1/*
2 * Functions related to setting various queue properties from drivers
3 */
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/init.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10#include <linux/gcd.h>
11#include <linux/lcm.h>
12#include <linux/jiffies.h>
13#include <linux/gfp.h>
14
15#include "blk.h"
16
17unsigned long blk_max_low_pfn;
18EXPORT_SYMBOL(blk_max_low_pfn);
19
20unsigned long blk_max_pfn;
21
22/**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q:		queue
25 * @pfn:	prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34{
35	q->prep_rq_fn = pfn;
36}
37EXPORT_SYMBOL(blk_queue_prep_rq);
38
39/**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q:		queue
42 * @ufn:	unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51{
52	q->unprep_rq_fn = ufn;
53}
54EXPORT_SYMBOL(blk_queue_unprep_rq);
55
56/**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q:		queue
59 * @mbfn:	merge_bvec_fn
60 *
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
71 */
72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73{
74	q->merge_bvec_fn = mbfn;
75}
76EXPORT_SYMBOL(blk_queue_merge_bvec);
77
78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79{
80	q->softirq_done_fn = fn;
81}
82EXPORT_SYMBOL(blk_queue_softirq_done);
83
84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85{
86	q->rq_timeout = timeout;
87}
88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91{
92	q->rq_timed_out_fn = fn;
93}
94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97{
98	q->lld_busy_fn = fn;
99}
100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102/**
103 * blk_set_default_limits - reset limits to default values
104 * @lim:  the queue_limits structure to reset
105 *
106 * Description:
107 *   Returns a queue_limit struct to its default state.  Can be used by
108 *   stacking drivers like DM that stage table swaps and reuse an
109 *   existing device queue.
110 */
111void blk_set_default_limits(struct queue_limits *lim)
112{
113	lim->max_segments = BLK_MAX_SEGMENTS;
114	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
115	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
116	lim->max_sectors = BLK_DEF_MAX_SECTORS;
117	lim->max_hw_sectors = INT_MAX;
118	lim->max_discard_sectors = 0;
119	lim->discard_granularity = 0;
120	lim->discard_alignment = 0;
121	lim->discard_misaligned = 0;
122	lim->discard_zeroes_data = -1;
123	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
124	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
125	lim->alignment_offset = 0;
126	lim->io_opt = 0;
127	lim->misaligned = 0;
128	lim->cluster = 1;
129}
130EXPORT_SYMBOL(blk_set_default_limits);
131
132/**
133 * blk_queue_make_request - define an alternate make_request function for a device
134 * @q:  the request queue for the device to be affected
135 * @mfn: the alternate make_request function
136 *
137 * Description:
138 *    The normal way for &struct bios to be passed to a device
139 *    driver is for them to be collected into requests on a request
140 *    queue, and then to allow the device driver to select requests
141 *    off that queue when it is ready.  This works well for many block
142 *    devices. However some block devices (typically virtual devices
143 *    such as md or lvm) do not benefit from the processing on the
144 *    request queue, and are served best by having the requests passed
145 *    directly to them.  This can be achieved by providing a function
146 *    to blk_queue_make_request().
147 *
148 * Caveat:
149 *    The driver that does this *must* be able to deal appropriately
150 *    with buffers in "highmemory". This can be accomplished by either calling
151 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
152 *    blk_queue_bounce() to create a buffer in normal memory.
