• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/tile/lib/
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 *
14 * This file shares the implementation of the userspace memcpy and
15 * the kernel's memcpy, copy_to_user and copy_from_user.
16 */
17
18#include <arch/chip.h>
19
20
21#include <linux/linkage.h>
22
23/* On TILE64, we wrap these functions via arch/tile/lib/memcpy_tile64.c */
24#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
25#define memcpy __memcpy_asm
26#define __copy_to_user_inatomic __copy_to_user_inatomic_asm
27#define __copy_from_user_inatomic __copy_from_user_inatomic_asm
28#define __copy_from_user_zeroing __copy_from_user_zeroing_asm
29#endif
30
31#define IS_MEMCPY	  0
32#define IS_COPY_FROM_USER  1
33#define IS_COPY_FROM_USER_ZEROING  2
34#define IS_COPY_TO_USER   -1
35
36	.section .text.memcpy_common, "ax"
37	.align 64
38
39/* Use this to preface each bundle that can cause an exception so
40 * the kernel can clean up properly. The special cleanup code should
41 * not use these, since it knows what it is doing.
42 */
43#define EX \
44	.pushsection __ex_table, "a"; \
45	.word 9f, memcpy_common_fixup; \
46	.popsection; \
47	9
48
49
50/* __copy_from_user_inatomic takes the kernel target address in r0,
51 * the user source in r1, and the bytes to copy in r2.
52 * It returns the number of uncopiable bytes (hopefully zero) in r0.
53 */
54ENTRY(__copy_from_user_inatomic)
55.type __copy_from_user_inatomic, @function
56        FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \
57	  .text.memcpy_common, \
58          .Lend_memcpy_common - __copy_from_user_inatomic)
59	{ movei r29, IS_COPY_FROM_USER; j memcpy_common }
60	.size __copy_from_user_inatomic, . - __copy_from_user_inatomic
61
62/* __copy_from_user_zeroing is like __copy_from_user_inatomic, but
63 * any uncopiable bytes are zeroed in the target.
64 */
65ENTRY(__copy_from_user_zeroing)
66.type __copy_from_user_zeroing, @function
67        FEEDBACK_REENTER(__copy_from_user_inatomic)
68	{ movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common }
69	.size __copy_from_user_zeroing, . - __copy_from_user_zeroing
70
71/* __copy_to_user_inatomic takes the user target address in r0,
72 * the kernel source in r1, and the bytes to copy in r2.
73 * It returns the number of uncopiable bytes (hopefully zero) in r0.
74 */
75ENTRY(__copy_to_user_inatomic)
76.type __copy_to_user_inatomic, @function
77        FEEDBACK_REENTER(__copy_from_user_inatomic)
78	{ movei r29, IS_COPY_TO_USER; j memcpy_common }
79	.size __copy_to_user_inatomic, . - __copy_to_user_inatomic
80
81ENTRY(memcpy)
82.type memcpy, @function
83        FEEDBACK_REENTER(__copy_from_user_inatomic)
84	{ movei r29, IS_MEMCPY }
85	.size memcpy, . - memcpy
86	/* Fall through */
87
88	.type memcpy_common, @function
89memcpy_common:
90	/* On entry, r29 holds one of the IS_* macro values from above. */
91
92
93	/* r0 is the dest, r1 is the source, r2 is the size. */
94
95	/* Save aside original dest so we can return it at the end. */
96	{ sw sp, lr; move r23, r0; or r4, r0, r1 }
97
98	/* Check for an empty size. */
99	{ bz r2, .Ldone; andi r4, r4, 3 }
100
101	/* Save aside original values in case of a fault. */
102	{ move r24, r1; move r25, r2 }
103	move r27, lr
104
105	/* Check for an unaligned source or dest. */
106	{ bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
107
108.Lcheck_aligned_copy_size:
109	/* If we are copying < 256 bytes, branch to simple case. */
110	{ blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
111
112	/* Copying >= 256 bytes, so jump to complex prefetching loop. */
113	{ andi r6, r1, 63; j .Lcopy_many }
114
115/*
116 *
117 * Aligned 4 byte at a time copy loop
118 *
119 */
120
121.Lcopy_8_loop:
122	/* Copy two words at a time to hide load latency. */
123EX:	{ lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
124EX:	{ lw r4, r1; addi r1, r1, 4 }
125EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
126EX:	{ sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
127.Lcopy_8_check:
128	{ bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
129
130	/* Copy odd leftover word, if any. */
131	{ bnzt r4, .Lcheck_odd_stragglers }
132EX:	{ lw r3, r1; addi r1, r1, 4 }
133EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
134
135.Lcheck_odd_stragglers:
136	{ bnz r2, .Lcopy_unaligned_few }
137
138.Ldone:
139	/* For memcpy return original dest address, else zero. */
140	{ mz r0, r29, r23; jrp lr }
141
142
143/*
144 *
145 * Prefetching multiple cache line copy handler (for large transfers).
