• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/crypto/async_tx/
1/*
2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
3 * Copyright(c) 2009 Intel Corporation
4 *
5 * based on raid6recov.c:
6 *   Copyright 2002 H. Peter Anvin
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 51
20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 */
23#include <linux/kernel.h>
24#include <linux/interrupt.h>
25#include <linux/dma-mapping.h>
26#include <linux/raid/pq.h>
27#include <linux/async_tx.h>
28
29static struct dma_async_tx_descriptor *
30async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
31		  size_t len, struct async_submit_ctl *submit)
32{
33	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
34						      &dest, 1, srcs, 2, len);
35	struct dma_device *dma = chan ? chan->device : NULL;
36	const u8 *amul, *bmul;
37	u8 ax, bx;
38	u8 *a, *b, *c;
39
40	if (dma) {
41		dma_addr_t dma_dest[2];
42		dma_addr_t dma_src[2];
43		struct device *dev = dma->dev;
44		struct dma_async_tx_descriptor *tx;
45		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
46
47		if (submit->flags & ASYNC_TX_FENCE)
48			dma_flags |= DMA_PREP_FENCE;
49		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
50		dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
51		dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
52		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
53					     len, dma_flags);
54		if (tx) {
55			async_tx_submit(chan, tx, submit);
56			return tx;
57		}
58
59		/* could not get a descriptor, unmap and fall through to
60		 * the synchronous path
61		 */
62		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
63		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
64		dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
65	}
66
67	/* run the operation synchronously */
68	async_tx_quiesce(&submit->depend_tx);
69	amul = raid6_gfmul[coef[0]];
70	bmul = raid6_gfmul[coef[1]];
71	a = page_address(srcs[0]);
72	b = page_address(srcs[1]);
73	c = page_address(dest);
74
75	while (len--) {
76		ax    = amul[*a++];
77		bx    = bmul[*b++];
78		*c++ = ax ^ bx;
79	}
80
81	return NULL;
82}
83
84static struct dma_async_tx_descriptor *
85async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
86	   struct async_submit_ctl *submit)
87{
88	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
89						      &dest, 1, &src, 1, len);
90	struct dma_device *dma = chan ? chan->device : NULL;
91	const u8 *qmul; /* Q multiplier table */
92	u8 *d, *s;
93
94	if (dma) {
95		dma_addr_t dma_dest[2];
96		dma_addr_t dma_src[1];
97		struct device *dev = dma->dev;
98		struct dma_async_tx_descriptor *tx;
99		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
100
101		if (submit->flags & ASYNC_TX_FENCE)
102			dma_flags |= DMA_PREP_FENCE;
103		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
104		dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
106					     len, dma_flags);
107		if (tx) {
108			async_tx_submit(chan, tx, submit);
109			return tx;
110		}
111
112		/* could not get a descriptor, unmap and fall through to
113		 * the synchronous path
114		 */
115		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
116		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
117	}
118
119	/* no channel available, or failed to allocate a descriptor, so
120	 * perform the operation synchronously
121	 */
122	async_tx_quiesce(&submit->depend_tx);
123	qmul  = raid6_gfmul[coef];
124	d = page_address(dest);
125	s = page_address(src);
126
127	while (len--)
128		*d++ = qmul[*s++];
129
130	return NULL;
131}
132
133static struct dma_async_tx_descriptor *
134__2data_recov_4(int disks, size_t bytes, int faila, int failb,
135		struct page **blocks, struct async_submit_ctl *submit)
136{
137	struct dma_async_tx_descriptor *tx = NULL;
138	struct page *p, *q, *a, *b;
139	struct page *srcs[2];
140	unsigned char coef[2];
141	enum async_tx_flags flags = submit->flags;
142	dma_async_tx_callback cb_fn = submit->cb_fn;
143	void *cb_param = submit->cb_param;
144	void *scribble = submit->scribble;
145
146	p = blocks[disks-2];
147	q = blocks[disks-1];
148
149	a = blocks[faila];
150	b = blocks[failb];
151
152	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
153	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
154	srcs[0] = p;
155	srcs[1] = q;
156	coef[0] = raid6_gfexi[failb-faila];
157	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
158	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
159	tx = async_sum_product(b, srcs, coef, bytes, submit);
160
161	/* Dy = P+Pxy+Dx */
162	srcs[0] = p;
163	srcs[1] = b;
164	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
165			  cb_param, scribble);
166	tx = async_xor(a, srcs, 0, 2, bytes, submit);
167
168	return tx;
169
170}
171
172static struct dma_async_tx_descriptor *
173__2data_recov_5(int disks, size_t bytes, int faila, int failb,
174		struct page **blocks, struct async_submit_ctl *submit)
175{
176	struct dma_async_tx_descriptor *tx = NULL;
177	struct page *p, *q, *g, *dp, *dq;
178	struct page *srcs[2];