153 **/
154void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
155{
156	/*
157	 * set defaults
158	 */
159	q->nr_requests = BLKDEV_MAX_RQ;
160
161	q->make_request_fn = mfn;
162	blk_queue_dma_alignment(q, 511);
163	blk_queue_congestion_threshold(q);
164	q->nr_batching = BLK_BATCH_REQ;
165
166	q->unplug_thresh = 4;		/* hmm */
167	q->unplug_delay = msecs_to_jiffies(3);	/* 3 milliseconds */
168	if (q->unplug_delay == 0)
169		q->unplug_delay = 1;
170
171	q->unplug_timer.function = blk_unplug_timeout;
172	q->unplug_timer.data = (unsigned long)q;
173
174	blk_set_default_limits(&q->limits);
175	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
176
177	/*
178	 * If the caller didn't supply a lock, fall back to our embedded
179	 * per-queue locks
180	 */
181	if (!q->queue_lock)
182		q->queue_lock = &q->__queue_lock;
183
184	/*
185	 * by default assume old behaviour and bounce for any highmem page
186	 */
187	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
188}
189EXPORT_SYMBOL(blk_queue_make_request);
190
191/**
192 * blk_queue_bounce_limit - set bounce buffer limit for queue
193 * @q: the request queue for the device
194 * @dma_mask: the maximum address the device can handle
195 *
196 * Description:
197 *    Different hardware can have different requirements as to what pages
198 *    it can do I/O directly to. A low level driver can call
199 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
200 *    buffers for doing I/O to pages residing above @dma_mask.
201 **/
202void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
203{
204	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
205	int dma = 0;
206
207	q->bounce_gfp = GFP_NOIO;
208#if BITS_PER_LONG == 64
209	/*
210	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
211	 * some IOMMUs can handle everything, but I don't know of a
212	 * way to test this here.
213	 */
214	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
215		dma = 1;
216	q->limits.bounce_pfn = max_low_pfn;
217#else
218	if (b_pfn < blk_max_low_pfn)
219		dma = 1;
220	q->limits.bounce_pfn = b_pfn;
221#endif
222	if (dma) {
223		init_emergency_isa_pool();
224		q->bounce_gfp = GFP_NOIO | GFP_DMA;
225		q->limits.bounce_pfn = b_pfn;
226	}
227}
228EXPORT_SYMBOL(blk_queue_bounce_limit);
229
230/**
231 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
232 * @q:  the request queue for the device
233 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
234 *
235 * Description:
236 *    Enables a low level driver to set a hard upper limit,
237 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
238 *    the device driver based upon the combined capabilities of I/O
239 *    controller and storage device.
240 *
241 *    max_sectors is a soft limit imposed by the block layer for
242 *    filesystem type requests.  This value can be overridden on a
243 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
244 *    The soft limit can not exceed max_hw_sectors.
245 **/
246void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
247{
248	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
249		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
250		printk(KERN_INFO "%s: set to minimum %d\n",
251		       __func__, max_hw_sectors);
252	}
253
254	q->limits.max_hw_sectors = max_hw_sectors;
255	q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
256				      BLK_DEF_MAX_SECTORS);
257}
258EXPORT_SYMBOL(blk_queue_max_hw_sectors);
259
260/**
261 * blk_queue_max_discard_sectors - set max sectors for a single discard
262 * @q:  the request queue for the device
263 * @max_discard_sectors: maximum number of sectors to discard
264 **/
265void blk_queue_max_discard_sectors(struct request_queue *q,
266		unsigned int max_discard_sectors)
267{
268	q->limits.max_discard_sectors = max_discard_sectors;
269}
270EXPORT_SYMBOL(blk_queue_max_discard_sectors);
271
272/**
273 * blk_queue_max_segments - set max hw segments for a request for this queue
274 * @q:  the request queue for the device
275 * @max_segments:  max number of segments
276 *
277 * Description:
278 *    Enables a low level driver to set an upper limit on the number of
279 *    hw data segments in a request.