146 *
147 */
148
149	/* Copy words until r1 is cache-line-aligned. */
150.Lalign_loop:
151EX:	{ lw r3, r1; addi r1, r1, 4 }
152	{ andi r6, r1, 63 }
153EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
154.Lcopy_many:
155	{ bnzt r6, .Lalign_loop; addi r9, r0, 63 }
156
157	{ addi r3, r1, 60; andi r9, r9, -64 }
158
159#if CHIP_HAS_WH64()
160        /* No need to prefetch dst, we'll just do the wh64
161         * right before we copy a line.
162	 */
163#endif
164
165EX:	{ lw r5, r3; addi r3, r3, 64; movei r4, 1 }
166        /* Intentionally stall for a few cycles to leave L2 cache alone. */
167        { bnzt zero, .; move r27, lr }
168EX:	{ lw r6, r3; addi r3, r3, 64 }
169        /* Intentionally stall for a few cycles to leave L2 cache alone. */
170        { bnzt zero, . }
171EX:	{ lw r7, r3; addi r3, r3, 64 }
172#if !CHIP_HAS_WH64()
173        /* Prefetch the dest */
174        /* Intentionally stall for a few cycles to leave L2 cache alone. */
175        { bnzt zero, . }
176        /* Use a real load to cause a TLB miss if necessary.  We aren't using
177         * r28, so this should be fine.
178         */
179EX:	{ lw r28, r9; addi r9, r9, 64 }
180        /* Intentionally stall for a few cycles to leave L2 cache alone. */
181        { bnzt zero, . }
182        { prefetch r9; addi r9, r9, 64 }
183        /* Intentionally stall for a few cycles to leave L2 cache alone. */
184        { bnzt zero, . }
185        { prefetch r9; addi r9, r9, 64 }
186#endif
187        /* Intentionally stall for a few cycles to leave L2 cache alone. */
188        { bz zero, .Lbig_loop2 }
189
190	/* On entry to this loop:
191	 * - r0 points to the start of dst line 0
192	 * - r1 points to start of src line 0
193	 * - r2 >= (256 - 60), only the first time the loop trips.
194	 * - r3 contains r1 + 128 + 60    [pointer to end of source line 2]
195	 *   This is our prefetch address. When we get near the end
196	 *   rather than prefetching off the end this is changed to point
197	 *   to some "safe" recently loaded address.
198	 * - r5 contains *(r1 + 60)       [i.e. last word of source line 0]
199	 * - r6 contains *(r1 + 64 + 60)  [i.e. last word of source line 1]
200         * - r9 contains ((r0 + 63) & -64)
201	 *     [start of next dst cache line.]
202	 */
203
204.Lbig_loop:
205	{ jal .Lcopy_line2; add r15, r1, r2 }
206
207.Lbig_loop2:
208	/* Copy line 0, first stalling until r5 is ready. */
209EX:	{ move r12, r5; lw r16, r1 }
210	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
211        /* Prefetch several lines ahead. */
212EX:	{ lw r5, r3; addi r3, r3, 64 }
213        { jal .Lcopy_line }
214
215	/* Copy line 1, first stalling until r6 is ready. */
216EX:	{ move r12, r6; lw r16, r1 }
217	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
218        /* Prefetch several lines ahead. */
219EX:	{ lw r6, r3; addi r3, r3, 64 }
220	{ jal .Lcopy_line }
221
222	/* Copy line 2, first stalling until r7 is ready. */
223EX:	{ move r12, r7; lw r16, r1 }
224	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
225        /* Prefetch several lines ahead. */
226EX:	{ lw r7, r3; addi r3, r3, 64 }
227        /* Use up a caches-busy cycle by jumping back to the top of the
228         * loop. Might as well get it out of the way now.
