• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/x86/mm/
1/* Support for MMIO probes.
2 * Benfit many code from kprobes
3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4 *     2007 Alexander Eichner
5 *     2008 Pekka Paalanen <pq@iki.fi>
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/list.h>
11#include <linux/rculist.h>
12#include <linux/spinlock.h>
13#include <linux/hash.h>
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/uaccess.h>
18#include <linux/ptrace.h>
19#include <linux/preempt.h>
20#include <linux/percpu.h>
21#include <linux/kdebug.h>
22#include <linux/mutex.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <linux/errno.h>
28#include <asm/debugreg.h>
29#include <linux/mmiotrace.h>
30
31#define KMMIO_PAGE_HASH_BITS 4
32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
33
34struct kmmio_fault_page {
35	struct list_head list;
36	struct kmmio_fault_page *release_next;
37	unsigned long page; /* location of the fault page */
38	pteval_t old_presence; /* page presence prior to arming */
39	bool armed;
40
41	/*
42	 * Number of times this page has been registered as a part
43	 * of a probe. If zero, page is disarmed and this may be freed.
44	 * Used only by writers (RCU) and post_kmmio_handler().
45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
46	 */
47	int count;
48
49	bool scheduled_for_release;
50};
51
52struct kmmio_delayed_release {
53	struct rcu_head rcu;
54	struct kmmio_fault_page *release_list;
55};
56
57struct kmmio_context {
58	struct kmmio_fault_page *fpage;
59	struct kmmio_probe *probe;
60	unsigned long saved_flags;
61	unsigned long addr;
62	int active;
63};
64
65static DEFINE_SPINLOCK(kmmio_lock);
66
67/* Protected by kmmio_lock */
68unsigned int kmmio_count;
69
70/* Read-protected by RCU, write-protected by kmmio_lock. */
71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
72static LIST_HEAD(kmmio_probes);
73
74static struct list_head *kmmio_page_list(unsigned long page)
75{
76	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
77}
78
79/* Accessed per-cpu */
80static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
81
82/*
83 * this is basically a dynamic stabbing problem:
84 * Could use the existing prio tree code or
85 * Possible better implementations:
86 * The Interval Skip List: A Data Structure for Finding All Intervals That
87 * Overlap a Point (might be simple)
88 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
89 */
90/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
91static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
92{
93	struct kmmio_probe *p;
94	list_for_each_entry_rcu(p, &kmmio_probes, list) {
95		if (addr >= p->addr && addr < (p->addr + p->len))
96			return p;
97	}
98	return NULL;
99}
100
101/* You must be holding RCU read lock. */
102static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
103{
104	struct list_head *head;
105	struct kmmio_fault_page *f;
106
107	page &= PAGE_MASK;
108	head = kmmio_page_list(page);
109	list_for_each_entry_rcu(f, head, list) {
110		if (f->page == page)
111			return f;
112	}
113	return NULL;
114}
115
116static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
117{
118	pmdval_t v = pmd_val(*pmd);
119	if (clear) {
120		*old = v & _PAGE_PRESENT;
121		v &= ~_PAGE_PRESENT;
122	} else	/* presume this has been called with clear==true previously */
123		v |= *old;
124	set_pmd(pmd, __pmd(v));
125}
126
127static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
128{
129	pteval_t v = pte_val(*pte);
130	if (clear) {
131		*old = v & _PAGE_PRESENT;
132		v &= ~_PAGE_PRESENT;
133	} else	/* presume this has been called with clear==true previously */
134		v |= *old;
135	set_pte_atomic(pte, __pte(v));
136}
137
138static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
139{
140	unsigned int level;
141	pte_t *pte = lookup_address(f->page, &level);
142
143	if (!pte) {
144		pr_err("no pte for page 0x%08lx\n", f->page);
145		return -1;
146	}
147
148	switch (level) {
149	case PG_LEVEL_2M:
150		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
151		break;
152	case PG_LEVEL_4K:
153		clear_pte_presence(pte, clear, &f->old_presence);
154		break;
155	default:
156		pr_err("unexpected page level 0x%x.\n", level);
157		return -1;
158	}
159
160	__flush_tlb_one(f->page);
161	return 0;
162}
163
164/*
165 * Mark the given page as not present. Access to it will trigger a fault.