280 **/
281void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
282{
283	if (!max_segments) {
284		max_segments = 1;
285		printk(KERN_INFO "%s: set to minimum %d\n",
286		       __func__, max_segments);
287	}
288
289	q->limits.max_segments = max_segments;
290}
291EXPORT_SYMBOL(blk_queue_max_segments);
292
293/**
294 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
295 * @q:  the request queue for the device
296 * @max_size:  max size of segment in bytes
297 *
298 * Description:
299 *    Enables a low level driver to set an upper limit on the size of a
300 *    coalesced segment
301 **/
302void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
303{
304	if (max_size < PAGE_CACHE_SIZE) {
305		max_size = PAGE_CACHE_SIZE;
306		printk(KERN_INFO "%s: set to minimum %d\n",
307		       __func__, max_size);
308	}
309
310	q->limits.max_segment_size = max_size;
311}
312EXPORT_SYMBOL(blk_queue_max_segment_size);
313
314/**
315 * blk_queue_logical_block_size - set logical block size for the queue
316 * @q:  the request queue for the device
317 * @size:  the logical block size, in bytes
318 *
319 * Description:
320 *   This should be set to the lowest possible block size that the
321 *   storage device can address.  The default of 512 covers most
322 *   hardware.
323 **/
324void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
325{
326	q->limits.logical_block_size = size;
327
328	if (q->limits.physical_block_size < size)
329		q->limits.physical_block_size = size;
330
331	if (q->limits.io_min < q->limits.physical_block_size)
332		q->limits.io_min = q->limits.physical_block_size;
333}
334EXPORT_SYMBOL(blk_queue_logical_block_size);
335
336/**
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q:  the request queue for the device
339 * @size:  the physical block size, in bytes
340 *
341 * Description:
342 *   This should be set to the lowest possible sector size that the
343 *   hardware can operate on without reverting to read-modify-write
344 *   operations.
345 */
346void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
347{
348	q->limits.physical_block_size = size;
349
350	if (q->limits.physical_block_size < q->limits.logical_block_size)
351		q->limits.physical_block_size = q->limits.logical_block_size;
352
353	if (q->limits.io_min < q->limits.physical_block_size)
354		q->limits.io_min = q->limits.physical_block_size;
355}
356EXPORT_SYMBOL(blk_queue_physical_block_size);
357
358/**
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q:	the request queue for the device
361 * @offset: alignment offset in bytes
362 *
363 * Description:
364 *   Some devices are naturally misaligned to compensate for things like
365 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
366 *   should call this function for devices whose first sector is not
367 *   naturally aligned.
368 */
369void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
370{
371	q->limits.alignment_offset =
372		offset & (q->limits.physical_block_size - 1);
373	q->limits.misaligned = 0;
374}
375EXPORT_SYMBOL(blk_queue_alignment_offset);
376
377/**
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min:  smallest I/O size in bytes
381 *
382 * Description:
383 *   Some devices have an internal block size bigger than the reported
384 *   hardware sector size.  This function can be used to signal the
385 *   smallest I/O the device can perform without incurring a performance
386 *   penalty.
387 */
388void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
389{
390	limits->io_min = min;
391
392	if (limits->io_min < limits->logical_block_size)
393		limits->io_min = limits->logical_block_size;
394
395	if (limits->io_min < limits->physical_block_size)
396		limits->io_min = limits->physical_block_size;
397}
398EXPORT_SYMBOL(blk_limits_io_min);
399
400/**
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q:	the request queue for the device
403 * @min:  smallest I/O size in bytes
404 *
405 * Description:
406 *   Storage devices may report a granularity or preferred minimum I/O
407 *   size which is the smallest request the device can perform without
408 *   incurring a performance penalty.  For disk drives this is often the
409 *   physical block size.  For RAID arrays it is often the stripe chunk
410 *   size.  A properly aligned multiple of minimum_io_size is the
411 *   preferred request size for workloads where a high number of I/O
412 *   operations is desired.
413 */
414void blk_queue_io_min(struct request_queue *q, unsigned int min)
415{
416	blk_limits_io_min(&q->limits, min);
417}
418EXPORT_SYMBOL(blk_queue_io_min);
419
420/**
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt:  smallest I/O size in bytes
424 *
425 * Description:
426 *   Storage devices may report an optimal I/O size, which is the
427 *   device's preferred unit for sustained I/O.  This is rarely reported
428 *   for disk drives.  For RAID arrays it is usually the stripe width or
429 *   the internal track size.  A properly aligned multiple of
430 *   optimal_io_size is the preferred request size for workloads where
431 *   sustained throughput is desired.
