• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/x86/kernel/
1/*
2 * SGI RTC clock/timer routines.
3 *
4 *  This program is free software; you can redistribute it and/or modify
5 *  it under the terms of the GNU General Public License as published by
6 *  the Free Software Foundation; either version 2 of the License, or
7 *  (at your option) any later version.
8 *
9 *  This program is distributed in the hope that it will be useful,
10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 *  GNU General Public License for more details.
13 *
14 *  You should have received a copy of the GNU General Public License
15 *  along with this program; if not, write to the Free Software
16 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17 *
18 *  Copyright (c) 2009 Silicon Graphics, Inc.  All Rights Reserved.
19 *  Copyright (c) Dimitri Sivanich
20 */
21#include <linux/clockchips.h>
22#include <linux/slab.h>
23
24#include <asm/uv/uv_mmrs.h>
25#include <asm/uv/uv_hub.h>
26#include <asm/uv/bios.h>
27#include <asm/uv/uv.h>
28#include <asm/apic.h>
29#include <asm/cpu.h>
30
31#define RTC_NAME		"sgi_rtc"
32
33static cycle_t uv_read_rtc(struct clocksource *cs);
34static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35static void uv_rtc_timer_setup(enum clock_event_mode,
36				struct clock_event_device *);
37
38static struct clocksource clocksource_uv = {
39	.name		= RTC_NAME,
40	.rating		= 400,
41	.read		= uv_read_rtc,
42	.mask		= (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43	.shift		= 10,
44	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
45};
46
47static struct clock_event_device clock_event_device_uv = {
48	.name		= RTC_NAME,
49	.features	= CLOCK_EVT_FEAT_ONESHOT,
50	.shift		= 20,
51	.rating		= 400,
52	.irq		= -1,
53	.set_next_event	= uv_rtc_next_event,
54	.set_mode	= uv_rtc_timer_setup,
55	.event_handler	= NULL,
56};
57
58static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
59
60/* There is one of these allocated per node */
61struct uv_rtc_timer_head {
62	spinlock_t	lock;
63	/* next cpu waiting for timer, local node relative: */
64	int		next_cpu;
65	/* number of cpus on this node: */
66	int		ncpus;
67	struct {
68		int	lcpu;		/* systemwide logical cpu number */
69		u64	expires;	/* next timer expiration for this cpu */
70	} cpu[1];
71};
72
73/*
74 * Access to uv_rtc_timer_head via blade id.
75 */
76static struct uv_rtc_timer_head		**blade_info __read_mostly;
77
78static int				uv_rtc_evt_enable;
79
80/*
81 * Hardware interface routines
82 */
83
84/* Send IPIs to another node */
85static void uv_rtc_send_IPI(int cpu)
86{
87	unsigned long apicid, val;
88	int pnode;
89
90	apicid = cpu_physical_id(cpu);
91	pnode = uv_apicid_to_pnode(apicid);
92	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
94	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
95
96	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
97}
98
99/* Check for an RTC interrupt pending */
100static int uv_intr_pending(int pnode)
101{
102	return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
103		UVH_EVENT_OCCURRED0_RTC1_MASK;
104}
105
106/* Setup interrupt and return non-zero if early expiration occurred. */
107static int uv_setup_intr(int cpu, u64 expires)
108{
109	u64 val;
110	int pnode = uv_cpu_to_pnode(cpu);
111
112	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
113		UVH_RTC1_INT_CONFIG_M_MASK);
114	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
115
116	uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
117		UVH_EVENT_OCCURRED0_RTC1_MASK);
118
119	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
120		((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
121
122	/* Set configuration */
123	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
124	/* Initialize comparator value */
125	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
126
