer. */
3737void ipmi_smi_msg_received(ipmi_smi_t          intf,
3738			   struct ipmi_smi_msg *msg)
3739{
3740	unsigned long flags = 0; /* keep us warning-free. */
3741	int           rv;
3742	int           run_to_completion;
3743
3744
3745	if ((msg->data_size >= 2)
3746	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3747	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3748	    && (msg->user_data == NULL)) {
3749		/*
3750		 * This is the local response to a command send, start
3751		 * the timer for these.  The user_data will not be
3752		 * NULL if this is a response send, and we will let
3753		 * response sends just go through.
3754		 */
3755
3756		/*
3757		 * Check for errors, if we get certain errors (ones
3758		 * that mean basically we can try again later), we
3759		 * ignore them and start the timer.  Otherwise we
3760		 * report the error immediately.
3761		 */
3762		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3763		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3764		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3765		    && (msg->rsp[2] != IPMI_BUS_ERR)
3766		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3767			int chan = msg->rsp[3] & 0xf;
3768
3769			/* Got an error sending the message, handle it. */
3770			if (chan >= IPMI_MAX_CHANNELS)
3771				; /* This shouldn't happen */
3772			else if ((intf->channels[chan].medium
3773				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3774				 || (intf->channels[chan].medium
3775				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3776				ipmi_inc_stat(intf, sent_lan_command_errs);
3777			else
3778				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3779			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3780		} else
3781			/* The message was sent, start the timer. */
3782			intf_start_seq_timer(intf, msg->msgid);
3783
3784		ipmi_free_smi_msg(msg);
3785		goto out;
3786	}
3787
3788	/*
3789	 * To preserve message order, if the list is not empty, we
3790	 * tack this message onto the end of the list.
3791	 */
3792	run_to_completion = intf->run_to_completion;
3793	if (!run_to_completion)
3794		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3795	if (!list_empty(&intf->waiting_msgs)) {
3796		list_add_tail(&msg->link, &intf->waiting_msgs);
3797		if (!run_to_completion)
3798			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3799		goto out;
3800	}
3801	if (!run_to_completion)
3802		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3803
3804	rv = handle_new_recv_msg(intf, msg);
3805	if (rv > 0) {
3806		/*
3807		 * Could not handle the message now, just add it to a
3808		 * list to handle later.
3809		 */
3810		run_to_completion = intf->run_to_completion;
3811		if (!run_to_completion)
3812			spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3813		list_add_tail(&msg->link, &intf->waiting_msgs);
3814		if (!run_to_completion)
3815			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3816	} else if (rv == 0) {
3817		ipmi_free_smi_msg(msg);
3818	}
3819
3820 out:
3821	return;
3822}
3823EXPORT_SYMBOL(ipmi_smi_msg_received);
3824
3825void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3826{
3827	ipmi_user_t user;
3828
3829	rcu_read_lock();
3830	list_for_each_entry_rcu(user, &intf->users, link) {
3831		if (!user->handler->ipmi_watchdog_pretimeout)
3832			continue;
3833
3834		user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3835	}
3836	rcu_read_unlock();
3837}
3838EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3839
3840static struct ipmi_smi_msg *
3841smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3842		  unsigned char seq, long seqid)
3843{
3844	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3845	if (!smi_msg)
3846		/*
3847		 * If we can't allocate the message, then just return, we
3848		 * get 4 retries, so this should be ok.
3849		 */
3850		return NULL;
3851
3852	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3853	smi_msg->data_size = recv_msg->msg.data_len;
3854	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3855
3856#ifdef DEBUG_MSGING
3857	{
3858		int m;
3859		printk("Resend: ");
3860		for (m = 0; m < smi_msg->data_size; m++)
3861			printk(" %2.2x", smi_msg->data[m]);
3862		printk("\n");
3863	}
3864#endif
3865	return smi_msg;
3866}
3867
3868static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3869			      struct list_head *timeouts, long timeout_period,
3870			      int slot, unsigned long *flags)
3871{
3872	struct ipmi_recv_msg     *msg;
3873	struct ipmi_smi_handlers *handlers;
3874
3875	if (intf->intf_num == -1)
3876		return;
3877
3878	if (!ent->inuse)
3879		return;
3880
3881	ent->timeout -= timeout_period;
3882	if (ent->timeout > 0)
3883		return;
3884
3885	if (ent->retries_left == 0) {
3886		/* The message has used all its retries. */
3887		ent->inuse = 0;
3888		msg = ent->recv_msg;
3889		list_add_tail(&msg->link, timeouts);
3890		if (ent->broadcast)
3891			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3892		else if (is_lan_addr(&ent->recv_msg->addr))
3893			ipmi_inc_stat(intf, timed_out_lan_commands);
3894		else
3895			ipmi_inc_stat(intf, timed_out_ipmb_commands);
3896	} else {
3897		struct ipmi_smi_msg *smi_msg;
3898		/* More retries, send again. */
3899
3900		/*
3901		 * Start with the max timer, set to normal timer after
3902		 * the message is sent.
