• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/x86/xen/
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion.  In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable.  When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest.  This prevents uncontrolled
26 * guest updates to the pagetable.  Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow.  The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use.  This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/module.h>
47#include <linux/gfp.h>
48
49#include <asm/pgtable.h>
50#include <asm/tlbflush.h>
51#include <asm/fixmap.h>
52#include <asm/mmu_context.h>
53#include <asm/setup.h>
54#include <asm/paravirt.h>
55#include <asm/e820.h>
56#include <asm/linkage.h>
57#include <asm/page.h>
58
59#include <asm/xen/hypercall.h>
60#include <asm/xen/hypervisor.h>
61
62#include <xen/xen.h>
63#include <xen/page.h>
64#include <xen/interface/xen.h>
65#include <xen/interface/hvm/hvm_op.h>
66#include <xen/interface/version.h>
67#include <xen/interface/memory.h>
68#include <xen/hvc-console.h>
69
70#include "multicalls.h"
71#include "mmu.h"
72#include "debugfs.h"
73
74#define MMU_UPDATE_HISTO	30
75
76/*
77 * Protects atomic reservation decrease/increase against concurrent increases.
78 * Also protects non-atomic updates of current_pages and driver_pages, and
79 * balloon lists.
80 */
81DEFINE_SPINLOCK(xen_reservation_lock);
82
83#ifdef CONFIG_XEN_DEBUG_FS
84
85static struct {
86	u32 pgd_update;
87	u32 pgd_update_pinned;
88	u32 pgd_update_batched;
89
90	u32 pud_update;
91	u32 pud_update_pinned;
92	u32 pud_update_batched;
93
94	u32 pmd_update;
95	u32 pmd_update_pinned;
96	u32 pmd_update_batched;
97
98	u32 pte_update;
99	u32 pte_update_pinned;
100	u32 pte_update_batched;
101
102	u32 mmu_update;
103	u32 mmu_update_extended;
104	u32 mmu_update_histo[MMU_UPDATE_HISTO];
105
106	u32 prot_commit;
107	u32 prot_commit_batched;
108
109	u32 set_pte_at;
110	u32 set_pte_at_batched;
111	u32 set_pte_at_pinned;
112	u32 set_pte_at_current;
113	u32 set_pte_at_kernel;
114} mmu_stats;
115
116static u8 zero_stats;
117
118static inline void check_zero(void)
119{
120	if (unlikely(zero_stats)) {
121		memset(&mmu_stats, 0, sizeof(mmu_stats));
122		zero_stats = 0;
123	}
124}
125
126#define ADD_STATS(elem, val)			\
127	do { check_zero(); mmu_stats.elem += (val); } while(0)
128
129#else  /* !CONFIG_XEN_DEBUG_FS */
130
131#define ADD_STATS(elem, val)	do { (void)(val); } while(0)
132
133#endif /* CONFIG_XEN_DEBUG_FS */
134
135
136/*
137 * Identity map, in addition to plain kernel map.  This needs to be
138 * large enough to allocate page table pages to allocate the rest.
139 * Each page can map 2MB.
140 */
141static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
142
143#ifdef CONFIG_X86_64
144/* l3 pud for userspace vsyscall mapping */
145static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
146#endif /* CONFIG_X86_64 */
147
148/*
149 * Note about cr3 (pagetable base) values:
150 *
151 * xen_cr3 contains the current logical cr3 value; it contains the
152 * last set cr3.  This may not be the current effective cr3, because
153 * its update may be being lazily deferred.  However, a vcpu looking
154 * at its own cr3 can use this value knowing that it everything will
155 * be self-consistent.
156 *
157 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
158 * hypercall to set the vcpu cr3 is complete (so it may be a little
159 * out of date, but it will never be set early).  If one vcpu is
160 * looking at another vcpu's cr3 value, it should use this variable.
161 */
162DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
163DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
164
165
166/*
167 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
168 * redzone above it, so round it up to a PGD boundary.
169 */
170#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
171
172
173#define P2M_ENTRIES_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long))
174#define TOP_ENTRIES		(MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
175
176/* Placeholder for holes in the address space */
177static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
178		{ [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
179
180 /* Array of pointers to pages containing p2m entries */
181static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
182		{ [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
183
184/* Arrays of p2m arrays expressed in mfns used for save/restore */
185static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
186
187static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
188	__page_aligned_bss;
189
190static inline unsigned p2m_top_index(unsigned long pfn)
191{
192	BUG_ON(pfn >= MAX_DOMAIN_PAGES);
193	return pfn / P2M_ENTRIES_PER_PAGE;
194}
195
196static inline unsigned p2m_index(unsigned long pfn)
197{
198	return pfn % P2M_ENTRIES_PER_PAGE;
199}
200
201/* Build the parallel p2m_top_mfn structures */
202void xen_build_mfn_list_list(void)
203{
204	unsigned pfn, idx;
205
206	for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
207		unsigned topidx = p2m_top_index(pfn);
208
209		p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
210	}
211
212	for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
213		unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
214		p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
215	}
216}
217
218void xen_setup_mfn_list_list(void)
219{
220	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
221
222	HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
223		virt_to_mfn(p2m_top_mfn_list);
224	HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
225}
226
227/* Set up p2m_top to point to the domain-builder provided p2m pages */
228void __init xen_build_dynamic_phys_to_machine(void)
229{
230	unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
231	unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
232	unsigned pfn;
233
234	for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
235		unsigned topidx = p2m_top_index(pfn);
236
237		p2m_top[topidx] = &mfn_list[pfn];
238	}
239
240	xen_build_mfn_list_list();
241}
242
243unsigned long get_phys_to_machine(unsigned long pfn)
244{
245	unsigned topidx, idx;
246
247	if (unlikely(pfn >= MAX_DOMAIN_PAGES))
248		return INVALID_P2M_ENTRY;
249
250	topidx = p2m_top_index(pfn);
251	idx = p2m_index(pfn);
252	return p2m_top[topidx][idx];
253}
254EXPORT_SYMBOL_GPL(get_phys_to_machine);
255
256/* install a  new p2m_top page */
257bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
258{
259	unsigned topidx = p2m_top_index(pfn);
260	unsigned long **pfnp, *mfnp;
261	unsigned i;
262
263	pfnp = &p2m_top[topidx];
264	mfnp = &p2m_top_mfn[topidx];
265
266	for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
267		p[i] = INVALID_P2M_ENTRY;
268
269	if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
270		*mfnp = virt_to_mfn(p);
271		return true;
272	}
273
274	return false;
275}
276
277static void alloc_p2m(unsigned long pfn)
278{
279	unsigned long *p;
280
281	p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
282	BUG_ON(p == NULL);
283
284	if (!install_p2mtop_page(pfn, p))
285		free_page((unsigned long)p);
286}
287
288/* Try to install p2m mapping; fail if intermediate bits missing */
289bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
290{
291	unsigned topidx, idx;
292
293	if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
294		BUG_ON(mfn != INVALID_P2M_ENTRY);
295		return true;
296	}
297
298	topidx = p2m_top_index(pfn);
299	if (p2m_top[topidx] == p2m_missing) {
300		if (mfn == INVALID_P2M_ENTRY)