229         */
230        { j .Lbig_loop }
231
232
233	/* On entry:
234	 * - r0 points to the destination line.
235	 * - r1 points to the source line.
236         * - r3 is the next prefetch address.
237	 * - r9 holds the last address used for wh64.
238	 * - r12 = WORD_15
239         * - r16 = WORD_0.
240         * - r17 == r1 + 16.
241         * - r27 holds saved lr to restore.
242	 *
243	 * On exit:
244	 * - r0 is incremented by 64.
245	 * - r1 is incremented by 64, unless that would point to a word
246         *   beyond the end of the source array, in which case it is redirected
247         *   to point to an arbitrary word already in the cache.
248	 * - r2 is decremented by 64.
249         * - r3 is unchanged, unless it points to a word beyond the
250         *   end of the source array, in which case it is redirected
251         *   to point to an arbitrary word already in the cache.
252         *   Redirecting is OK since if we are that close to the end
253         *   of the array we will not come back to this subroutine
254         *   and use the contents of the prefetched address.
255	 * - r4 is nonzero iff r2 >= 64.
256         * - r9 is incremented by 64, unless it points beyond the
257         *   end of the last full destination cache line, in which
258         *   case it is redirected to a "safe address" that can be
259         *   clobbered (sp - 64)
260	 * - lr contains the value in r27.
261	 */
262
263/* r26 unused */
264
265.Lcopy_line:
266        /* TODO: when r3 goes past the end, we would like to redirect it
267         * to prefetch the last partial cache line (if any) just once, for the
268         * benefit of the final cleanup loop. But we don't want to
269         * prefetch that line more than once, or subsequent prefetches
270         * will go into the RTF. But then .Lbig_loop should unconditionally
271         * branch to top of loop to execute final prefetch, and its
272         * nop should become a conditional branch.
273         */
274
275        /* We need two non-memory cycles here to cover the resources
276         * used by the loads initiated by the caller.
277         */
278        { add r15, r1, r2 }
279.Lcopy_line2:
280        { slt_u r13, r3, r15; addi r17, r1, 16 }
281
282        /* NOTE: this will stall for one cycle as L1 is busy. */
283
284        /* Fill second L1D line. */
285EX:	{ lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
286
287#if CHIP_HAS_WH64()
288        /* Prepare destination line for writing. */
289EX:	{ wh64 r9; addi r9, r9, 64 }
290#else
291        /* Prefetch dest line */
292	{ prefetch r9; addi r9, r9, 64 }
293#endif
294        /* Load seven words that are L1D hits to cover wh64 L2 usage. */
295
296        /* Load the three remaining words from the last L1D line, which
297         * we know has already filled the L1D.
298         */
299EX:	{ lw r4, r1;  addi r1, r1, 4;   addi r20, r1, 16 }   /* r4 = WORD_12 */
300EX:	{ lw r8, r1;  addi r1, r1, 4;   slt_u r13, r20, r15 }/* r8 = WORD_13 */
301EX:	{ lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 }  /* r11 = WORD_14 */
302
303        /* Load the three remaining words from the first L1D line, first
304         * stalling until it has filled by "looking at" r16.
305         */
306EX:	{ lw r13, r1; addi r1, r1, 4; move zero, r16 }   /* r13 = WORD_1 */
307EX:	{ lw r14, r1; addi r1, r1, 4 }                   /* r14 = WORD_2 */
308EX:	{ lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
309
310        /* Load second word from the second L1D line, first
311         * stalling until it has filled by "looking at" r17.
312         */
313EX:	{ lw r19, r1; addi r1, r1, 4; move zero, r17 }  /* r19 = WORD_5 */
314
315        /* Store last word to the destination line, potentially dirtying it
316         * for the first time, which keeps the L2 busy for two cycles.
317         */
318EX:	{ sw r10, r12 }                                 /* store(WORD_15) */
319
320        /* Use two L1D hits to cover the sw L2 access above. */
321EX:	{ lw r10, r1; addi r1, r1, 4 }                  /* r10 = WORD_6 */
322EX:	{ lw r12, r1; addi r1, r1, 4 }                  /* r12 = WORD_7 */
323
324        /* Fill third L1D line. */
325EX:	{ lw r18, r1; addi r1, r1, 4 }                  /* r18 = WORD_8 */
326
327        /* Store first L1D line. */
328EX:	{ sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
329EX:	{ sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
330EX:	{ sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
331#if CHIP_HAS_WH64()
332EX:	{ sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
333#else
334        /* Back up the r9 to a cache line we are already storing to
335	 * if it gets past the end of the dest vector.  Strictly speaking,
336	 * we don't need to back up to the start of a cache line, but it's free
337	 * and tidy, so why not?