3903		 */
3904		ent->timeout = MAX_MSG_TIMEOUT;
3905		ent->retries_left--;
3906		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3907					    ent->seqid);
3908		if (!smi_msg) {
3909			if (is_lan_addr(&ent->recv_msg->addr))
3910				ipmi_inc_stat(intf,
3911					      dropped_rexmit_lan_commands);
3912			else
3913				ipmi_inc_stat(intf,
3914					      dropped_rexmit_ipmb_commands);
3915			return;
3916		}
3917
3918		spin_unlock_irqrestore(&intf->seq_lock, *flags);
3919
3920		/*
3921		 * Send the new message.  We send with a zero
3922		 * priority.  It timed out, I doubt time is that
3923		 * critical now, and high priority messages are really
3924		 * only for messages to the local MC, which don't get
3925		 * resent.
3926		 */
3927		handlers = intf->handlers;
3928		if (handlers) {
3929			if (is_lan_addr(&ent->recv_msg->addr))
3930				ipmi_inc_stat(intf,
3931					      retransmitted_lan_commands);
3932			else
3933				ipmi_inc_stat(intf,
3934					      retransmitted_ipmb_commands);
3935
3936			intf->handlers->sender(intf->send_info,
3937					       smi_msg, 0);
3938		} else
3939			ipmi_free_smi_msg(smi_msg);
3940
3941		spin_lock_irqsave(&intf->seq_lock, *flags);
3942	}
3943}
3944
3945static void ipmi_timeout_handler(long timeout_period)
3946{
3947	ipmi_smi_t           intf;
3948	struct list_head     timeouts;
3949	struct ipmi_recv_msg *msg, *msg2;
3950	struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3951	unsigned long        flags;
3952	int                  i;
3953
3954	rcu_read_lock();
3955	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3956		/* See if any waiting messages need to be processed. */
3957		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3958		list_for_each_entry_safe(smi_msg, smi_msg2,
3959					 &intf->waiting_msgs, link) {
3960			if (!handle_new_recv_msg(intf, smi_msg)) {
3961				list_del(&smi_msg->link);
3962				ipmi_free_smi_msg(smi_msg);
3963			} else {
3964				/*
3965				 * To preserve message order, quit if we
3966				 * can't handle a message.
3967				 */
3968				break;
3969			}
3970		}
3971		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3972
3973		/*
3974		 * Go through the seq table and find any messages that
3975		 * have timed out, putting them in the timeouts
3976		 * list.
3977		 */
3978		INIT_LIST_HEAD(&timeouts);
3979		spin_lock_irqsave(&intf->seq_lock, flags);
3980		for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3981			check_msg_timeout(intf, &(intf->seq_table[i]),
3982					  &timeouts, timeout_period, i,
3983					  &flags);
3984		spin_unlock_irqrestore(&intf->seq_lock, flags);
3985
3986		list_for_each_entry_safe(msg, msg2, &timeouts, link)
3987			deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3988
3989		/*
3990		 * Maintenance mode handling.  Check the timeout
3991		 * optimistically before we claim the lock.  It may
3992		 * mean a timeout gets missed occasionally, but that
3993		 * only means the timeout gets extended by one period
3994		 * in that case.  No big deal, and it avoids the lock
3995		 * most of the time.
3996		 */
3997		if (intf->auto_maintenance_timeout > 0) {
3998			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3999			if (intf->auto_maintenance_timeout > 0) {
4000				intf->auto_maintenance_timeout
4001					-= timeout_period;
4002				if (!intf->maintenance_mode
4003				    && (intf->auto_maintenance_timeout <= 0)) {
4004					intf->maintenance_mode_enable = 0;
4005					maintenance_mode_update(intf);
4006				}
4007			}
4008			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4009					       flags);
4010		}
4011	}
4012	rcu_read_unlock();
4013}
4014
4015static void ipmi_request_event(void)
4016{
4017	ipmi_smi_t               intf;
4018	struct ipmi_smi_handlers *handlers;
4019
4020	rcu_read_lock();
4021	/*
4022	 * Called from the timer, no need to check if handlers is
4023	 * valid.
