1/* gf128mul.c - GF(2^128) multiplication functions
2 *
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5 *
6 * Based on Dr Brian Gladman's (GPL'd) work published at
7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8 * See the original copyright notice below.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 */
15
16/*
17 ---------------------------------------------------------------------------
18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
19
20 LICENSE TERMS
21
22 The free distribution and use of this software in both source and binary
23 form is allowed (with or without changes) provided that:
24
25   1. distributions of this source code include the above copyright
26      notice, this list of conditions and the following disclaimer;
27
28   2. distributions in binary form include the above copyright
29      notice, this list of conditions and the following disclaimer
30      in the documentation and/or other associated materials;
31
32   3. the copyright holder's name is not used to endorse products
33      built using this software without specific written permission.
34
35 ALTERNATIVELY, provided that this notice is retained in full, this product
36 may be distributed under the terms of the GNU General Public License (GPL),
37 in which case the provisions of the GPL apply INSTEAD OF those given above.
38
39 DISCLAIMER
40
41 This software is provided 'as is' with no explicit or implied warranties
42 in respect of its properties, including, but not limited to, correctness
43 and/or fitness for purpose.
44 ---------------------------------------------------------------------------
45 Issue 31/01/2006
46
47 This file provides fast multiplication in GF(128) as required by several
48 cryptographic authentication modes
49*/
50
51#include <crypto/gf128mul.h>
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/slab.h>
55
56#define gf128mul_dat(q) { \
57	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
89}
90
91/*	Given the value i in 0..255 as the byte overflow when a field element
92    in GHASH is multipled by x^8, this function will return the values that
93    are generated in the lo 16-bit word of the field value by applying the
94    modular polynomial. The values lo_byte and hi_byte are returned via the
95    macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into
96    memory as required by a suitable definition of this macro operating on
97    the table above
98*/
99
100#define xx(p, q)	0x##p##q
101
102#define xda_bbe(i) ( \
103	(i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \
104	(i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \
105	(i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \
106	(i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \
107)
108
109#define xda_lle(i) ( \
110	(i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \
111	(i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \
112	(i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \
113	(i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \
114)
115
116static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle);
117static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe);
118
119/* These functions multiply a field element by x, by x^4 and by x^8
120 * in the polynomial field representation. It uses 32-bit word operations
121 * to gain speed but compensates for machine endianess and hence works
122 * correctly on both styles of machine.
123 */
124
125static void gf128mul_x_lle(be128 *r, const be128 *x)
126{
127	u64 a = be64_to_cpu(x->a);
128	u64 b = be64_to_cpu(x->b);
129	u64 _tt = gf128mul_table_lle[(b << 7) & 0xff];
130
131	r->b = cpu_to_be64((b >> 1) | (a << 63));
132	r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
133}
134
135static void gf128mul_x_bbe(be128 *r, const be128 *x)
136{
137	u64 a = be64_to_cpu(x->a);
138	u64 b = be64_to_cpu(x->b);
139	u64 _tt = gf128mul_table_bbe[a >> 63];
140
141	r->a = cpu_to_be64((a << 1) | (b >> 63));
142	r->b = cpu_to_be64((b << 1) ^ _tt);
143}
144
145void gf128mul_x_ble(be128 *r, const be128 *x)