338         */
339EX:	{ sw r0, r15; addi r0, r0, 4; andi r13, r0, -64 } /* store(WORD_3) */
340#endif
341        /* Store second L1D line. */
342EX:	{ sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
343EX:	{ sw r0, r19; addi r0, r0, 4 }                  /* store(WORD_5) */
344EX:	{ sw r0, r10; addi r0, r0, 4 }                  /* store(WORD_6) */
345EX:	{ sw r0, r12; addi r0, r0, 4 }                  /* store(WORD_7) */
346
347EX:	{ lw r13, r1; addi r1, r1, 4; move zero, r18 }  /* r13 = WORD_9 */
348EX:	{ lw r14, r1; addi r1, r1, 4 }                  /* r14 = WORD_10 */
349EX:	{ lw r15, r1; move r1, r20   }                  /* r15 = WORD_11 */
350
351        /* Store third L1D line. */
352EX:	{ sw r0, r18; addi r0, r0, 4 }                  /* store(WORD_8) */
353EX:	{ sw r0, r13; addi r0, r0, 4 }                  /* store(WORD_9) */
354EX:	{ sw r0, r14; addi r0, r0, 4 }                  /* store(WORD_10) */
355EX:	{ sw r0, r15; addi r0, r0, 4 }                  /* store(WORD_11) */
356
357        /* Store rest of fourth L1D line. */
358EX:	{ sw r0, r4;  addi r0, r0, 4 }                  /* store(WORD_12) */
359        {
360EX:	sw r0, r8                                       /* store(WORD_13) */
361        addi r0, r0, 4
362	/* Will r2 be > 64 after we subtract 64 below? */
363        shri r4, r2, 7
364        }
365        {
366EX:	sw r0, r11                                      /* store(WORD_14) */
367        addi r0, r0, 8
368        /* Record 64 bytes successfully copied. */
369        addi r2, r2, -64
370        }
371
372	{ jrp lr; move lr, r27 }
373
374        /* Convey to the backtrace library that the stack frame is size
375	 * zero, and the real return address is on the stack rather than
376	 * in 'lr'.
377	 */
378	{ info 8 }
379
380	.align 64
381.Lcopy_unaligned_maybe_many:
382	/* Skip the setup overhead if we aren't copying many bytes. */
383	{ slti_u r8, r2, 20; sub r4, zero, r0 }
384	{ bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
385	{ bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
386
387/*
388 *
389 * unaligned 4 byte at a time copy handler.
390 *
391 */
392
393	/* Copy single bytes until r0 == 0 mod 4, so we can store words. */
394.Lalign_dest_loop:
395EX:	{ lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
396EX:	{ sb r0, r3;   addi r0, r0, 1; addi r2, r2, -1 }
397	{ bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
398
399	/* If source and dest are now *both* aligned, do an aligned copy. */
400	{ bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
401
402.Ldest_is_word_aligned:
403
404#if CHIP_HAS_DWORD_ALIGN()
405EX:	{ andi r8, r0, 63; lwadd_na r6, r1, 4}
406	{ slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
407
408	/* This copies unaligned words until either there are fewer
409	 * than 4 bytes left to copy, or until the destination pointer
410	 * is cache-aligned, whichever comes first.
411	 *
412	 * On entry:
413	 * - r0 is the next store address.
414	 * - r1 points 4 bytes past the load address corresponding to r0.
415	 * - r2 >= 4
416	 * - r6 is the next aligned word loaded.
417	 */
418.Lcopy_unaligned_src_words:
419EX:	{ lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
420	/* stall */
421	{ dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
422EX:	{ swadd r0, r6, 4; addi r2, r2, -4 }
423	{ bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
424	{ bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
425
426	/* On entry:
427	 * - r0 is the next store address.
428	 * - r1 points 4 bytes past the load address corresponding to r0.