4024	 */
4025	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4026		/* No event requests when in maintenance mode. */
4027		if (intf->maintenance_mode_enable)
4028			continue;
4029
4030		handlers = intf->handlers;
4031		if (handlers)
4032			handlers->request_events(intf->send_info);
4033	}
4034	rcu_read_unlock();
4035}
4036
4037static struct timer_list ipmi_timer;
4038
4039/* Call every ~1000 ms. */
4040#define IPMI_TIMEOUT_TIME	1000
4041
4042/* How many jiffies does it take to get to the timeout time. */
4043#define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
4044
4045/*
4046 * Request events from the queue every second (this is the number of
4047 * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4048 * future, IPMI will add a way to know immediately if an event is in
4049 * the queue and this silliness can go away.
4050 */
4051#define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
4052
4053static atomic_t stop_operation;
4054static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4055
4056static void ipmi_timeout(unsigned long data)
4057{
4058	if (atomic_read(&stop_operation))
4059		return;
4060
4061	ticks_to_req_ev--;
4062	if (ticks_to_req_ev == 0) {
4063		ipmi_request_event();
4064		ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4065	}
4066
4067	ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4068
4069	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4070}
4071
4072
4073static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4074static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4075
4076static void free_smi_msg(struct ipmi_smi_msg *msg)
4077{
4078	atomic_dec(&smi_msg_inuse_count);
4079	kfree(msg);
4080}
4081
4082struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4083{
4084	struct ipmi_smi_msg *rv;
4085	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4086	if (rv) {
4087		rv->done = free_smi_msg;
4088		rv->user_data = NULL;
4089		atomic_inc(&smi_msg_inuse_count);
4090	}
4091	return rv;
4092}
4093EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4094
4095static void free_recv_msg(struct ipmi_recv_msg *msg)
4096{
4097	atomic_dec(&recv_msg_inuse_count);
4098	kfree(msg);
4099}
4100
4101static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4102{
4103	struct ipmi_recv_msg *rv;
4104
4105	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4106	if (rv) {
4107		rv->user = NULL;
4108		rv->done = free_recv_msg;
4109		atomic_inc(&recv_msg_inuse_count);
4110	}
4111	return rv;
4112}
4113
4114void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4115{
4116	if (msg->user)
4117		kref_put(&msg->user->refcount, free_user);
4118	msg->done(msg);
4119}
4120EXPORT_SYMBOL(ipmi_free_recv_msg);
4121
4122#ifdef CONFIG_IPMI_PANIC_EVENT
4123
4124static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4125{
4126}
4127
4128static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4129{
4130}
4131
4132#ifdef CONFIG_IPMI_PANIC_STRING
4133static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4134{
4135	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4136	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4137	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4138	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4139		/* A get event receiver command, save it. */
4140		intf->event_receiver = msg->msg.data[1];
4141		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4142	}
4143}
4144
4145static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4146{
4147	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4148	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4149	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4150	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4151		/*
4152		 * A get device id command, save if we are an event
4153		 * receiver or generator.
4154		 */
4155		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4156		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4157	}
4158}
4159#endif
4160
4161static void send_panic_events(char *str)
4162{
4163	struct kernel_ipmi_msg            msg;
4164	ipmi_smi_t                        intf;
4165	unsigned char                     data[16];
4166	struct ipmi_system_interface_addr *si;
4167	struct ipmi_addr                  addr;
4168	struct ipmi_smi_msg               smi_msg;
4169	struct ipmi_recv_msg              recv_msg;
4170
4171	si = (struct ipmi_system_interface_addr *) &addr;
4172	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4173	si->channel = IPMI_BMC_CHANNEL;
4174	si->lun = 0;
4175
4176	/* Fill in an event telling that we have failed. */
4177	msg.netfn = 0x04; /* Sensor or Event. */
4178	msg.cmd = 2; /* Platform event command. */
4179	msg.data = data;
4180	msg.data_len = 8;
4181	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4182	data[1] = 0x03; /* This is for IPMI 1.0. */
4183	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4184	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4185	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4186
4187	/*
4188	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4189	 * to make the panic events more useful.