146{
147	u64 a = le64_to_cpu(x->a);
148	u64 b = le64_to_cpu(x->b);
149	u64 _tt = gf128mul_table_bbe[b >> 63];
150
151	r->a = cpu_to_le64((a << 1) ^ _tt);
152	r->b = cpu_to_le64((b << 1) | (a >> 63));
153}
154EXPORT_SYMBOL(gf128mul_x_ble);
155
156static void gf128mul_x8_lle(be128 *x)
157{
158	u64 a = be64_to_cpu(x->a);
159	u64 b = be64_to_cpu(x->b);
160	u64 _tt = gf128mul_table_lle[b & 0xff];
161
162	x->b = cpu_to_be64((b >> 8) | (a << 56));
163	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
164}
165
166static void gf128mul_x8_bbe(be128 *x)
167{
168	u64 a = be64_to_cpu(x->a);
169	u64 b = be64_to_cpu(x->b);
170	u64 _tt = gf128mul_table_bbe[a >> 56];
171
172	x->a = cpu_to_be64((a << 8) | (b >> 56));
173	x->b = cpu_to_be64((b << 8) ^ _tt);
174}
175
176void gf128mul_lle(be128 *r, const be128 *b)
177{
178	be128 p[8];
179	int i;
180
181	p[0] = *r;
182	for (i = 0; i < 7; ++i)
183		gf128mul_x_lle(&p[i + 1], &p[i]);
184
185	memset(r, 0, sizeof(r));
186	for (i = 0;;) {
187		u8 ch = ((u8 *)b)[15 - i];
188
189		if (ch & 0x80)
190			be128_xor(r, r, &p[0]);
191		if (ch & 0x40)
192			be128_xor(r, r, &p[1]);
193		if (ch & 0x20)
194			be128_xor(r, r, &p[2]);
195		if (ch & 0x10)
196			be128_xor(r, r, &p[3]);
197		if (ch & 0x08)
198			be128_xor(r, r, &p[4]);
199		if (ch & 0x04)
200			be128_xor(r, r, &p[5]);
201		if (ch & 0x02)
202			be128_xor(r, r, &p[6]);
203		if (ch & 0x01)
204			be128_xor(r, r, &p[7]);
205
206		if (++i >= 16)
207			break;
208
209		gf128mul_x8_lle(r);
210	}
211}
212EXPORT_SYMBOL(gf128mul_lle);
213
214void gf128mul_bbe(be128 *r, const be128 *b)
215{
216	be128 p[8];
217	int i;
218
219	p[0] = *r;
220	for (i = 0; i < 7; ++i)
221		gf128mul_x_bbe(&p[i + 1], &p[i]);
222
223	memset(r, 0, sizeof(r));
224	for (i = 0;;) {
225		u8 ch = ((u8 *)b)[i];
226
227		if (ch & 0x80)
228			be128_xor(r, r, &p[7]);
229		if (ch & 0x40)
230			be128_xor(r, r, &p[6]);
231		if (ch & 0x20)
232			be128_xor(r, r, &p[5]);
233		if (ch & 0x10)
234			be128_xor(r, r, &p[4]);
235		if (ch & 0x08)
236			be128_xor(r, r, &p[3]);
237		if (ch & 0x04)
238			be128_xor(r, r, &p[2]);
239		if (ch & 0x02)
240			be128_xor(r, r, &p[1]);
241		if (ch & 0x01)
242			be128_xor(r, r, &p[0]);
243
244		if (++i >= 16)
245			break;
246
247		gf128mul_x8_bbe(r);
248	}
249}
250EXPORT_SYMBOL(gf128mul_bbe);
251
252/*      This version uses 64k bytes of table space.
253    A 16 byte buffer has to be multiplied by a 16 byte key
254    value in GF(128).  If we consider a GF(128) value in
255    the buffer's lowest byte, we can construct a table of
256    the 256 16 byte values that result from the 256 values
257    of this byte.  This requires 4096 bytes. But we also
258    need tables for each of the 16 higher bytes in the
259    buffer as well, which makes 64 kbytes in total.
260*/
261/* additional explanation
262 * t[0][BYTE] contains g*BYTE
263 * t[1][BYTE] contains g*x^8*BYTE
264 *  ..
265 * t[15][BYTE] contains g*x^120*BYTE */
266struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g)
267{
268	struct gf128mul_64k *t;
269	int i, j, k;
270
271	t = kzalloc(sizeof(*t), GFP_KERNEL);
272	if (!t)
273		goto out;
274
275	for (i = 0; i < 16; i++) {
276		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
277		if (!t->t[i]) {
278			gf128mul_free_64k(t);
279			t = NULL;
280			goto out;
281		}
282	}
283
284	t->t[0]->t[128] = *g;
285	for (j = 64; j > 0; j >>= 1)
286		gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]);
287
288	for (i = 0;;) {
289		for (j = 2; j < 256; j += j)
290			for (k = 1; k < j; ++k)
291				be128_xor(&t->t[i]->t[j + k],
292					  &t->t[i]->t[j], &t->t[i]->t[k]);
293
294		if (++i >= 16)
295			break;
296
297		for (j = 128; j > 0; j >>= 1) {
298			t->t[i]->t[j] = t->t[i - 1]->t[j];
299			gf128mul_x8_lle(&t->t[i]->t[j]);
300		}
301	}
302
303out:
304	return t;
305}
306EXPORT_SYMBOL(gf128mul_init_64k_lle);
307
308struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
309{
310	struct gf128mul_64k *t;
311	int i, j, k;
312
313	t = kzalloc(sizeof(*t), GFP_KERNEL);
314	if (!t)
315		goto out;
316
317	for (i = 0; i < 16; i++) {