301			return true;
302		return false;
303	}
304
305	idx = p2m_index(pfn);
306	p2m_top[topidx][idx] = mfn;
307
308	return true;
309}
310
311void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
312{
313	if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
314		BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
315		return;
316	}
317
318	if (unlikely(!__set_phys_to_machine(pfn, mfn)))  {
319		alloc_p2m(pfn);
320
321		if (!__set_phys_to_machine(pfn, mfn))
322			BUG();
323	}
324}
325
326unsigned long arbitrary_virt_to_mfn(void *vaddr)
327{
328	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
329
330	return PFN_DOWN(maddr.maddr);
331}
332
333xmaddr_t arbitrary_virt_to_machine(void *vaddr)
334{
335	unsigned long address = (unsigned long)vaddr;
336	unsigned int level;
337	pte_t *pte;
338	unsigned offset;
339
340	/*
341	 * if the PFN is in the linear mapped vaddr range, we can just use
342	 * the (quick) virt_to_machine() p2m lookup
343	 */
344	if (virt_addr_valid(vaddr))
345		return virt_to_machine(vaddr);
346
347	/* otherwise we have to do a (slower) full page-table walk */
348
349	pte = lookup_address(address, &level);
350	BUG_ON(pte == NULL);
351	offset = address & ~PAGE_MASK;
352	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
353}
354
355void make_lowmem_page_readonly(void *vaddr)
356{
357	pte_t *pte, ptev;
358	unsigned long address = (unsigned long)vaddr;
359	unsigned int level;
360
361	pte = lookup_address(address, &level);
362	BUG_ON(pte == NULL);
363
364	ptev = pte_wrprotect(*pte);
365
366	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
367		BUG();
368}
369
370void make_lowmem_page_readwrite(void *vaddr)
371{
372	pte_t *pte, ptev;
373	unsigned long address = (unsigned long)vaddr;
374	unsigned int level;
375
376	pte = lookup_address(address, &level);
377	BUG_ON(pte == NULL);
378
379	ptev = pte_mkwrite(*pte);
380
381	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
382		BUG();
383}
384
385
386static bool xen_page_pinned(void *ptr)
387{
388	struct page *page = virt_to_page(ptr);
389
390	return PagePinned(page);
391}
392
393static bool xen_iomap_pte(pte_t pte)
394{
395	return pte_flags(pte) & _PAGE_IOMAP;
396}
397
398static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
399{
400	struct multicall_space mcs;
401	struct mmu_update *u;
402
403	mcs = xen_mc_entry(sizeof(*u));
404	u = mcs.args;
405
406	/* ptep might be kmapped when using 32-bit HIGHPTE */
407	u->ptr = arbitrary_virt_to_machine(ptep).maddr;
408	u->val = pte_val_ma(pteval);
409
410	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_IO);
411
412	xen_mc_issue(PARAVIRT_LAZY_MMU);
413}
414
415static void xen_extend_mmu_update(const struct mmu_update *update)
416{
417	struct multicall_space mcs;
418	struct mmu_update *u;
419
420	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
421
422	if (mcs.mc != NULL) {
423		ADD_STATS(mmu_update_extended, 1);
424		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
425
426		mcs.mc->args[1]++;
427
428		if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
429			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
430		else
431			ADD_STATS(mmu_update_histo[0], 1);
432	} else {
433		ADD_STATS(mmu_update, 1);
434		mcs = __xen_mc_entry(sizeof(*u));
435		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
436		ADD_STATS(mmu_update_histo[1], 1);
437	}
438
439	u = mcs.args;
440	*u = *update;
441}
442
443void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
444{
445	struct mmu_update u;
446
447	preempt_disable();
448
449	xen_mc_batch();
450
451	/* ptr may be ioremapped for 64-bit pagetable setup */
452	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
453	u.val = pmd_val_ma(val);
454	xen_extend_mmu_update(&u);
455
456	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
457
458	xen_mc_issue(PARAVIRT_LAZY_MMU);
459
460	preempt_enable();
461}
462
463void xen_set_pmd(pmd_t *ptr, pmd_t val)
464{
465	ADD_STATS(pmd_update, 1);
466
467	/* If page is not pinned, we can just update the entry
468	   directly */
469	if (!xen_page_pinned(ptr)) {
470		*ptr = val;
471		return;
472	}
473
474	ADD_STATS(pmd_update_pinned, 1);
475
476	xen_set_pmd_hyper(ptr, val);
477}
478
479/*
480 * Associate a virtual page frame with a given physical page frame
481 * and protection flags for that frame.
482 */
483void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
484{
485	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
486}
487
488void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
489		    pte_t *ptep, pte_t pteval)
490{
491	if (xen_iomap_pte(pteval)) {
492		xen_set_iomap_pte(ptep, pteval);
493		goto out;
494	}
495
496	ADD_STATS(set_pte_at, 1);
497//	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
498	ADD_STATS(set_pte_at_current, mm == current->mm);
499	ADD_STATS(set_pte_at_kernel, mm == &init_mm);
500
501	if (mm == current->mm || mm == &init_mm) {
502		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
503			struct multicall_space mcs;
504			mcs = xen_mc_entry(0);
505
506			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
507			ADD_STATS(set_pte_at_batched, 1);
508			xen_mc_issue(PARAVIRT_LAZY_MMU);
509			goto out;
510		} else
511			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
512				goto out;
513	}
514	xen_set_pte(ptep, pteval);
515
516out:	return;
517}
518
519pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
520				 unsigned long addr, pte_t *ptep)
521{
522	/* Just return the pte as-is.  We preserve the bits on commit */
523	return *ptep;
524}
525
526void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
527				 pte_t *ptep, pte_t pte)
528{
529	struct mmu_update u;
530
531	xen_mc_batch();
532
533	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
534	u.val = pte_val_ma(pte);
535	xen_extend_mmu_update(&u);
536
537	ADD_STATS(prot_commit, 1);
538	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
539
540	xen_mc_issue(PARAVIRT_LAZY_MMU);
541}
542
543/* Assume pteval_t is equivalent to all the other *val_t types. */
544static pteval_t pte_mfn_to_pfn(pteval_t val)
545{
546	if (val & _PAGE_PRESENT) {
547		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
548		pteval_t flags = val & PTE_FLAGS_MASK;
549		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
550	}
551
552	return val;
553}
554
555static pteval_t pte_pfn_to_mfn(pteval_t val)
556{
557	if (val & _PAGE_PRESENT) {
558		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
559		pteval_t flags = val & PTE_FLAGS_MASK;
560		val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
561	}
562
563	return val;
564}
565
566static pteval_t iomap_pte(pteval_t val)
567{
568	if (val & _PAGE_PRESENT) {
569		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
570		pteval_t flags = val & PTE_FLAGS_MASK;
571
572		/* We assume the pte frame number is a MFN, so
573		   just use it as-is. */
574		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
575	}
576
577	return val;
578}
579
580pteval_t xen_pte_val(pte_t pte)
581{
582	if (xen_initial_domain() && (pte.pte & _PAGE_IOMAP))
583		return pte.pte;
584
585	return pte_mfn_to_pfn(pte.pte);
586}
587PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
588
589pgdval_t xen_pgd_val(pgd_t pgd)
590{
591	return pte_mfn_to_pfn(pgd.pgd);
592}
593PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
594
595pte_t xen_make_pte(pteval_t pte)
596{
597	phys_addr_t addr = (pte & PTE_PFN_MASK);
598
599	/*
600	 * Unprivileged domains are allowed to do IOMAPpings for
601	 * PCI passthrough, but not map ISA space.  The ISA
602	 * mappings are just dummy local mappings to keep other
603	 * parts of the kernel happy.