4190	 */
4191	if (str) {
4192		data[3] = str[0];
4193		data[6] = str[1];
4194		data[7] = str[2];
4195	}
4196
4197	smi_msg.done = dummy_smi_done_handler;
4198	recv_msg.done = dummy_recv_done_handler;
4199
4200	/* For every registered interface, send the event. */
4201	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4202		if (!intf->handlers)
4203			/* Interface is not ready. */
4204			continue;
4205
4206		intf->run_to_completion = 1;
4207		/* Send the event announcing the panic. */
4208		intf->handlers->set_run_to_completion(intf->send_info, 1);
4209		i_ipmi_request(NULL,
4210			       intf,
4211			       &addr,
4212			       0,
4213			       &msg,
4214			       intf,
4215			       &smi_msg,
4216			       &recv_msg,
4217			       0,
4218			       intf->channels[0].address,
4219			       intf->channels[0].lun,
4220			       0, 1); /* Don't retry, and don't wait. */
4221	}
4222
4223#ifdef CONFIG_IPMI_PANIC_STRING
4224	/*
4225	 * On every interface, dump a bunch of OEM event holding the
4226	 * string.
4227	 */
4228	if (!str)
4229		return;
4230
4231	/* For every registered interface, send the event. */
4232	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4233		char                  *p = str;
4234		struct ipmi_ipmb_addr *ipmb;
4235		int                   j;
4236
4237		if (intf->intf_num == -1)
4238			/* Interface was not ready yet. */
4239			continue;
4240
4241		/*
4242		 * intf_num is used as an marker to tell if the
4243		 * interface is valid.  Thus we need a read barrier to
4244		 * make sure data fetched before checking intf_num
4245		 * won't be used.
4246		 */
4247		smp_rmb();
4248
4249		/*
4250		 * First job here is to figure out where to send the
4251		 * OEM events.  There's no way in IPMI to send OEM
4252		 * events using an event send command, so we have to
4253		 * find the SEL to put them in and stick them in
4254		 * there.
4255		 */
4256
4257		/* Get capabilities from the get device id. */
4258		intf->local_sel_device = 0;
4259		intf->local_event_generator = 0;
4260		intf->event_receiver = 0;
4261
4262		/* Request the device info from the local MC. */
4263		msg.netfn = IPMI_NETFN_APP_REQUEST;
4264		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4265		msg.data = NULL;
4266		msg.data_len = 0;
4267		intf->null_user_handler = device_id_fetcher;
4268		i_ipmi_request(NULL,
4269			       intf,
4270			       &addr,
4271			       0,
4272			       &msg,
4273			       intf,
4274			       &smi_msg,
4275			       &recv_msg,
4276			       0,
4277			       intf->channels[0].address,
4278			       intf->channels[0].lun,
4279			       0, 1); /* Don't retry, and don't wait. */
4280
4281		if (intf->local_event_generator) {
4282			/* Request the event receiver from the local MC. */
4283			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4284			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4285			msg.data = NULL;
4286			msg.data_len = 0;
4287			intf->null_user_handler = event_receiver_fetcher;
4288			i_ipmi_request(NULL,
4289				       intf,
4290				       &addr,
4291				       0,
4292				       &msg,
4293				       intf,
4294				       &smi_msg,
4295				       &recv_msg,
4296				       0,
4297				       intf->channels[0].address,
4298				       intf->channels[0].lun,
4299				       0, 1); /* no retry, and no wait. */
4300		}
4301		intf->null_user_handler = NULL;
4302
4303		/*
4304		 * Validate the event receiver.  The low bit must not
4305		 * be 1 (it must be a valid IPMB address), it cannot
4306		 * be zero, and it must not be my address.
4307		 */
4308		if (((intf->event_receiver & 1) == 0)
4309		    && (intf->event_receiver != 0)
4310		    && (intf->event_receiver != intf->channels[0].address)) {
4311			/*
4312			 * The event receiver is valid, send an IPMB
4313			 * message.
4314			 */
4315			ipmb = (struct ipmi_ipmb_addr *) &addr;
4316			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4317			ipmb->channel = 0;
4318			ipmb->lun = intf->event_receiver_lun;
4319			ipmb->slave_addr = intf->event_receiver;
4320		} else if (intf->local_sel_device) {
4321			/*
4322			 * The event receiver was not valid (or was
4323			 * me), but I am an SEL device, just dump it
4324			 * in my SEL.