166 *
167 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
168 * protection is ignored here. RCU read lock is assumed held, so the struct
169 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
170 * that double arming the same virtual address (page) cannot occur.
171 *
172 * Double disarming on the other hand is allowed, and may occur when a fault
173 * and mmiotrace shutdown happen simultaneously.
174 */
175static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
176{
177	int ret;
178	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
179	if (f->armed) {
180		pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
181			   f->page, f->count, !!f->old_presence);
182	}
183	ret = clear_page_presence(f, true);
184	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
185		  f->page);
186	f->armed = true;
187	return ret;
188}
189
190/** Restore the given page to saved presence state. */
191static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret = clear_page_presence(f, false);
194	WARN_ONCE(ret < 0,
195			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
196	f->armed = false;
197}
198
199/*
200 * This is being called from do_page_fault().
201 *
202 * We may be in an interrupt or a critical section. Also prefecthing may
203 * trigger a page fault. We may be in the middle of process switch.
204 * We cannot take any locks, because we could be executing especially
205 * within a kmmio critical section.
206 *
207 * Local interrupts are disabled, so preemption cannot happen.
208 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
209 */
210/*
211 * Interrupts are disabled on entry as trap3 is an interrupt gate
212 * and they remain disabled throughout this function.
213 */
214int kmmio_handler(struct pt_regs *regs, unsigned long addr)
215{
216	struct kmmio_context *ctx;
217	struct kmmio_fault_page *faultpage;
218	int ret = 0; /* default to fault not handled */
219
220	/*
221	 * Preemption is now disabled to prevent process switch during
222	 * single stepping. We can only handle one active kmmio trace
223	 * per cpu, so ensure that we finish it before something else
224	 * gets to run. We also hold the RCU read lock over single
225	 * stepping to avoid looking up the probe and kmmio_fault_page
226	 * again.
227	 */
228	preempt_disable();
229	rcu_read_lock();
230
231	faultpage = get_kmmio_fault_page(addr);
232	if (!faultpage) {
233		/*
234		 * Either this page fault is not caused by kmmio, or
235		 * another CPU just pulled the kmmio probe from under
236		 * our feet. The latter case should not be possible.
237		 */
238		goto no_kmmio;
239	}
240
241	ctx = &get_cpu_var(kmmio_ctx);
242	if (ctx->active) {
243		if (addr == ctx->addr) {
244			/*
245			 * A second fault on the same page means some other
246			 * condition needs handling by do_page_fault(), the
247			 * page really not being present is the most common.
248			 */
249			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
250				 addr, smp_processor_id());
251
252			if (!faultpage->old_presence)
253				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
254					addr, smp_processor_id());
255		} else {
256			/*
257			 * Prevent overwriting already in-flight context.
258			 * This should not happen, let's hope disarming at
259			 * least prevents a panic.
260			 */
261			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
262				 smp_processor_id(), addr);
263			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
264			disarm_kmmio_fault_page(faultpage);
265		}
266		goto no_kmmio_ctx;
267	}
268	ctx->active++;
269
270	ctx->fpage = faultpage;
271	ctx->probe = get_kmmio_probe(addr);
272	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
273	ctx->addr = addr;
274
275	if (ctx->probe && ctx->probe->pre_handler)
276		ctx->probe->pre_handler(ctx->probe, regs, addr);
277
278	/*
279	 * Enable single-stepping and disable interrupts for the faulting
280	 * context. Local interrupts must not get enabled during stepping.
281	 */
282	regs->flags |= X86_EFLAGS_TF;
283	regs->flags &= ~X86_EFLAGS_IF;
284
285	/* Now we set present bit in PTE and single step. */
286	disarm_kmmio_fault_page(ctx->fpage);
287
288	/*
289	 * If another cpu accesses the same page while we are stepping,
290	 * the access will not be caught. It will simply succeed and the
291	 * only downside is we lose the event. If this becomes a problem,
292	 * the user should drop to single cpu before tracing.
293	 */
294
295	put_cpu_var(kmmio_ctx);
296	return 1; /* fault handled */
297
298no_kmmio_ctx:
299	put_cpu_var(kmmio_ctx);
300no_kmmio:
301	rcu_read_unlock();
302	preempt_enable_no_resched();
303	return ret;
304}
305
306/*
307 * Interrupts are disabled on entry as trap1 is an interrupt gate
308 * and they remain disabled throughout this function.