604	 */
605	if (unlikely(pte & _PAGE_IOMAP) &&
606	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
607		pte = iomap_pte(pte);
608	} else {
609		pte &= ~_PAGE_IOMAP;
610		pte = pte_pfn_to_mfn(pte);
611	}
612
613	return native_make_pte(pte);
614}
615PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
616
617pgd_t xen_make_pgd(pgdval_t pgd)
618{
619	pgd = pte_pfn_to_mfn(pgd);
620	return native_make_pgd(pgd);
621}
622PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
623
624pmdval_t xen_pmd_val(pmd_t pmd)
625{
626	return pte_mfn_to_pfn(pmd.pmd);
627}
628PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
629
630void xen_set_pud_hyper(pud_t *ptr, pud_t val)
631{
632	struct mmu_update u;
633
634	preempt_disable();
635
636	xen_mc_batch();
637
638	/* ptr may be ioremapped for 64-bit pagetable setup */
639	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
640	u.val = pud_val_ma(val);
641	xen_extend_mmu_update(&u);
642
643	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
644
645	xen_mc_issue(PARAVIRT_LAZY_MMU);
646
647	preempt_enable();
648}
649
650void xen_set_pud(pud_t *ptr, pud_t val)
651{
652	ADD_STATS(pud_update, 1);
653
654	/* If page is not pinned, we can just update the entry
655	   directly */
656	if (!xen_page_pinned(ptr)) {
657		*ptr = val;
658		return;
659	}
660
661	ADD_STATS(pud_update_pinned, 1);
662
663	xen_set_pud_hyper(ptr, val);
664}
665
666void xen_set_pte(pte_t *ptep, pte_t pte)
667{
668	if (xen_iomap_pte(pte)) {
669		xen_set_iomap_pte(ptep, pte);
670		return;
671	}
672
673	ADD_STATS(pte_update, 1);
674//	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
675	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
676
677#ifdef CONFIG_X86_PAE
678	ptep->pte_high = pte.pte_high;
679	smp_wmb();
680	ptep->pte_low = pte.pte_low;
681#else
682	*ptep = pte;
683#endif
684}
685
686#ifdef CONFIG_X86_PAE
687void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
688{
689	if (xen_iomap_pte(pte)) {
690		xen_set_iomap_pte(ptep, pte);
691		return;
692	}
693
694	set_64bit((u64 *)ptep, native_pte_val(pte));
695}
696
697void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
698{
699	ptep->pte_low = 0;
700	smp_wmb();		/* make sure low gets written first */
701	ptep->pte_high = 0;
702}
703
704void xen_pmd_clear(pmd_t *pmdp)
705{
706	set_pmd(pmdp, __pmd(0));
707}
708#endif	/* CONFIG_X86_PAE */
709
710pmd_t xen_make_pmd(pmdval_t pmd)
711{
712	pmd = pte_pfn_to_mfn(pmd);
713	return native_make_pmd(pmd);
714}
715PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
716
717#if PAGETABLE_LEVELS == 4
718pudval_t xen_pud_val(pud_t pud)
719{
720	return pte_mfn_to_pfn(pud.pud);
721}
722PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
723
724pud_t xen_make_pud(pudval_t pud)
725{
726	pud = pte_pfn_to_mfn(pud);
727
728	return native_make_pud(pud);
729}
730PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
731
732pgd_t *xen_get_user_pgd(pgd_t *pgd)
733{
734	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
735	unsigned offset = pgd - pgd_page;
736	pgd_t *user_ptr = NULL;
737
738	if (offset < pgd_index(USER_LIMIT)) {
739		struct page *page = virt_to_page(pgd_page);
740		user_ptr = (pgd_t *)page->private;
741		if (user_ptr)
742			user_ptr += offset;
743	}
744
745	return user_ptr;
746}
747
748static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
749{
750	struct mmu_update u;
751
752	u.ptr = virt_to_machine(ptr).maddr;
753	u.val = pgd_val_ma(val);
754	xen_extend_mmu_update(&u);
755}
756
757/*
758 * Raw hypercall-based set_pgd, intended for in early boot before
759 * there's a page structure.  This implies:
760 *  1. The only existing pagetable is the kernel's
761 *  2. It is always pinned
762 *  3. It has no user pagetable attached to it
763 */
764void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
765{
766	preempt_disable();
767
768	xen_mc_batch();
769
770	__xen_set_pgd_hyper(ptr, val);
771
772	xen_mc_issue(PARAVIRT_LAZY_MMU);
773
774	preempt_enable();
775}
776
777void xen_set_pgd(pgd_t *ptr, pgd_t val)
778{
779	pgd_t *user_ptr = xen_get_user_pgd(ptr);
780
781	ADD_STATS(pgd_update, 1);
782
783	/* If page is not pinned, we can just update the entry
784	   directly */
785	if (!xen_page_pinned(ptr)) {
786		*ptr = val;
787		if (user_ptr) {
788			WARN_ON(xen_page_pinned(user_ptr));
789			*user_ptr = val;
790		}
791		return;
792	}
793
794	ADD_STATS(pgd_update_pinned, 1);
795	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
796
797	/* If it's pinned, then we can at least batch the kernel and
798	   user updates together. */
799	xen_mc_batch();
800
801	__xen_set_pgd_hyper(ptr, val);
802	if (user_ptr)
803		__xen_set_pgd_hyper(user_ptr, val);
804
805	xen_mc_issue(PARAVIRT_LAZY_MMU);
806}
807#endif	/* PAGETABLE_LEVELS == 4 */
808
809/*
810 * (Yet another) pagetable walker.  This one is intended for pinning a
811 * pagetable.  This means that it walks a pagetable and calls the
812 * callback function on each page it finds making up the page table,
813 * at every level.  It walks the entire pagetable, but it only bothers
814 * pinning pte pages which are below limit.  In the normal case this
815 * will be STACK_TOP_MAX, but at boot we need to pin up to
816 * FIXADDR_TOP.
817 *
818 * For 32-bit the important bit is that we don't pin beyond there,
819 * because then we start getting into Xen's ptes.
820 *
821 * For 64-bit, we must skip the Xen hole in the middle of the address
822 * space, just after the big x86-64 virtual hole.
823 */
824static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
825			  int (*func)(struct mm_struct *mm, struct page *,
826				      enum pt_level),
827			  unsigned long limit)
828{
829	int flush = 0;
830	unsigned hole_low, hole_high;
831	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
832	unsigned pgdidx, pudidx, pmdidx;
833
834	/* The limit is the last byte to be touched */
835	limit--;
836	BUG_ON(limit >= FIXADDR_TOP);
837
838	if (xen_feature(XENFEAT_auto_translated_physmap))
839		return 0;
840
841	/*
842	 * 64-bit has a great big hole in the middle of the address
843	 * space, which contains the Xen mappings.  On 32-bit these
844	 * will end up making a zero-sized hole and so is a no-op.
845	 */
846	hole_low = pgd_index(USER_LIMIT);
847	hole_high = pgd_index(PAGE_OFFSET);
848
849	pgdidx_limit = pgd_index(limit);
850#if PTRS_PER_PUD > 1
851	pudidx_limit = pud_index(limit);
852#else
853	pudidx_limit = 0;
854#endif
855#if PTRS_PER_PMD > 1
856	pmdidx_limit = pmd_index(limit);
857#else
858	pmdidx_limit = 0;
859#endif
860
861	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
862		pud_t *pud;
863
864		if (pgdidx >= hole_low && pgdidx < hole_high)
865			continue;
866
867		if (!pgd_val(pgd[pgdidx]))
868			continue;
869
870		pud = pud_offset(&pgd[pgdidx], 0);
871
872		if (PTRS_PER_PUD > 1) /* not folded */
873			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
874
875		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
876			pmd_t *pmd;
877
878			if (pgdidx == pgdidx_limit &&
879			    pudidx > pudidx_limit)
880				goto out;
881
882			if (pud_none(pud[pudidx]))
883				continue;
884
885			pmd = pmd_offset(&pud[pudidx], 0);
886
887			if (PTRS_PER_PMD > 1) /* not folded */
888				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
889
890			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
891				struct page *pte;
892
893				if (pgdidx == pgdidx_limit &&
894				    pudidx == pudidx_limit &&
895				    pmdidx > pmdidx_limit)
896					goto out;
897
898				if (pmd_none(pmd[pmdidx]))
899					continue;
900
901				pte = pmd_page(pmd[pmdidx]);
902				flush |= (*func)(mm, pte, PT_PTE);
903			}
904		}
905	}
906
907out:
908	/* Do the top level last, so that the callbacks can use it as
909	   a cue to do final things like tlb flushes. */
910	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
911
912	return flush;
913}
914
915static int xen_pgd_walk(struct mm_struct *mm,
916			int (*func)(struct mm_struct *mm, struct page *,
917				    enum pt_level),
918			unsigned long limit)
919{
920	return __xen_pgd_walk(mm, mm->pgd, func, limit);
921}
922
923/* If we're using split pte locks, then take the page's lock and
924   return a pointer to it.  Otherwise return NULL. */
925static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
926{
927	spinlock_t *ptl = NULL;
928
929#if USE_SPLIT_PTLOCKS
930	ptl = __pte_lockptr(page);
931	spin_lock_nest_lock(ptl, &mm->page_table_lock);
932#endif
933
934	return ptl;
935}
936
937static void xen_pte_unlock(void *v)
938{
939	spinlock_t *ptl = v;
940	spin_unlock(ptl);
941}
942
943static void xen_do_pin(unsigned level, unsigned long pfn)
944{
945	struct mmuext_op *op;
946	struct multicall_space mcs;
947
948	mcs = __xen_mc_entry(sizeof(*op));
949	op = mcs.args;
950	op->cmd = level;
951	op->arg1.mfn = pfn_to_mfn(pfn);
952	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
953}
954
955static int xen_pin_page(struct mm_struct *mm, struct page *page,
956			enum pt_level level)
957{
958	unsigned pgfl = TestSetPagePinned(page);
959	int flush;
960
961	if (pgfl)
962		flush = 0;		/* already pinned */
963	else if (PageHighMem(page))
964		/* kmaps need flushing if we found an unpinned
965		   highpage */
966		flush = 1;
967	else {
968		void *pt = lowmem_page_address(page);
969		unsigned long pfn = page_to_pfn(page);
970		struct multicall_space mcs = __xen_mc_entry(0);
971		spinlock_t *ptl;
972
973		flush = 0;
974
975		/*
976		 * We need to hold the pagetable lock between the time
977		 * we make the pagetable RO and when we actually pin
978		 * it.  If we don't, then other users may come in and
979		 * attempt to update the pagetable by writing it,
980		 * which will fail because the memory is RO but not
981		 * pinned, so Xen won't do the trap'n'emulate.