432 */
433void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
434{
435	limits->io_opt = opt;
436}
437EXPORT_SYMBOL(blk_limits_io_opt);
438
439/**
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q:	the request queue for the device
442 * @opt:  optimal request size in bytes
443 *
444 * Description:
445 *   Storage devices may report an optimal I/O size, which is the
446 *   device's preferred unit for sustained I/O.  This is rarely reported
447 *   for disk drives.  For RAID arrays it is usually the stripe width or
448 *   the internal track size.  A properly aligned multiple of
449 *   optimal_io_size is the preferred request size for workloads where
450 *   sustained throughput is desired.
451 */
452void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
453{
454	blk_limits_io_opt(&q->limits, opt);
455}
456EXPORT_SYMBOL(blk_queue_io_opt);
457
458/*
459 * Returns the minimum that is _not_ zero, unless both are zero.
460 */
461#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
462
463/**
464 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
465 * @t:	the stacking driver (top)
466 * @b:  the underlying device (bottom)
467 **/
468void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
469{
470	blk_stack_limits(&t->limits, &b->limits, 0);
471}
472EXPORT_SYMBOL(blk_queue_stack_limits);
473
474/**
475 * blk_stack_limits - adjust queue_limits for stacked devices
476 * @t:	the stacking driver limits (top device)
477 * @b:  the underlying queue limits (bottom, component device)
478 * @start:  first data sector within component device
479 *
480 * Description:
481 *    This function is used by stacking drivers like MD and DM to ensure
482 *    that all component devices have compatible block sizes and
483 *    alignments.  The stacking driver must provide a queue_limits
484 *    struct (top) and then iteratively call the stacking function for
485 *    all component (bottom) devices.  The stacking function will
486 *    attempt to combine the values and ensure proper alignment.
487 *
488 *    Returns 0 if the top and bottom queue_limits are compatible.  The
489 *    top device's block sizes and alignment offsets may be adjusted to
490 *    ensure alignment with the bottom device. If no compatible sizes
491 *    and alignments exist, -1 is returned and the resulting top
492 *    queue_limits will have the misaligned flag set to indicate that
493 *    the alignment_offset is undefined.
494 */
495int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
496		     sector_t start)
497{
498	unsigned int top, bottom, alignment, ret = 0;
499
500	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
501	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
502	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
503
504	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
505					    b->seg_boundary_mask);
506
507	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
508
509	t->max_segment_size = min_not_zero(t->max_segment_size,
510					   b->max_segment_size);
511
512	t->misaligned |= b->misaligned;
513
514	alignment = queue_limit_alignment_offset(b, start);
515
516	/* Bottom device has different alignment.  Check that it is
517	 * compatible with the current top alignment.