309 * This must always get called as the pair to kmmio_handler().
310 */
311static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
312{
313	int ret = 0;
314	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
315
316	if (!ctx->active) {
317		/*
318		 * debug traps without an active context are due to either
319		 * something external causing them (f.e. using a debugger while
320		 * mmio tracing enabled), or erroneous behaviour
321		 */
322		pr_warning("unexpected debug trap on CPU %d.\n",
323			   smp_processor_id());
324		goto out;
325	}
326
327	if (ctx->probe && ctx->probe->post_handler)
328		ctx->probe->post_handler(ctx->probe, condition, regs);
329
330	/* Prevent racing against release_kmmio_fault_page(). */
331	spin_lock(&kmmio_lock);
332	if (ctx->fpage->count)
333		arm_kmmio_fault_page(ctx->fpage);
334	spin_unlock(&kmmio_lock);
335
336	regs->flags &= ~X86_EFLAGS_TF;
337	regs->flags |= ctx->saved_flags;
338
339	/* These were acquired in kmmio_handler(). */
340	ctx->active--;
341	BUG_ON(ctx->active);
342	rcu_read_unlock();
343	preempt_enable_no_resched();
344
345	/*
346	 * if somebody else is singlestepping across a probe point, flags
347	 * will have TF set, in which case, continue the remaining processing
348	 * of do_debug, as if this is not a probe hit.
349	 */
350	if (!(regs->flags & X86_EFLAGS_TF))
351		ret = 1;
352out:
353	put_cpu_var(kmmio_ctx);
354	return ret;
355}
356
357/* You must be holding kmmio_lock. */
358static int add_kmmio_fault_page(unsigned long page)
359{
360	struct kmmio_fault_page *f;
361
362	page &= PAGE_MASK;
363	f = get_kmmio_fault_page(page);
364	if (f) {
365		if (!f->count)
366			arm_kmmio_fault_page(f);
367		f->count++;
368		return 0;
369	}
370
371	f = kzalloc(sizeof(*f), GFP_ATOMIC);
372	if (!f)
373		return -1;
374
375	f->count = 1;
376	f->page = page;
377
378	if (arm_kmmio_fault_page(f)) {
379		kfree(f);
380		return -1;
381	}
382
383	list_add_rcu(&f->list, kmmio_page_list(f->page));
384
385	return 0;
386}
387
388/* You must be holding kmmio_lock. */
389static void release_kmmio_fault_page(unsigned long page,
390				struct kmmio_fault_page **release_list)
391{
392	struct kmmio_fault_page *f;
393
394	page &= PAGE_MASK;
395	f = get_kmmio_fault_page(page);
396	if (!f)
397		return;
398
399	f->count--;
400	BUG_ON(f->count < 0);
401	if (!f->count) {
402		disarm_kmmio_fault_page(f);
403		if (!f->scheduled_for_release) {
404			f->release_next = *release_list;
405			*release_list = f;
406			f->scheduled_for_release = true;
407		}
408	}
409}
410
411/*
412 * With page-unaligned ioremaps, one or two armed pages may contain
413 * addresses from outside the intended mapping. Events for these addresses
414 * are currently silently dropped. The events may result only from programming
415 * mistakes by accessing addresses before the beginning or past the end of a
416 * mapping.