982		 *
983		 * If we're using split pte locks, we can't hold the
984		 * entire pagetable's worth of locks during the
985		 * traverse, because we may wrap the preempt count (8
986		 * bits).  The solution is to mark RO and pin each PTE
987		 * page while holding the lock.  This means the number
988		 * of locks we end up holding is never more than a
989		 * batch size (~32 entries, at present).
990		 *
991		 * If we're not using split pte locks, we needn't pin
992		 * the PTE pages independently, because we're
993		 * protected by the overall pagetable lock.
994		 */
995		ptl = NULL;
996		if (level == PT_PTE)
997			ptl = xen_pte_lock(page, mm);
998
999		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000					pfn_pte(pfn, PAGE_KERNEL_RO),
1001					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002
1003		if (ptl) {
1004			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1005
1006			/* Queue a deferred unlock for when this batch
1007			   is completed. */
1008			xen_mc_callback(xen_pte_unlock, ptl);
1009		}
1010	}
1011
1012	return flush;
1013}
1014
1015/* This is called just after a mm has been created, but it has not
1016   been used yet.  We need to make sure that its pagetable is all
1017   read-only, and can be pinned. */
1018static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
1019{
1020	xen_mc_batch();
1021
1022	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1023		/* re-enable interrupts for flushing */
1024		xen_mc_issue(0);
1025
1026		kmap_flush_unused();
1027
1028		xen_mc_batch();
1029	}
1030
1031#ifdef CONFIG_X86_64
1032	{
1033		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1034
1035		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1036
1037		if (user_pgd) {
1038			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1039			xen_do_pin(MMUEXT_PIN_L4_TABLE,
1040				   PFN_DOWN(__pa(user_pgd)));
1041		}
1042	}
1043#else /* CONFIG_X86_32 */
1044#ifdef CONFIG_X86_PAE
1045	/* Need to make sure unshared kernel PMD is pinnable */
1046	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1047		     PT_PMD);
1048#endif
1049	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1050#endif /* CONFIG_X86_64 */
1051	xen_mc_issue(0);
1052}
1053
1054static void xen_pgd_pin(struct mm_struct *mm)
1055{
1056	__xen_pgd_pin(mm, mm->pgd);
1057}
1058
1059/*
1060 * On save, we need to pin all pagetables to make sure they get their
1061 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
1062 * them (unpinned pgds are not currently in use, probably because the
1063 * process is under construction or destruction).
1064 *
1065 * Expected to be called in stop_machine() ("equivalent to taking
1066 * every spinlock in the system"), so the locking doesn't really
1067 * matter all that much.
1068 */
1069void xen_mm_pin_all(void)
1070{
1071	unsigned long flags;
1072	struct page *page;
1073
1074	spin_lock_irqsave(&pgd_lock, flags);
1075
1076	list_for_each_entry(page, &pgd_list, lru) {
1077		if (!PagePinned(page)) {
1078			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1079			SetPageSavePinned(page);
1080		}
1081	}
1082
1083	spin_unlock_irqrestore(&pgd_lock, flags);
1084}
1085
1086/*
1087 * The init_mm pagetable is really pinned as soon as its created, but
1088 * that's before we have page structures to store the bits.  So do all
1089 * the book-keeping now.
1090 */
1091static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1092				  enum pt_level level)
1093{
1094	SetPagePinned(page);
1095	return 0;
1096}
1097
1098static void __init xen_mark_init_mm_pinned(void)
1099{
1100	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1101}
1102
1103static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1104			  enum pt_level level)
1105{
1106	unsigned pgfl = TestClearPagePinned(page);
1107
1108	if (pgfl && !PageHighMem(page)) {
1109		void *pt = lowmem_page_address(page);
1110		unsigned long pfn = page_to_pfn(page);
1111		spinlock_t *ptl = NULL;
1112		struct multicall_space mcs;
1113
1114		/*
1115		 * Do the converse to pin_page.  If we're using split
1116		 * pte locks, we must be holding the lock for while
1117		 * the pte page is unpinned but still RO to prevent
1118		 * concurrent updates from seeing it in this
1119		 * partially-pinned state.
1120		 */
1121		if (level == PT_PTE) {
1122			ptl = xen_pte_lock(page, mm);
1123
1124			if (ptl)
1125				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1126		}
1127
1128		mcs = __xen_mc_entry(0);
1129
1130		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1131					pfn_pte(pfn, PAGE_KERNEL),
1132					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1133
1134		if (ptl) {
1135			/* unlock when batch completed */
1136			xen_mc_callback(xen_pte_unlock, ptl);
1137		}
1138	}
1139
1140	return 0;		/* never need to flush on unpin */
1141}
1142
1143/* Release a pagetables pages back as normal RW */
1144static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1145{
1146	xen_mc_batch();
1147
1148	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1149
1150#ifdef CONFIG_X86_64
1151	{
1152		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1153
1154		if (user_pgd) {
1155			xen_do_pin(MMUEXT_UNPIN_TABLE,
1156				   PFN_DOWN(__pa(user_pgd)));
1157			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1158		}
1159	}
1160#endif
1161
1162#ifdef CONFIG_X86_PAE
1163	/* Need to make sure unshared kernel PMD is unpinned */
1164	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1165		       PT_PMD);
1166#endif
1167
1168	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1169
1170	xen_mc_issue(0);
1171}
1172
1173static void xen_pgd_unpin(struct mm_struct *mm)
1174{
1175	__xen_pgd_unpin(mm, mm->pgd);
1176}
1177
1178/*
1179 * On resume, undo any pinning done at save, so that the rest of the
1180 * kernel doesn't see any unexpected pinned pagetables.