518	 */
519	if (t->alignment_offset != alignment) {
520
521		top = max(t->physical_block_size, t->io_min)
522			+ t->alignment_offset;
523		bottom = max(b->physical_block_size, b->io_min) + alignment;
524
525		/* Verify that top and bottom intervals line up */
526		if (max(top, bottom) & (min(top, bottom) - 1)) {
527			t->misaligned = 1;
528			ret = -1;
529		}
530	}
531
532	t->logical_block_size = max(t->logical_block_size,
533				    b->logical_block_size);
534
535	t->physical_block_size = max(t->physical_block_size,
536				     b->physical_block_size);
537
538	t->io_min = max(t->io_min, b->io_min);
539	t->io_opt = lcm(t->io_opt, b->io_opt);
540
541	t->cluster &= b->cluster;
542	t->discard_zeroes_data &= b->discard_zeroes_data;
543
544	/* Physical block size a multiple of the logical block size? */
545	if (t->physical_block_size & (t->logical_block_size - 1)) {
546		t->physical_block_size = t->logical_block_size;
547		t->misaligned = 1;
548		ret = -1;
549	}
550
551	/* Minimum I/O a multiple of the physical block size? */
552	if (t->io_min & (t->physical_block_size - 1)) {
553		t->io_min = t->physical_block_size;
554		t->misaligned = 1;
555		ret = -1;
556	}
557
558	/* Optimal I/O a multiple of the physical block size? */
559	if (t->io_opt & (t->physical_block_size - 1)) {
560		t->io_opt = 0;
561		t->misaligned = 1;
562		ret = -1;
563	}
564
565	/* Find lowest common alignment_offset */
566	t->alignment_offset = lcm(t->alignment_offset, alignment)
567		& (max(t->physical_block_size, t->io_min) - 1);
568
569	/* Verify that new alignment_offset is on a logical block boundary */
570	if (t->alignment_offset & (t->logical_block_size - 1)) {
571		t->misaligned = 1;
572		ret = -1;
573	}
574
575	/* Discard alignment and granularity */
576	if (b->discard_granularity) {
577		alignment = queue_limit_discard_alignment(b, start);
578
579		if (t->discard_granularity != 0 &&
580		    t->discard_alignment != alignment) {
581			top = t->discard_granularity + t->discard_alignment;
582			bottom = b->discard_granularity + alignment;
583
584			/* Verify that top and bottom intervals line up */
585			if (max(top, bottom) & (min(top, bottom) - 1))
586				t->discard_misaligned = 1;
587		}
588
589		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
590						      b->max_discard_sectors);
591		t->discard_granularity = max(t->discard_granularity,
592					     b->discard_granularity);
593		t->discard_alignment = lcm(t->discard_alignment, alignment) &
594			(t->discard_granularity - 1);
595	}
596
597	return ret;
598}
599EXPORT_SYMBOL(blk_stack_limits);
600
601/**
602 * bdev_stack_limits - adjust queue limits for stacked drivers
603 * @t:	the stacking driver limits (top device)
604 * @bdev:  the component block_device (bottom)
605 * @start:  first data sector within component device
606 *
607 * Description:
608 *    Merges queue limits for a top device and a block_device.  Returns
609 *    0 if alignment didn't change.  Returns -1 if adding the bottom
610 *    device caused misalignment.
611 */
612int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
613		      sector_t start)
614{
615	struct request_queue *bq = bdev_get_queue(bdev);
616
617	start += get_start_sect(bdev);
618
619	return blk_stack_limits(t, &bq->limits, start);
620}
621EXPORT_SYMBOL(bdev_stack_limits);
622
623/**
624 * disk_stack_limits - adjust queue limits for stacked drivers
625 * @disk:  MD/DM gendisk (top)
626 * @bdev:  the underlying block device (bottom)
627 * @offset:  offset to beginning of data within component device
628 *
629 * Description:
630 *    Merges the limits for a top level gendisk and a bottom level
631 *    block_device.
632 */
633void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
634		       sector_t offset)
635{
636	struct request_queue *t = disk->queue;
637
638	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
639		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
640
641		disk_name(disk, 0, top);
642		bdevname(bdev, bottom);
643
644		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
645		       top, bottom);
646	}
647}
648EXPORT_SYMBOL(disk_stack_limits);
649
650/**
651 * blk_queue_dma_pad - set pad mask
652 * @q:     the request queue for the device
653 * @mask:  pad mask
654 *
655 * Set dma pad mask.
656 *
657 * Appending pad buffer to a request modifies the last entry of a
658 * scatter list such that it includes the pad buffer.
659 **/
660void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
661{
662	q->dma_pad_mask = mask;
663}
664EXPORT_SYMBOL(blk_queue_dma_pad);
665
666/**
667 * blk_queue_update_dma_pad - update pad mask
668 * @q:     the request queue for the device
669 * @mask:  pad mask
670 *
671 * Update dma pad mask.