417 */
418int register_kmmio_probe(struct kmmio_probe *p)
419{
420	unsigned long flags;
421	int ret = 0;
422	unsigned long size = 0;
423	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
424
425	spin_lock_irqsave(&kmmio_lock, flags);
426	if (get_kmmio_probe(p->addr)) {
427		ret = -EEXIST;
428		goto out;
429	}
430	kmmio_count++;
431	list_add_rcu(&p->list, &kmmio_probes);
432	while (size < size_lim) {
433		if (add_kmmio_fault_page(p->addr + size))
434			pr_err("Unable to set page fault.\n");
435		size += PAGE_SIZE;
436	}
437out:
438	spin_unlock_irqrestore(&kmmio_lock, flags);
439	return ret;
440}
441EXPORT_SYMBOL(register_kmmio_probe);
442
443static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
444{
445	struct kmmio_delayed_release *dr = container_of(
446						head,
447						struct kmmio_delayed_release,
448						rcu);
449	struct kmmio_fault_page *f = dr->release_list;
450	while (f) {
451		struct kmmio_fault_page *next = f->release_next;
452		BUG_ON(f->count);
453		kfree(f);
454		f = next;
455	}
456	kfree(dr);
457}
458
459static void remove_kmmio_fault_pages(struct rcu_head *head)
460{
461	struct kmmio_delayed_release *dr =
462		container_of(head, struct kmmio_delayed_release, rcu);
463	struct kmmio_fault_page *f = dr->release_list;
464	struct kmmio_fault_page **prevp = &dr->release_list;
465	unsigned long flags;
466
467	spin_lock_irqsave(&kmmio_lock, flags);
468	while (f) {
469		if (!f->count) {
470			list_del_rcu(&f->list);
471			prevp = &f->release_next;
472		} else {
473			*prevp = f->release_next;
474			f->release_next = NULL;
475			f->scheduled_for_release = false;
476		}
477		f = *prevp;
478	}
479	spin_unlock_irqrestore(&kmmio_lock, flags);
480
481	/* This is the real RCU destroy call. */
482	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
483}
484
485/*
486 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
487 * sure that the callbacks will not be called anymore. Only after that
488 * you may actually release your struct kmmio_probe.
489 *
490 * Unregistering a kmmio fault page has three steps:
491 * 1. release_kmmio_fault_page()
492 *    Disarm the page, wait a grace period to let all faults finish.
493 * 2. remove_kmmio_fault_pages()
494 *    Remove the pages from kmmio_page_table.
495 * 3. rcu_free_kmmio_fault_pages()
496 *    Actually free the kmmio_fault_page structs as with RCU.
497 */
498void unregister_kmmio_probe(struct kmmio_probe *p)
499{
500	unsigned long flags;
501	unsigned long size = 0;
502	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
503	struct kmmio_fault_page *release_list = NULL;
504	struct kmmio_delayed_release *drelease;
505
506	spin_lock_irqsave(&kmmio_lock, flags);
507	while (size < size_lim) {
508		release_kmmio_fault_page(p->addr + size, &release_list);
509		size += PAGE_SIZE;
510	}
511	list_del_rcu(&p->list);
512	kmmio_count--;
513	spin_unlock_irqrestore(&kmmio_lock, flags);
514
515	if (!release_list)
516		return;
517
518	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
519	if (!drelease) {
520		pr_crit("leaking kmmio_fault_page objects.\n");
521		return;
522	}
523	drelease->release_list = release_list;
524
525	/*
526	 * This is not really RCU here. We have just disarmed a set of
527	 * pages so that they cannot trigger page faults anymore. However,
528	 * we cannot remove the pages from kmmio_page_table,
529	 * because a probe hit might be in flight on another CPU. The
530	 * pages are collected into a list, and they will be removed from
531	 * kmmio_page_table when it is certain that no probe hit related to
532	 * these pages can be in flight. RCU grace period sounds like a
533	 * good choice.
534	 *
535	 * If we removed the pages too early, kmmio page fault handler might
536	 * not find the respective kmmio_fault_page and determine it's not
537	 * a kmmio fault, when it actually is. This would lead to madness.
538	 */
539	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
540}
541EXPORT_SYMBOL(unregister_kmmio_probe);
542
543static int
544kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
545{
546	struct die_args *arg = args;
547	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
548
549	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
550		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
551			/*
552			 * Reset the BS bit in dr6 (pointed by args->err) to
553			 * denote completion of processing
554			 */
555			*dr6_p &= ~DR_STEP;
556			return NOTIFY_STOP;
557		}
558
559	return NOTIFY_DONE;
560}
561
562static struct notifier_block nb_die = {
563	.notifier_call = kmmio_die_notifier
564};
565
566int kmmio_init(void)
567{
568	int i;
569
570	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
571		INIT_LIST_HEAD(&kmmio_page_table[i]);
572
573	return register_die_notifier(&nb_die);
574}
575
576void kmmio_cleanup(void)
577{
578	int i;
579
580	unregister_die_notifier(&nb_die);
581	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
582		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
583			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
584	}
585}
586