318		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
319		if (!t->t[i]) {
320			gf128mul_free_64k(t);
321			t = NULL;
322			goto out;
323		}
324	}
325
326	t->t[0]->t[1] = *g;
327	for (j = 1; j <= 64; j <<= 1)
328		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
329
330	for (i = 0;;) {
331		for (j = 2; j < 256; j += j)
332			for (k = 1; k < j; ++k)
333				be128_xor(&t->t[i]->t[j + k],
334					  &t->t[i]->t[j], &t->t[i]->t[k]);
335
336		if (++i >= 16)
337			break;
338
339		for (j = 128; j > 0; j >>= 1) {
340			t->t[i]->t[j] = t->t[i - 1]->t[j];
341			gf128mul_x8_bbe(&t->t[i]->t[j]);
342		}
343	}
344
345out:
346	return t;
347}
348EXPORT_SYMBOL(gf128mul_init_64k_bbe);
349
350void gf128mul_free_64k(struct gf128mul_64k *t)
351{
352	int i;
353
354	for (i = 0; i < 16; i++)
355		kfree(t->t[i]);
356	kfree(t);
357}
358EXPORT_SYMBOL(gf128mul_free_64k);
359
360void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t)
361{
362	u8 *ap = (u8 *)a;
363	be128 r[1];
364	int i;
365
366	*r = t->t[0]->t[ap[0]];
367	for (i = 1; i < 16; ++i)
368		be128_xor(r, r, &t->t[i]->t[ap[i]]);
369	*a = *r;
370}
371EXPORT_SYMBOL(gf128mul_64k_lle);
372
373void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t)
374{
375	u8 *ap = (u8 *)a;
376	be128 r[1];
377	int i;
378
379	*r = t->t[0]->t[ap[15]];
380	for (i = 1; i < 16; ++i)
381		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
382	*a = *r;
383}
384EXPORT_SYMBOL(gf128mul_64k_bbe);
385
386/*      This version uses 4k bytes of table space.
387    A 16 byte buffer has to be multiplied by a 16 byte key
388    value in GF(128).  If we consider a GF(128) value in a
389    single byte, we can construct a table of the 256 16 byte
390    values that result from the 256 values of this byte.
391    This requires 4096 bytes. If we take the highest byte in
392    the buffer and use this table to get the result, we then
393    have to multiply by x^120 to get the final value. For the
394    next highest byte the result has to be multiplied by x^112
395    and so on. But we can do this by accumulating the result
396    in an accumulator starting with the result for the top
397    byte.  We repeatedly multiply the accumulator value by
398    x^8 and then add in (i.e. xor) the 16 bytes of the next
399    lower byte in the buffer, stopping when we reach the
400    lowest byte. This requires a 4096 byte table.
401*/
402struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
403{
404	struct gf128mul_4k *t;
405	int j, k;
406
407	t = kzalloc(sizeof(*t), GFP_KERNEL);
408	if (!t)
409		goto out;
410
411	t->t[128] = *g;
412	for (j = 64; j > 0; j >>= 1)
413		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
414
415	for (j = 2; j < 256; j += j)
416		for (k = 1; k < j; ++k)
417			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
418
419out:
420	return t;
421}
422EXPORT_SYMBOL(gf128mul_init_4k_lle);
423
424struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
425{
426	struct gf128mul_4k *t;
427	int j, k;
428
429	t = kzalloc(sizeof(*t), GFP_KERNEL);
430	if (!t)
431		goto out;
432
433	t->t[1] = *g;
434	for (j = 1; j <= 64; j <<= 1)
435		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
436
437	for (j = 2; j < 256; j += j)
438		for (k = 1; k < j; ++k)
439			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
440
441out:
442	return t;
443}
444EXPORT_SYMBOL(gf128mul_init_4k_bbe);
445
446void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t)
447{
448	u8 *ap = (u8 *)a;
449	be128 r[1];
450	int i = 15;
451
452	*r = t->t[ap[15]];
453	while (i--) {
454		gf128mul_x8_lle(r);
455		be128_xor(r, r, &t->t[ap[i]]);
456	}
457	*a = *r;
458}
459EXPORT_SYMBOL(gf128mul_4k_lle);
460
461void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t)
462{
463	u8 *ap = (u8 *)a;
464	be128 r[1];
465	int i = 0;
466
467	*r = t->t[ap[0]];
468	while (++i < 16) {
469		gf128mul_x8_bbe(r);
470		be128_xor(r, r, &t->t[ap[i]]);
471	}
472	*a = *r;
473}
474EXPORT_SYMBOL(gf128mul_4k_bbe);
475
476MODULE_LICENSE("GPL");
477MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
478