1181 */
1182void xen_mm_unpin_all(void)
1183{
1184	unsigned long flags;
1185	struct page *page;
1186
1187	spin_lock_irqsave(&pgd_lock, flags);
1188
1189	list_for_each_entry(page, &pgd_list, lru) {
1190		if (PageSavePinned(page)) {
1191			BUG_ON(!PagePinned(page));
1192			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1193			ClearPageSavePinned(page);
1194		}
1195	}
1196
1197	spin_unlock_irqrestore(&pgd_lock, flags);
1198}
1199
1200void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1201{
1202	spin_lock(&next->page_table_lock);
1203	xen_pgd_pin(next);
1204	spin_unlock(&next->page_table_lock);
1205}
1206
1207void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1208{
1209	spin_lock(&mm->page_table_lock);
1210	xen_pgd_pin(mm);
1211	spin_unlock(&mm->page_table_lock);
1212}
1213
1214
1215#ifdef CONFIG_SMP
1216/* Another cpu may still have their %cr3 pointing at the pagetable, so
1217   we need to repoint it somewhere else before we can unpin it. */
1218static void drop_other_mm_ref(void *info)
1219{
1220	struct mm_struct *mm = info;
1221	struct mm_struct *active_mm;
1222
1223	active_mm = percpu_read(cpu_tlbstate.active_mm);
1224
1225	if (active_mm == mm)
1226		leave_mm(smp_processor_id());
1227
1228	/* If this cpu still has a stale cr3 reference, then make sure
1229	   it has been flushed. */
1230	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1231		load_cr3(swapper_pg_dir);
1232}
1233
1234static void xen_drop_mm_ref(struct mm_struct *mm)
1235{
1236	cpumask_var_t mask;
1237	unsigned cpu;
1238
1239	if (current->active_mm == mm) {
1240		if (current->mm == mm)
1241			load_cr3(swapper_pg_dir);
1242		else
1243			leave_mm(smp_processor_id());
1244	}
1245
1246	/* Get the "official" set of cpus referring to our pagetable. */
1247	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1248		for_each_online_cpu(cpu) {
1249			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1250			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1251				continue;
1252			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1253		}
1254		return;
1255	}
1256	cpumask_copy(mask, mm_cpumask(mm));
1257
1258	/* It's possible that a vcpu may have a stale reference to our
1259	   cr3, because its in lazy mode, and it hasn't yet flushed
1260	   its set of pending hypercalls yet.  In this case, we can
1261	   look at its actual current cr3 value, and force it to flush
1262	   if needed. */
1263	for_each_online_cpu(cpu) {
1264		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1265			cpumask_set_cpu(cpu, mask);
1266	}
1267
1268	if (!cpumask_empty(mask))
1269		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1270	free_cpumask_var(mask);
1271}
1272#else
1273static void xen_drop_mm_ref(struct mm_struct *mm)
1274{
1275	if (current->active_mm == mm)
1276		load_cr3(swapper_pg_dir);
1277}
1278#endif
1279
1280/*
1281 * While a process runs, Xen pins its pagetables, which means that the
1282 * hypervisor forces it to be read-only, and it controls all updates
1283 * to it.  This means that all pagetable updates have to go via the
1284 * hypervisor, which is moderately expensive.
1285 *
1286 * Since we're pulling the pagetable down, we switch to use init_mm,
1287 * unpin old process pagetable and mark it all read-write, which
1288 * allows further operations on it to be simple memory accesses.
1289 *
1290 * The only subtle point is that another CPU may be still using the
1291 * pagetable because of lazy tlb flushing.  This means we need need to
1292 * switch all CPUs off this pagetable before we can unpin it.
1293 */
1294void xen_exit_mmap(struct mm_struct *mm)
1295{
1296	get_cpu();		/* make sure we don't move around */
1297	xen_drop_mm_ref(mm);
1298	put_cpu();
1299
1300	spin_lock(&mm->page_table_lock);
1301
1302	/* pgd may not be pinned in the error exit path of execve */
1303	if (xen_page_pinned(mm->pgd))
1304		xen_pgd_unpin(mm);
1305
1306	spin_unlock(&mm->page_table_lock);
1307}
1308
1309static __init void xen_pagetable_setup_start(pgd_t *base)
1310{
1311}
1312
1313static void xen_post_allocator_init(void);
1314
1315static __init void xen_pagetable_setup_done(pgd_t *base)
1316{
1317	xen_setup_shared_info();
1318	xen_post_allocator_init();
1319}
1320
1321static void xen_write_cr2(unsigned long cr2)
1322{
1323	percpu_read(xen_vcpu)->arch.cr2 = cr2;
1324}
1325
1326static unsigned long xen_read_cr2(void)
1327{
1328	return percpu_read(xen_vcpu)->arch.cr2;
1329}
1330
1331unsigned long xen_read_cr2_direct(void)
1332{
1333	return percpu_read(xen_vcpu_info.arch.cr2);
1334}
1335
1336static void xen_flush_tlb(void)
1337{
1338	struct mmuext_op *op;
1339	struct multicall_space mcs;
1340
1341	preempt_disable();
1342
1343	mcs = xen_mc_entry(sizeof(*op));
1344
1345	op = mcs.args;
1346	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1348
1349	xen_mc_issue(PARAVIRT_LAZY_MMU);
1350
1351	preempt_enable();
1352}
1353
1354static void xen_flush_tlb_single(unsigned long addr)
1355{
1356	struct mmuext_op *op;
1357	struct multicall_space mcs;
1358
1359	preempt_disable();
1360
1361	mcs = xen_mc_entry(sizeof(*op));
1362	op = mcs.args;
1363	op->cmd = MMUEXT_INVLPG_LOCAL;
1364	op->arg1.linear_addr = addr & PAGE_MASK;
1365	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1366
1367	xen_mc_issue(PARAVIRT_LAZY_MMU);
1368
1369	preempt_enable();
1370}
1371
1372static void xen_flush_tlb_others(const struct cpumask *cpus,
1373				 struct mm_struct *mm, unsigned long va)
1374{
1375	struct {
1376		struct mmuext_op op;
1377		DECLARE_BITMAP(mask, NR_CPUS);
1378	} *args;
1379	struct multicall_space mcs;
1380
1381	if (cpumask_empty(cpus))
1382		return;		/* nothing to do */
1383
1384	mcs = xen_mc_entry(sizeof(*args));
1385	args = mcs.args;
1386	args->op.arg2.vcpumask = to_cpumask(args->mask);
1387
1388	/* Remove us, and any offline CPUS. */
1389	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1390	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1391
1392	if (va == TLB_FLUSH_ALL) {
1393		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1394	} else {
1395		args->op.cmd = MMUEXT_INVLPG_MULTI;
1396		args->op.arg1.linear_addr = va;
1397	}
1398
1399	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1400
1401	xen_mc_issue(PARAVIRT_LAZY_MMU);
1402}
1403
1404static unsigned long xen_read_cr3(void)
1405{
1406	return percpu_read(xen_cr3);
1407}
1408
1409static void set_current_cr3(void *v)
1410{
1411	percpu_write(xen_current_cr3, (unsigned long)v);
1412}
1413
1414static void __xen_write_cr3(bool kernel, unsigned long cr3)
1415{
1416	struct mmuext_op *op;
1417	struct multicall_space mcs;
1418	unsigned long mfn;
1419
1420	if (cr3)
1421		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1422	else
1423		mfn = 0;
1424
1425	WARN_ON(mfn == 0 && kernel);
1426
1427	mcs = __xen_mc_entry(sizeof(*op));
1428
1429	op = mcs.args;
1430	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1431	op->arg1.mfn = mfn;
1432
1433	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1434
1435	if (kernel) {
1436		percpu_write(xen_cr3, cr3);
1437
1438		/* Update xen_current_cr3 once the batch has actually
1439		   been submitted. */
1440		xen_mc_callback(set_current_cr3, (void *)cr3);
1441	}
1442}
1443
1444static void xen_write_cr3(unsigned long cr3)
1445{
1446	BUG_ON(preemptible());
1447
1448	xen_mc_batch();  /* disables interrupts */
1449
1450	/* Update while interrupts are disabled, so its atomic with
1451	   respect to ipis */
1452	percpu_write(xen_cr3, cr3);
1453
1454	__xen_write_cr3(true, cr3);
1455
1456#ifdef CONFIG_X86_64
1457	{
1458		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1459		if (user_pgd)
1460			__xen_write_cr3(false, __pa(user_pgd));
1461		else
1462			__xen_write_cr3(false, 0);
1463	}
1464#endif
1465
1466	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1467}
1468
1469static int xen_pgd_alloc(struct mm_struct *mm)
1470{
1471	pgd_t *pgd = mm->pgd;
1472	int ret = 0;
1473
1474	BUG_ON(PagePinned(virt_to_page(pgd)));
1475