672 *
673 * Appending pad buffer to a request modifies the last entry of a
674 * scatter list such that it includes the pad buffer.
675 **/
676void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
677{
678	if (mask > q->dma_pad_mask)
679		q->dma_pad_mask = mask;
680}
681EXPORT_SYMBOL(blk_queue_update_dma_pad);
682
683/**
684 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
685 * @q:  the request queue for the device
686 * @dma_drain_needed: fn which returns non-zero if drain is necessary
687 * @buf:	physically contiguous buffer
688 * @size:	size of the buffer in bytes
689 *
690 * Some devices have excess DMA problems and can't simply discard (or
691 * zero fill) the unwanted piece of the transfer.  They have to have a
692 * real area of memory to transfer it into.  The use case for this is
693 * ATAPI devices in DMA mode.  If the packet command causes a transfer
694 * bigger than the transfer size some HBAs will lock up if there
695 * aren't DMA elements to contain the excess transfer.  What this API
696 * does is adjust the queue so that the buf is always appended
697 * silently to the scatterlist.
698 *
699 * Note: This routine adjusts max_hw_segments to make room for appending
700 * the drain buffer.  If you call blk_queue_max_segments() after calling
701 * this routine, you must set the limit to one fewer than your device
702 * can support otherwise there won't be room for the drain buffer.
703 */
704int blk_queue_dma_drain(struct request_queue *q,
705			       dma_drain_needed_fn *dma_drain_needed,
706			       void *buf, unsigned int size)
707{
708	if (queue_max_segments(q) < 2)
709		return -EINVAL;
710	/* make room for appending the drain */
711	blk_queue_max_segments(q, queue_max_segments(q) - 1);
712	q->dma_drain_needed = dma_drain_needed;
713	q->dma_drain_buffer = buf;
714	q->dma_drain_size = size;
715
716	return 0;
717}
718EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
719
720/**
721 * blk_queue_segment_boundary - set boundary rules for segment merging
722 * @q:  the request queue for the device
723 * @mask:  the memory boundary mask
724 **/
725void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
726{
727	if (mask < PAGE_CACHE_SIZE - 1) {
728		mask = PAGE_CACHE_SIZE - 1;
729		printk(KERN_INFO "%s: set to minimum %lx\n",
730		       __func__, mask);
731	}
732
733	q->limits.seg_boundary_mask = mask;
734}
735EXPORT_SYMBOL(blk_queue_segment_boundary);
736
737/**
738 * blk_queue_dma_alignment - set dma length and memory alignment
739 * @q:     the request queue for the device
740 * @mask:  alignment mask
741 *
742 * description:
743 *    set required memory and length alignment for direct dma transactions.
744 *    this is used when building direct io requests for the queue.
745 *
746 **/
747void blk_queue_dma_alignment(struct request_queue *q, int mask)
748{
749	q->dma_alignment = mask;
750}
751EXPORT_SYMBOL(blk_queue_dma_alignment);
752
753/**
754 * blk_queue_update_dma_alignment - update dma length and memory alignment
755 * @q:     the request queue for the device
756 * @mask:  alignment mask
757 *
758 * description:
759 *    update required memory and length alignment for direct dma transactions.
760 *    If the requested alignment is larger than the current alignment, then
761 *    the current queue alignment is updated to the new value, otherwise it
762 *    is left alone.  The design of this is to allow multiple objects
763 *    (driver, device, transport etc) to set their respective
764 *    alignments without having them interfere.
765 *
766 **/
767void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
768{
769	BUG_ON(mask > PAGE_SIZE);
770
771	if (mask > q->dma_alignment)
772		q->dma_alignment = mask;
773}
774EXPORT_SYMBOL(blk_queue_update_dma_alignment);
775
776static int __init blk_settings_init(void)
777{
778	blk_max_low_pfn = max_low_pfn - 1;
779	blk_max_pfn = max_pfn - 1;
780	return 0;
781}
782subsys_initcall(blk_settings_init);
783