127	if (uv_read_rtc(NULL) <= expires)
128		return 0;
129
130	return !uv_intr_pending(pnode);
131}
132
133/*
134 * Per-cpu timer tracking routines
135 */
136
137static __init void uv_rtc_deallocate_timers(void)
138{
139	int bid;
140
141	for_each_possible_blade(bid) {
142		kfree(blade_info[bid]);
143	}
144	kfree(blade_info);
145}
146
147/* Allocate per-node list of cpu timer expiration times. */
148static __init int uv_rtc_allocate_timers(void)
149{
150	int cpu;
151
152	blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
153	if (!blade_info)
154		return -ENOMEM;
155	memset(blade_info, 0, uv_possible_blades * sizeof(void *));
156
157	for_each_present_cpu(cpu) {
158		int nid = cpu_to_node(cpu);
159		int bid = uv_cpu_to_blade_id(cpu);
160		int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
161		struct uv_rtc_timer_head *head = blade_info[bid];
162
163		if (!head) {
164			head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
165				(uv_blade_nr_possible_cpus(bid) *
166					2 * sizeof(u64)),
167				GFP_KERNEL, nid);
168			if (!head) {
169				uv_rtc_deallocate_timers();
170				return -ENOMEM;
171			}
172			spin_lock_init(&head->lock);
173			head->ncpus = uv_blade_nr_possible_cpus(bid);
174			head->next_cpu = -1;
175			blade_info[bid] = head;
176		}
177
178		head->cpu[bcpu].lcpu = cpu;
179		head->cpu[bcpu].expires = ULLONG_MAX;
180	}
181
182	return 0;
183}
184
185/* Find and set the next expiring timer.  */
186static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
187{
188	u64 lowest = ULLONG_MAX;
189	int c, bcpu = -1;
190
191	head->next_cpu = -1;
192	for (c = 0; c < head->ncpus; c++) {
193		u64 exp = head->cpu[c].expires;
194		if (exp < lowest) {
195			bcpu = c;
196			lowest = exp;
197		}
198	}
199	if (bcpu >= 0) {
200		head->next_cpu = bcpu;
201		c = head->cpu[bcpu].lcpu;
202		if (uv_setup_intr(c, lowest))
203			/* If we didn't set it up in time, trigger */
204			uv_rtc_send_IPI(c);
205	} else {
206		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
207			UVH_RTC1_INT_CONFIG_M_MASK);
208	}
209}
210
211/*
212 * Set expiration time for current cpu.
213 *
214 * Returns 1 if we missed the expiration time.
215 */
216static int uv_rtc_set_timer(int cpu, u64 expires)
217{
218	int pnode = uv_cpu_to_pnode(cpu);
219	int bid = uv_cpu_to_blade_id(cpu);
220	struct uv_rtc_timer_head *head = blade_info[bid];
221	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
222	u64 *t = &head->cpu[bcpu].expires;
223	unsigned long flags;
224	int next_cpu;
225
226	spin_lock_irqsave(&head->lock, flags);
227
228	next_cpu = head->next_cpu;
229	*t = expires;
230
231	/* Will this one be next to go off? */
232	if (next_cpu < 0 || bcpu == next_cpu ||
233			expires < head->cpu[next_cpu].expires) {
234		head->next_cpu = bcpu;
235		if (uv_setup_intr(cpu, expires)) {
236			*t = ULLONG_MAX;
237			uv_rtc_find_next_timer(head, pnode);
238			spin_unlock_irqrestore(&head->lock, flags);
239			return -ETIME;
240		}
241	}
242
243	spin_unlock_irqrestore(&head->lock, flags);
244	return 0;
245}
246
247/*
248 * Unset expiration time for current cpu.
249 *
250 * Returns 1 if this timer was pending.
251 */
252static int uv_rtc_unset_timer(int cpu, int force)
253{
254	int pnode = uv_cpu_to_pnode(cpu);
255	int bid = uv_cpu_to_blade_id(cpu);
256	struct uv_rtc_timer_head *head = blade_info[bid];
257	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
258	u64 *t = &head->cpu[bcpu].expires;
259	unsigned long flags;
260	int rc = 0;
261
262	spin_lock_irqsave(&head->lock, flags);
263
264	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
265		rc = 1;
266
267	if (rc) {
268		*t = ULLONG_MAX;
269		/* Was the hardware setup for this timer? */
270		if (head->next_cpu == bcpu)
271			uv_rtc_find_next_timer(head, pnode);
272	}
273
274	spin_unlock_irqrestore(&head->lock, flags);
275
276	return rc;
277}
278
279
280/*
281 * Kernel interface routines.