1476#ifdef CONFIG_X86_64
1477	{
1478		struct page *page = virt_to_page(pgd);
1479		pgd_t *user_pgd;
1480
1481		BUG_ON(page->private != 0);
1482
1483		ret = -ENOMEM;
1484
1485		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1486		page->private = (unsigned long)user_pgd;
1487
1488		if (user_pgd != NULL) {
1489			user_pgd[pgd_index(VSYSCALL_START)] =
1490				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1491			ret = 0;
1492		}
1493
1494		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1495	}
1496#endif
1497
1498	return ret;
1499}
1500
1501static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1502{
1503#ifdef CONFIG_X86_64
1504	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1505
1506	if (user_pgd)
1507		free_page((unsigned long)user_pgd);
1508#endif
1509}
1510
1511#ifdef CONFIG_X86_32
1512static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1513{
1514	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1515	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1516		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1517			       pte_val_ma(pte));
1518
1519	return pte;
1520}
1521
1522/* Init-time set_pte while constructing initial pagetables, which
1523   doesn't allow RO pagetable pages to be remapped RW */
1524static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1525{
1526	pte = mask_rw_pte(ptep, pte);
1527
1528	xen_set_pte(ptep, pte);
1529}
1530#endif
1531
1532static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1533{
1534	struct mmuext_op op;
1535	op.cmd = cmd;
1536	op.arg1.mfn = pfn_to_mfn(pfn);
1537	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1538		BUG();
1539}
1540
1541/* Early in boot, while setting up the initial pagetable, assume
1542   everything is pinned. */
1543static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1544{
1545#ifdef CONFIG_FLATMEM
1546	BUG_ON(mem_map);	/* should only be used early */
1547#endif
1548	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1549	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1550}
1551
1552/* Used for pmd and pud */
1553static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1554{
1555#ifdef CONFIG_FLATMEM
1556	BUG_ON(mem_map);	/* should only be used early */
1557#endif
1558	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1559}
1560
1561/* Early release_pte assumes that all pts are pinned, since there's
1562   only init_mm and anything attached to that is pinned. */
1563static __init void xen_release_pte_init(unsigned long pfn)
1564{
1565	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1566	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1567}
1568
1569static __init void xen_release_pmd_init(unsigned long pfn)
1570{
1571	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1572}
1573
1574/* This needs to make sure the new pte page is pinned iff its being
1575   attached to a pinned pagetable. */
1576static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1577{
1578	struct page *page = pfn_to_page(pfn);
1579
1580	if (PagePinned(virt_to_page(mm->pgd))) {
1581		SetPagePinned(page);
1582
1583		if (!PageHighMem(page)) {
1584			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1585			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1586				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1587		} else {
1588			/* make sure there are no stray mappings of
1589			   this page */
1590			kmap_flush_unused();
1591		}
1592	}
1593}
1594
1595static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1596{
1597	xen_alloc_ptpage(mm, pfn, PT_PTE);
1598}
1599
1600static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1601{
1602	xen_alloc_ptpage(mm, pfn, PT_PMD);
1603}
1604
1605/* This should never happen until we're OK to use struct page */
1606static void xen_release_ptpage(unsigned long pfn, unsigned level)
1607{
1608	struct page *page = pfn_to_page(pfn);
1609
1610	if (PagePinned(page)) {
1611		if (!PageHighMem(page)) {
1612			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1613				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1614			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1615		}
1616		ClearPagePinned(page);
1617	}
1618}
1619
1620static void xen_release_pte(unsigned long pfn)
1621{
1622	xen_release_ptpage(pfn, PT_PTE);
1623}
1624
1625static void xen_release_pmd(unsigned long pfn)
1626{
1627	xen_release_ptpage(pfn, PT_PMD);
1628}
1629
1630#if PAGETABLE_LEVELS == 4
1631static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1632{
1633	xen_alloc_ptpage(mm, pfn, PT_PUD);
1634}
1635
1636static void xen_release_pud(unsigned long pfn)
1637{
1638	xen_release_ptpage(pfn, PT_PUD);
1639}
1640#endif
1641
1642void __init xen_reserve_top(void)
1643{
1644#ifdef CONFIG_X86_32
1645	unsigned long top = HYPERVISOR_VIRT_START;
1646	struct xen_platform_parameters pp;
1647
1648	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1649		top = pp.virt_start;
1650
1651	reserve_top_address(-top);
1652#endif	/* CONFIG_X86_32 */
1653}
1654
1655/*
1656 * Like __va(), but returns address in the kernel mapping (which is
1657 * all we have until the physical memory mapping has been set up.
1658 */
1659static void *__ka(phys_addr_t paddr)
1660{
1661#ifdef CONFIG_X86_64
1662	return (void *)(paddr + __START_KERNEL_map);
1663#else
1664	return __va(paddr);
1665#endif
1666}
1667
1668/* Convert a machine address to physical address */
1669static unsigned long m2p(phys_addr_t maddr)
1670{
1671	phys_addr_t paddr;
1672
1673	maddr &= PTE_PFN_MASK;
1674	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1675
1676	return paddr;
1677}
1678
1679/* Convert a machine address to kernel virtual */
1680static void *m2v(phys_addr_t maddr)
1681{
1682	return __ka(m2p(maddr));
1683}
1684
1685static void set_page_prot(void *addr, pgprot_t prot)
1686{
1687	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1688	pte_t pte = pfn_pte(pfn, prot);
1689
1690	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1691		BUG();
1692}
1693
1694static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1695{
1696	unsigned pmdidx, pteidx;
1697	unsigned ident_pte;
1698	unsigned long pfn;
1699
1700	ident_pte = 0;
1701	pfn = 0;
1702	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1703		pte_t *pte_page;
1704
1705		/* Reuse or allocate a page of ptes */
1706		if (pmd_present(pmd[pmdidx]))
1707			pte_page = m2v(pmd[pmdidx].pmd);
1708		else {
1709			/* Check for free pte pages */
1710			if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1711				break;
1712
1713			pte_page = &level1_ident_pgt[ident_pte];
1714			ident_pte += PTRS_PER_PTE;
1715
1716			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1717		}
1718
1719		/* Install mappings */
1720		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1721			pte_t pte;
1722
1723			if (pfn > max_pfn_mapped)
1724				max_pfn_mapped = pfn;
1725
1726			if (!pte_none(pte_page[pteidx]))
1727				continue;
1728
1729			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1730			pte_page[pteidx] = pte;
1731		}
1732	}
1733
1734	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1735		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1736
1737	set_page_prot(pmd, PAGE_KERNEL_RO);
1738}
1739
1740#ifdef CONFIG_X86_64
1741static void convert_pfn_mfn(void *v)
1742{
1743	pte_t *pte = v;
1744	int i;
1745
1746	/* All levels are converted the same way, so just treat them
1747	   as ptes. */
1748	for (i = 0; i < PTRS_PER_PTE; i++)
1749		pte[i] = xen_make_pte(pte[i].pte);
1750}
1751
1752/*
1753 * Set up the inital kernel pagetable.
1754 *
1755 * We can construct this by grafting the Xen provided pagetable into
1756 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1757 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1758 * means that only the kernel has a physical mapping to start with -
1759 * but that's enough to get __va working.  We need to fill in the rest
1760 * of the physical mapping once some sort of allocator has been set
1761 * up.