179	unsigned char coef[2];
180	enum async_tx_flags flags = submit->flags;
181	dma_async_tx_callback cb_fn = submit->cb_fn;
182	void *cb_param = submit->cb_param;
183	void *scribble = submit->scribble;
184	int good_srcs, good, i;
185
186	good_srcs = 0;
187	good = -1;
188	for (i = 0; i < disks-2; i++) {
189		if (blocks[i] == NULL)
190			continue;
191		if (i == faila || i == failb)
192			continue;
193		good = i;
194		good_srcs++;
195	}
196	BUG_ON(good_srcs > 1);
197
198	p = blocks[disks-2];
199	q = blocks[disks-1];
200	g = blocks[good];
201
202	/* Compute syndrome with zero for the missing data pages
203	 * Use the dead data pages as temporary storage for delta p and
204	 * delta q
205	 */
206	dp = blocks[faila];
207	dq = blocks[failb];
208
209	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
210	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
211	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
212	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
213
214	/* compute P + Pxy */
215	srcs[0] = dp;
216	srcs[1] = p;
217	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
218			  NULL, NULL, scribble);
219	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
220
221	/* compute Q + Qxy */
222	srcs[0] = dq;
223	srcs[1] = q;
224	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
225			  NULL, NULL, scribble);
226	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
227
228	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
229	srcs[0] = dp;
230	srcs[1] = dq;
231	coef[0] = raid6_gfexi[failb-faila];
232	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
233	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
234	tx = async_sum_product(dq, srcs, coef, bytes, submit);
235
236	/* Dy = P+Pxy+Dx */
237	srcs[0] = dp;
238	srcs[1] = dq;
239	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
240			  cb_param, scribble);
241	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
242
243	return tx;
244}
245
246static struct dma_async_tx_descriptor *
247__2data_recov_n(int disks, size_t bytes, int faila, int failb,
248	      struct page **blocks, struct async_submit_ctl *submit)
249{
250	struct dma_async_tx_descriptor *tx = NULL;
251	struct page *p, *q, *dp, *dq;
252	struct page *srcs[2];
253	unsigned char coef[2];
254	enum async_tx_flags flags = submit->flags;
255	dma_async_tx_callback cb_fn = submit->cb_fn;
256	void *cb_param = submit->cb_param;
257	void *scribble = submit->scribble;
258
259	p = blocks[disks-2];
260	q = blocks[disks-1];
261
262	/* Compute syndrome with zero for the missing data pages
263	 * Use the dead data pages as temporary storage for
264	 * delta p and delta q
265	 */
266	dp = blocks[faila];
267	blocks[faila] = NULL;
268	blocks[disks-2] = dp;
269	dq = blocks[failb];
270	blocks[failb] = NULL;
271	blocks[disks-1] = dq;
272
273	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
274	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
275
276	/* Restore pointer table */
277	blocks[faila]   = dp;
278	blocks[failb]   = dq;
279	blocks[disks-2] = p;
280	blocks[disks-1] = q;
281
282	/* compute P + Pxy */
283	srcs[0] = dp;
284	srcs[1] = p;
285	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
286			  NULL, NULL, scribble);
287	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
288
289	/* compute Q + Qxy */
290	srcs[0] = dq;
291	srcs[1] = q;
292	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
293			  NULL, NULL, scribble);
294	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
295
296	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
297	srcs[0] = dp;
298	srcs[1] = dq;
299	coef[0] = raid6_gfexi[failb-faila];
300	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
301	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
302	tx = async_sum_product(dq, srcs, coef, bytes, submit);
303
304	/* Dy = P+Pxy+Dx */
305	srcs[0] = dp;
306	srcs[1] = dq;
307	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
308			  cb_param, scribble);
309	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
310
311	return tx;
312}
313
314/**
315 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
316 * @disks: number of disks in the RAID-6 array
317 * @bytes: block size
318 * @faila: first failed drive index
319 * @failb: second failed drive index
320 * @blocks: array of source pointers where the last two entries are p and q
321 * @submit: submission/completion modifiers
322 */
323struct dma_async_tx_descriptor *
324async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
325			struct page **blocks, struct async_submit_ctl *submit)
326{
327	void *scribble = submit->scribble;
328	int non_zero_srcs, i;
329
330	BUG_ON(faila == failb);
331	if (failb < faila)
332		swap(faila, failb);
333
334	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
335
336	/* if a dma resource is not available or a scribble buffer is not
337	 * available punt to the synchronous path.  In the 'dma not
338	 * available' case be sure to use the scribble buffer to
339	 * preserve the content of 'blocks' as the caller intended.