282 */
283
284/*
285 * Read the RTC.
286 *
287 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
288 * cachelines of it's own page.  This allows faster simultaneous reads
289 * from a given socket.
290 */
291static cycle_t uv_read_rtc(struct clocksource *cs)
292{
293	unsigned long offset;
294
295	if (uv_get_min_hub_revision_id() == 1)
296		offset = 0;
297	else
298		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
299
300	return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
301}
302
303/*
304 * Program the next event, relative to now
305 */
306static int uv_rtc_next_event(unsigned long delta,
307			     struct clock_event_device *ced)
308{
309	int ced_cpu = cpumask_first(ced->cpumask);
310
311	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
312}
313
314/*
315 * Setup the RTC timer in oneshot mode
316 */
317static void uv_rtc_timer_setup(enum clock_event_mode mode,
318			       struct clock_event_device *evt)
319{
320	int ced_cpu = cpumask_first(evt->cpumask);
321
322	switch (mode) {
323	case CLOCK_EVT_MODE_PERIODIC:
324	case CLOCK_EVT_MODE_ONESHOT:
325	case CLOCK_EVT_MODE_RESUME:
326		/* Nothing to do here yet */
327		break;
328	case CLOCK_EVT_MODE_UNUSED:
329	case CLOCK_EVT_MODE_SHUTDOWN:
330		uv_rtc_unset_timer(ced_cpu, 1);
331		break;
332	}
333}
334
335static void uv_rtc_interrupt(void)
336{
337	int cpu = smp_processor_id();
338	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
339
340	if (!ced || !ced->event_handler)
341		return;
342
343	if (uv_rtc_unset_timer(cpu, 0) != 1)
344		return;
345
346	ced->event_handler(ced);
347}
348
349static int __init uv_enable_evt_rtc(char *str)
350{
351	uv_rtc_evt_enable = 1;
352
353	return 1;
354}
355__setup("uvrtcevt", uv_enable_evt_rtc);
356
357static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
358{
359	struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
360
361	*ced = clock_event_device_uv;
362	ced->cpumask = cpumask_of(smp_processor_id());
363	clockevents_register_device(ced);
364}
365
366static __init int uv_rtc_setup_clock(void)
367{
368	int rc;
369
370	if (!is_uv_system())
371		return -ENODEV;
372
373	clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
374				clocksource_uv.shift);
375
376	/* If single blade, prefer tsc */
377	if (uv_num_possible_blades() == 1)
378		clocksource_uv.rating = 250;
379
380	rc = clocksource_register(&clocksource_uv);
381	if (rc)
382		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
383	else
384		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
385			sn_rtc_cycles_per_second/(unsigned long)1E6);
386
387	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
388		return rc;
389
390	/* Setup and register clockevents */
391	rc = uv_rtc_allocate_timers();
392	if (rc)
393		goto error;
394
395	x86_platform_ipi_callback = uv_rtc_interrupt;
396
397	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
398				NSEC_PER_SEC, clock_event_device_uv.shift);
399
400	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
401						sn_rtc_cycles_per_second;
402
403	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
404				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
405
406	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
407	if (rc) {
408		x86_platform_ipi_callback = NULL;
409		uv_rtc_deallocate_timers();
410		goto error;
411	}
412
413	printk(KERN_INFO "UV RTC clockevents registered\n");
414
415	return 0;
416
417error:
418	clocksource_unregister(&clocksource_uv);
419	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
420
421	return rc;
422}
423arch_initcall(uv_rtc_setup_clock);
424