1762 */
1763__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1764					 unsigned long max_pfn)
1765{
1766	pud_t *l3;
1767	pmd_t *l2;
1768
1769	/* Zap identity mapping */
1770	init_level4_pgt[0] = __pgd(0);
1771
1772	/* Pre-constructed entries are in pfn, so convert to mfn */
1773	convert_pfn_mfn(init_level4_pgt);
1774	convert_pfn_mfn(level3_ident_pgt);
1775	convert_pfn_mfn(level3_kernel_pgt);
1776
1777	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1778	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1779
1780	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1781	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1782
1783	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1784	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1785	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1786
1787	/* Set up identity map */
1788	xen_map_identity_early(level2_ident_pgt, max_pfn);
1789
1790	/* Make pagetable pieces RO */
1791	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1792	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1793	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1794	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1795	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1796	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1797
1798	/* Pin down new L4 */
1799	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1800			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1801
1802	/* Unpin Xen-provided one */
1803	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1804
1805	/* Switch over */
1806	pgd = init_level4_pgt;
1807
1808	/*
1809	 * At this stage there can be no user pgd, and no page
1810	 * structure to attach it to, so make sure we just set kernel
1811	 * pgd.
1812	 */
1813	xen_mc_batch();
1814	__xen_write_cr3(true, __pa(pgd));
1815	xen_mc_issue(PARAVIRT_LAZY_CPU);
1816
1817	reserve_early(__pa(xen_start_info->pt_base),
1818		      __pa(xen_start_info->pt_base +
1819			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1820		      "XEN PAGETABLES");
1821
1822	return pgd;
1823}
1824#else	/* !CONFIG_X86_64 */
1825static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1826
1827__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1828					 unsigned long max_pfn)
1829{
1830	pmd_t *kernel_pmd;
1831
1832	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1833				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1834				  512*1024);
1835
1836	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1837	memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1838
1839	xen_map_identity_early(level2_kernel_pgt, max_pfn);
1840
1841	memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1842	set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1843			__pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1844
1845	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1846	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1847	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1848
1849	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1850
1851	xen_write_cr3(__pa(swapper_pg_dir));
1852
1853	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1854
1855	reserve_early(__pa(xen_start_info->pt_base),
1856		      __pa(xen_start_info->pt_base +
1857			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1858		      "XEN PAGETABLES");
1859
1860	return swapper_pg_dir;
1861}
1862#endif	/* CONFIG_X86_64 */
1863
1864static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1865{
1866	pte_t pte;
1867
1868	phys >>= PAGE_SHIFT;
1869
1870	switch (idx) {
1871	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1872#ifdef CONFIG_X86_F00F_BUG
1873	case FIX_F00F_IDT:
1874#endif
1875#ifdef CONFIG_X86_32
1876	case FIX_WP_TEST:
1877	case FIX_VDSO:
1878# ifdef CONFIG_HIGHMEM
1879	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1880# endif
1881#else
1882	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1883#endif
1884#ifdef CONFIG_X86_LOCAL_APIC
1885	case FIX_APIC_BASE:	/* maps dummy local APIC */
1886#endif
1887	case FIX_TEXT_POKE0:
1888	case FIX_TEXT_POKE1:
1889		/* All local page mappings */
1890		pte = pfn_pte(phys, prot);
1891		break;
1892
1893	case FIX_PARAVIRT_BOOTMAP:
1894		/* This is an MFN, but it isn't an IO mapping from the
1895		   IO domain */
1896		pte = mfn_pte(phys, prot);
1897		break;
1898
1899	default:
1900		/* By default, set_fixmap is used for hardware mappings */
1901		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1902		break;
1903	}
1904
1905	__native_set_fixmap(idx, pte);
1906
1907#ifdef CONFIG_X86_64
1908	/* Replicate changes to map the vsyscall page into the user
1909	   pagetable vsyscall mapping. */
1910	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1911		unsigned long vaddr = __fix_to_virt(idx);
1912		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1913	}
1914#endif
1915}
1916
1917static __init void xen_post_allocator_init(void)
1918{
1919	pv_mmu_ops.set_pte = xen_set_pte;
1920	pv_mmu_ops.set_pmd = xen_set_pmd;
1921	pv_mmu_ops.set_pud = xen_set_pud;
1922#if PAGETABLE_LEVELS == 4
1923	pv_mmu_ops.set_pgd = xen_set_pgd;
1924#endif
1925
1926	/* This will work as long as patching hasn't happened yet
1927	   (which it hasn't) */
1928	pv_mmu_ops.alloc_pte = xen_alloc_pte;
1929	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1930	pv_mmu_ops.release_pte = xen_release_pte;
1931	pv_mmu_ops.release_pmd = xen_release_pmd;
1932#if PAGETABLE_LEVELS == 4
1933	pv_mmu_ops.alloc_pud = xen_alloc_pud;
1934	pv_mmu_ops.release_pud = xen_release_pud;
1935#endif
1936
1937#ifdef CONFIG_X86_64
1938	SetPagePinned(virt_to_page(level3_user_vsyscall));
1939#endif
1940	xen_mark_init_mm_pinned();
1941}
1942
1943static void xen_leave_lazy_mmu(void)
1944{
1945	preempt_disable();
1946	xen_mc_flush();
1947	paravirt_leave_lazy_mmu();
1948	preempt_enable();
1949}
1950
1951static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1952	.read_cr2 = xen_read_cr2,
1953	.write_cr2 = xen_write_cr2,
1954
1955	.read_cr3 = xen_read_cr3,
1956	.write_cr3 = xen_write_cr3,
1957
1958	.flush_tlb_user = xen_flush_tlb,
1959	.flush_tlb_kernel = xen_flush_tlb,
1960	.flush_tlb_single = xen_flush_tlb_single,
1961	.flush_tlb_others = xen_flush_tlb_others,
1962
1963	.pte_update = paravirt_nop,
1964	.pte_update_defer = paravirt_nop,
1965
1966	.pgd_alloc = xen_pgd_alloc,
1967	.pgd_free = xen_pgd_free,
1968
1969	.alloc_pte = xen_alloc_pte_init,
1970	.release_pte = xen_release_pte_init,
1971	.alloc_pmd = xen_alloc_pmd_init,
1972	.alloc_pmd_clone = paravirt_nop,
1973	.release_pmd = xen_release_pmd_init,
1974
1975#ifdef CONFIG_X86_64
1976	.set_pte = xen_set_pte,
1977#else
1978	.set_pte = xen_set_pte_init,
1979#endif
1980	.set_pte_at = xen_set_pte_at,
1981	.set_pmd = xen_set_pmd_hyper,
1982
1983	.ptep_modify_prot_start = __ptep_modify_prot_start,
1984	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
1985
1986	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
1987	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1988
1989	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
1990	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1991
1992#ifdef CONFIG_X86_PAE
1993	.set_pte_atomic = xen_set_pte_atomic,
1994	.pte_clear = xen_pte_clear,
1995	.pmd_clear = xen_pmd_clear,
1996#endif	/* CONFIG_X86_PAE */
1997	.set_pud = xen_set_pud_hyper,
1998
1999	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2000	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2001
2002#if PAGETABLE_LEVELS == 4
2003	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2004	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2005	.set_pgd = xen_set_pgd_hyper,
2006
2007	.alloc_pud = xen_alloc_pmd_init,
2008	.release_pud = xen_release_pmd_init,
2009#endif	/* PAGETABLE_LEVELS == 4 */
2010
2011	.activate_mm = xen_activate_mm,
2012	.dup_mmap = xen_dup_mmap,
2013	.exit_mmap = xen_exit_mmap,
2014
2015	.lazy_mode = {
2016		.enter = paravirt_enter_lazy_mmu,
2017		.leave = xen_leave_lazy_mmu,
2018	},
2019
2020	.set_fixmap = xen_set_fixmap,
2021};
2022
2023void __init xen_init_mmu_ops(void)
2024{
2025	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2026	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2027	pv_mmu_ops = xen_mmu_ops;
2028
2029	vmap_lazy_unmap = false;
2030}
2031
2032/* Protected by xen_reservation_lock. */
2033#define MAX_CONTIG_ORDER 9 /* 2MB */
2034static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2035
2036#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2037static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2038				unsigned long *in_frames,
2039				unsigned long *out_frames)
2040{
2041	int i;
2042	struct multicall_space mcs;
2043
2044	xen_mc_batch();
2045	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2046		mcs = __xen_mc_entry(0);
2047
2048		if (in_frames)
2049			in_frames[i] = virt_to_mfn(vaddr);
2050
2051		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2052		set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2053
2054		if (out_frames)
2055			out_frames[i] = virt_to_pfn(vaddr);
2056	}
2057	xen_mc_issue(0);
2058}
2059
2060/*
2061 * Update the pfn-to-mfn mappings for a virtual address range, either to
2062 * point to an array of mfns, or contiguously from a single starting
2063 * mfn.