4325			 */
4326			si = (struct ipmi_system_interface_addr *) &addr;
4327			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4328			si->channel = IPMI_BMC_CHANNEL;
4329			si->lun = 0;
4330		} else
4331			continue; /* No where to send the event. */
4332
4333		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4334		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4335		msg.data = data;
4336		msg.data_len = 16;
4337
4338		j = 0;
4339		while (*p) {
4340			int size = strlen(p);
4341
4342			if (size > 11)
4343				size = 11;
4344			data[0] = 0;
4345			data[1] = 0;
4346			data[2] = 0xf0; /* OEM event without timestamp. */
4347			data[3] = intf->channels[0].address;
4348			data[4] = j++; /* sequence # */
4349			/*
4350			 * Always give 11 bytes, so strncpy will fill
4351			 * it with zeroes for me.
4352			 */
4353			strncpy(data+5, p, 11);
4354			p += size;
4355
4356			i_ipmi_request(NULL,
4357				       intf,
4358				       &addr,
4359				       0,
4360				       &msg,
4361				       intf,
4362				       &smi_msg,
4363				       &recv_msg,
4364				       0,
4365				       intf->channels[0].address,
4366				       intf->channels[0].lun,
4367				       0, 1); /* no retry, and no wait. */
4368		}
4369	}
4370#endif /* CONFIG_IPMI_PANIC_STRING */
4371}
4372#endif /* CONFIG_IPMI_PANIC_EVENT */
4373
4374static int has_panicked;
4375
4376static int panic_event(struct notifier_block *this,
4377		       unsigned long         event,
4378		       void                  *ptr)
4379{
4380	ipmi_smi_t intf;
4381
4382	if (has_panicked)
4383		return NOTIFY_DONE;
4384	has_panicked = 1;
4385
4386	/* For every registered interface, set it to run to completion. */
4387	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4388		if (!intf->handlers)
4389			/* Interface is not ready. */
4390			continue;
4391
4392		intf->run_to_completion = 1;
4393		intf->handlers->set_run_to_completion(intf->send_info, 1);
4394	}
4395
4396#ifdef CONFIG_IPMI_PANIC_EVENT
4397	send_panic_events(ptr);
4398#endif
4399
4400	return NOTIFY_DONE;
4401}
4402
4403static struct notifier_block panic_block = {
4404	.notifier_call	= panic_event,
4405	.next		= NULL,
4406	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4407};
4408
4409static int ipmi_init_msghandler(void)
4410{
4411	int rv;
4412
4413	if (initialized)
4414		return 0;
4415
4416	rv = driver_register(&ipmidriver.driver);
4417	if (rv) {
4418		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4419		return rv;
4420	}
4421
4422	printk(KERN_INFO "ipmi message handler version "
4423	       IPMI_DRIVER_VERSION "\n");
4424
4425#ifdef CONFIG_PROC_FS
4426	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4427	if (!proc_ipmi_root) {
4428	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4429	    return -ENOMEM;
4430	}
4431
4432#endif /* CONFIG_PROC_FS */
4433
4434	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4435	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4436
4437	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4438
4439	initialized = 1;
4440
4441	return 0;
4442}
4443
4444static __init int ipmi_init_msghandler_mod(void)
4445{
4446	ipmi_init_msghandler();
4447	return 0;
4448}
4449
4450static __exit void cleanup_ipmi(void)
4451{
4452	int count;
4453
4454	if (!initialized)
4455		return;
4456
4457	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4458
4459	/*
4460	 * This can't be called if any interfaces exist, so no worry
4461	 * about shutting down the interfaces.
4462	 */
4463
4464	/*
4465	 * Tell the timer to stop, then wait for it to stop.  This
4466	 * avoids problems with race conditions removing the timer
4467	 * here.
4468	 */
4469	atomic_inc(&stop_operation);
4470	del_timer_sync(&ipmi_timer);
4471
4472#ifdef CONFIG_PROC_FS
4473	remove_proc_entry(proc_ipmi_root->name, NULL);
4474#endif /* CONFIG_PROC_FS */
4475
4476	driver_unregister(&ipmidriver.driver);
4477
4478	initialized = 0;
4479
4480	/* Check for buffer leaks. */
4481	count = atomic_read(&smi_msg_inuse_count);
4482	if (count != 0)
4483		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4484		       count);
4485	count = atomic_read(&recv_msg_inuse_count);
4486	if (count != 0)
4487		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4488		       count);
4489}
4490module_exit(cleanup_ipmi);
4491
4492module_init(ipmi_init_msghandler_mod);
4493MODULE_LICENSE("GPL");
4494MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4495MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4496		   " interface.");
4497MODULE_VERSION(IPMI_DRIVER_VERSION);
4498