340	 */
341	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
342		void **ptrs = scribble ? scribble : (void **) blocks;
343
344		async_tx_quiesce(&submit->depend_tx);
345		for (i = 0; i < disks; i++)
346			if (blocks[i] == NULL)
347				ptrs[i] = (void *) raid6_empty_zero_page;
348			else
349				ptrs[i] = page_address(blocks[i]);
350
351		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
352
353		async_tx_sync_epilog(submit);
354
355		return NULL;
356	}
357
358	non_zero_srcs = 0;
359	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
360		if (blocks[i])
361			non_zero_srcs++;
362	switch (non_zero_srcs) {
363	case 0:
364	case 1:
365		/* There must be at least 2 sources - the failed devices. */
366		BUG();
367
368	case 2:
369		/* dma devices do not uniformly understand a zero source pq
370		 * operation (in contrast to the synchronous case), so
371		 * explicitly handle the special case of a 4 disk array with
372		 * both data disks missing.
373		 */
374		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
375	case 3:
376		/* dma devices do not uniformly understand a single
377		 * source pq operation (in contrast to the synchronous
378		 * case), so explicitly handle the special case of a 5 disk
379		 * array with 2 of 3 data disks missing.
380		 */
381		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
382	default:
383		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
384	}
385}
386EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
387
388/**
389 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
390 * @disks: number of disks in the RAID-6 array
391 * @bytes: block size
392 * @faila: failed drive index
393 * @blocks: array of source pointers where the last two entries are p and q
394 * @submit: submission/completion modifiers
395 */
396struct dma_async_tx_descriptor *
397async_raid6_datap_recov(int disks, size_t bytes, int faila,
398			struct page **blocks, struct async_submit_ctl *submit)
399{
400	struct dma_async_tx_descriptor *tx = NULL;
401	struct page *p, *q, *dq;
402	u8 coef;
403	enum async_tx_flags flags = submit->flags;
404	dma_async_tx_callback cb_fn = submit->cb_fn;
405	void *cb_param = submit->cb_param;
406	void *scribble = submit->scribble;
407	int good_srcs, good, i;
408	struct page *srcs[2];
409
410	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
411
412	/* if a dma resource is not available or a scribble buffer is not
413	 * available punt to the synchronous path.  In the 'dma not
414	 * available' case be sure to use the scribble buffer to
415	 * preserve the content of 'blocks' as the caller intended.
416	 */
417	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
418		void **ptrs = scribble ? scribble : (void **) blocks;
419
420		async_tx_quiesce(&submit->depend_tx);
421		for (i = 0; i < disks; i++)
422			if (blocks[i] == NULL)
423				ptrs[i] = (void*)raid6_empty_zero_page;
424			else
425				ptrs[i] = page_address(blocks[i]);
426
427		raid6_datap_recov(disks, bytes, faila, ptrs);
428
429		async_tx_sync_epilog(submit);
430
431		return NULL;
432	}
433
434	good_srcs = 0;
435	good = -1;
436	for (i = 0; i < disks-2; i++) {
437		if (i == faila)
438			continue;
439		if (blocks[i]) {
440			good = i;
441			good_srcs++;
442			if (good_srcs > 1)
443				break;
444		}
445	}
446	BUG_ON(good_srcs == 0);
447
448	p = blocks[disks-2];
449	q = blocks[disks-1];
450
451	/* Compute syndrome with zero for the missing data page
452	 * Use the dead data page as temporary storage for delta q
453	 */
454	dq = blocks[faila];
455	blocks[faila] = NULL;
456	blocks[disks-1] = dq;
457
458	/* in the 4-disk case we only need to perform a single source
459	 * multiplication with the one good data block.
460	 */
461	if (good_srcs == 1) {
462		struct page *g = blocks[good];
463
464		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
465				  scribble);
466		tx = async_memcpy(p, g, 0, 0, bytes, submit);
467
468		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
469				  scribble);
470		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
471	} else {
472		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
473				  scribble);
474		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
475	}
476
477	/* Restore pointer table */
478	blocks[faila]   = dq;
479	blocks[disks-1] = q;
480
481	/* calculate g^{-faila} */
482	coef = raid6_gfinv[raid6_gfexp[faila]];
483
484	srcs[0] = dq;
485	srcs[1] = q;
486	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
487			  NULL, NULL, scribble);
488	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
489
490	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
491	tx = async_mult(dq, dq, coef, bytes, submit);
492
493	srcs[0] = p;
494	srcs[1] = dq;
495	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
496			  cb_param, scribble);
497	tx = async_xor(p, srcs, 0, 2, bytes, submit);
498
499	return tx;
500}
501EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
502
503MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
504MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
505MODULE_LICENSE("GPL");
506