2064 */
2065static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2066				     unsigned long *mfns,
2067				     unsigned long first_mfn)
2068{
2069	unsigned i, limit;
2070	unsigned long mfn;
2071
2072	xen_mc_batch();
2073
2074	limit = 1u << order;
2075	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2076		struct multicall_space mcs;
2077		unsigned flags;
2078
2079		mcs = __xen_mc_entry(0);
2080		if (mfns)
2081			mfn = mfns[i];
2082		else
2083			mfn = first_mfn + i;
2084
2085		if (i < (limit - 1))
2086			flags = 0;
2087		else {
2088			if (order == 0)
2089				flags = UVMF_INVLPG | UVMF_ALL;
2090			else
2091				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2092		}
2093
2094		MULTI_update_va_mapping(mcs.mc, vaddr,
2095				mfn_pte(mfn, PAGE_KERNEL), flags);
2096
2097		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2098	}
2099
2100	xen_mc_issue(0);
2101}
2102
2103/*
2104 * Perform the hypercall to exchange a region of our pfns to point to
2105 * memory with the required contiguous alignment.  Takes the pfns as
2106 * input, and populates mfns as output.
2107 *
2108 * Returns a success code indicating whether the hypervisor was able to
2109 * satisfy the request or not.
2110 */
2111static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2112			       unsigned long *pfns_in,
2113			       unsigned long extents_out,
2114			       unsigned int order_out,
2115			       unsigned long *mfns_out,
2116			       unsigned int address_bits)
2117{
2118	long rc;
2119	int success;
2120
2121	struct xen_memory_exchange exchange = {
2122		.in = {
2123			.nr_extents   = extents_in,
2124			.extent_order = order_in,
2125			.extent_start = pfns_in,
2126			.domid        = DOMID_SELF
2127		},
2128		.out = {
2129			.nr_extents   = extents_out,
2130			.extent_order = order_out,
2131			.extent_start = mfns_out,
2132			.address_bits = address_bits,
2133			.domid        = DOMID_SELF
2134		}
2135	};
2136
2137	BUG_ON(extents_in << order_in != extents_out << order_out);
2138
2139	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2140	success = (exchange.nr_exchanged == extents_in);
2141
2142	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2143	BUG_ON(success && (rc != 0));
2144
2145	return success;
2146}
2147
2148int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2149				 unsigned int address_bits)
2150{
2151	unsigned long *in_frames = discontig_frames, out_frame;
2152	unsigned long  flags;
2153	int            success;
2154
2155	/*
2156	 * Currently an auto-translated guest will not perform I/O, nor will
2157	 * it require PAE page directories below 4GB. Therefore any calls to
2158	 * this function are redundant and can be ignored.
2159	 */
2160
2161	if (xen_feature(XENFEAT_auto_translated_physmap))
2162		return 0;
2163
2164	if (unlikely(order > MAX_CONTIG_ORDER))
2165		return -ENOMEM;
2166
2167	memset((void *) vstart, 0, PAGE_SIZE << order);
2168
2169	spin_lock_irqsave(&xen_reservation_lock, flags);
2170
2171	/* 1. Zap current PTEs, remembering MFNs. */
2172	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2173
2174	/* 2. Get a new contiguous memory extent. */
2175	out_frame = virt_to_pfn(vstart);
2176	success = xen_exchange_memory(1UL << order, 0, in_frames,
2177				      1, order, &out_frame,
2178				      address_bits);
2179
2180	/* 3. Map the new extent in place of old pages. */
2181	if (success)
2182		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2183	else
2184		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2185
2186	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2187
2188	return success ? 0 : -ENOMEM;
2189}
2190EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2191
2192void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2193{
2194	unsigned long *out_frames = discontig_frames, in_frame;
2195	unsigned long  flags;
2196	int success;
2197
2198	if (xen_feature(XENFEAT_auto_translated_physmap))
2199		return;
2200
2201	if (unlikely(order > MAX_CONTIG_ORDER))
2202		return;
2203
2204	memset((void *) vstart, 0, PAGE_SIZE << order);
2205
2206	spin_lock_irqsave(&xen_reservation_lock, flags);
2207
2208	/* 1. Find start MFN of contiguous extent. */
2209	in_frame = virt_to_mfn(vstart);
2210
2211	/* 2. Zap current PTEs. */
2212	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2213
2214	/* 3. Do the exchange for non-contiguous MFNs. */
2215	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2216					0, out_frames, 0);
2217
2218	/* 4. Map new pages in place of old pages. */
2219	if (success)
2220		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2221	else
2222		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2223
2224	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2225}
2226EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2227
2228#ifdef CONFIG_XEN_PVHVM
2229static void xen_hvm_exit_mmap(struct mm_struct *mm)
2230{
2231	struct xen_hvm_pagetable_dying a;
2232	int rc;
2233
2234	a.domid = DOMID_SELF;
2235	a.gpa = __pa(mm->pgd);
2236	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2237	WARN_ON_ONCE(rc < 0);
2238}
2239
2240static int is_pagetable_dying_supported(void)
2241{
2242	struct xen_hvm_pagetable_dying a;
2243	int rc = 0;
2244
2245	a.domid = DOMID_SELF;
2246	a.gpa = 0x00;
2247	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2248	if (rc < 0) {
2249		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2250		return 0;
2251	}
2252	return 1;
2253}
2254
2255void __init xen_hvm_init_mmu_ops(void)
2256{
2257	if (is_pagetable_dying_supported())
2258		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2259}
2260#endif
2261
2262#ifdef CONFIG_XEN_DEBUG_FS
2263
2264static struct dentry *d_mmu_debug;
2265
2266static int __init xen_mmu_debugfs(void)
2267{
2268	struct dentry *d_xen = xen_init_debugfs();
2269
2270	if (d_xen == NULL)
2271		return -ENOMEM;
2272
2273	d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2274
2275	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2276
2277	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2278	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2279			   &mmu_stats.pgd_update_pinned);
2280	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2281			   &mmu_stats.pgd_update_pinned);
2282
2283	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2284	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2285			   &mmu_stats.pud_update_pinned);
2286	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2287			   &mmu_stats.pud_update_pinned);
2288
2289	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2290	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2291			   &mmu_stats.pmd_update_pinned);
2292	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2293			   &mmu_stats.pmd_update_pinned);
2294
2295	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2296//	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2297//			   &mmu_stats.pte_update_pinned);
2298	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2299			   &mmu_stats.pte_update_pinned);
2300
2301	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2302	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2303			   &mmu_stats.mmu_update_extended);
2304	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2305				     mmu_stats.mmu_update_histo, 20);
2306
2307	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2308	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2309			   &mmu_stats.set_pte_at_batched);
2310	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2311			   &mmu_stats.set_pte_at_current);
2312	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2313			   &mmu_stats.set_pte_at_kernel);
2314
2315	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2316	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2317			   &mmu_stats.prot_commit_batched);
2318
2319	return 0;
2320}
2321fs_initcall(xen_mmu_debugfs);
2322
2323#endif	/* CONFIG_XEN_DEBUG_FS */
2324