429	 * - r2 >= 4 (# of bytes left to store).
430	 * - r6 is the next aligned src word value.
431	 * - r9 = (r2 < 64U).
432	 * - r18 points one byte past the end of source memory.
433	 */
434.Ldest_is_L2_line_aligned:
435
436	{
437	/* Not a full cache line remains. */
438	bnz r9, .Lcleanup_unaligned_words
439	move r7, r6
440	}
441
442	/* r2 >= 64 */
443
444	/* Kick off two prefetches, but don't go past the end. */
445	{ addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
446	{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
447	{ mvz r3, r8, r1; addi r8, r3, 64 }
448	{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
449	{ mvz r3, r8, r1; movei r17, 0 }
450
451.Lcopy_unaligned_line:
452	/* Prefetch another line. */
453	{ prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
454	/* Fire off a load of the last word we are about to copy. */
455EX:	{ lw_na r15, r15; slt_u r8, r3, r18 }
456
457EX:	{ mvz r3, r8, r1; wh64 r0 }
458
459	/* This loop runs twice.
460	 *
461	 * On entry:
462	 * - r17 is even before the first iteration, and odd before
463	 *   the second.  It is incremented inside the loop.  Encountering
464	 *   an even value at the end of the loop makes it stop.
465	 */
466.Lcopy_half_an_unaligned_line:
467EX:	{
468	/* Stall until the last byte is ready. In the steady state this
469	 * guarantees all words to load below will be in the L2 cache, which
470	 * avoids shunting the loads to the RTF.
471	 */
472	move zero, r15
473	lwadd_na r7, r1, 16
474	}
475EX:	{ lwadd_na r11, r1, 12 }
476EX:	{ lwadd_na r14, r1, -24 }
477EX:	{ lwadd_na r8, r1, 4 }
478EX:	{ lwadd_na r9, r1, 4 }
479EX:	{
480	lwadd_na r10, r1, 8
481	/* r16 = (r2 < 64), after we subtract 32 from r2 below. */
482	slti_u r16, r2, 64 + 32
483	}
484EX:	{ lwadd_na r12, r1, 4; addi r17, r17, 1 }
485EX:	{ lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
486EX:	{ swadd r0, r6,  4; dword_align r7,  r8,  r1 }
487EX:	{ swadd r0, r7,  4; dword_align r8,  r9,  r1 }
488EX:	{ swadd r0, r8,  4; dword_align r9,  r10, r1 }
489EX:	{ swadd r0, r9,  4; dword_align r10, r11, r1 }
490EX:	{ swadd r0, r10, 4; dword_align r11, r12, r1 }
491EX:	{ swadd r0, r11, 4; dword_align r12, r13, r1 }
492EX:	{ swadd r0, r12, 4; dword_align r13, r14, r1 }
493EX:	{ swadd r0, r13, 4; addi r2, r2, -32 }
494	{ move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
495
496	{ bzt r16, .Lcopy_unaligned_line; move r7, r6 }
497
498	/* On entry:
499	 * - r0 is the next store address.
500	 * - r1 points 4 bytes past the load address corresponding to r0.
501	 * - r2 >= 0 (# of bytes left to store).
502	 * - r7 is the next aligned src word value.
503	 */
504.Lcleanup_unaligned_words:
505	/* Handle any trailing bytes. */
506	{ bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
507	{ bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
508
509	/* Move r1 back to the point where it corresponds to r0. */
510	{ addi r1, r1, -4 }
511
512#else /* !CHIP_HAS_DWORD_ALIGN() */
513
514	/* Compute right/left shift counts and load initial source words. */
515	{ andi r5, r1, -4; andi r3, r1, 3 }
516EX:	{ lw r6, r5; addi r5, r5, 4; shli r3, r3, 3 }
517EX:	{ lw r7, r5; addi r5, r5, 4; sub r4, zero, r3 }
518
519	/* Load and store one word at a time, using shifts and ORs
520	 * to correct for the misaligned src.
521	 */
522.Lcopy_unaligned_src_loop:
523	{ shr r6, r6, r3; shl r8, r7, r4 }
524EX:	{ lw r7, r5; or r8, r8, r6; move r6, r7 }
525EX:	{ sw r0, r8; addi r0, r0, 4; addi r2, r2, -4 }
526	{ addi r5, r5, 4; slti_u r8, r2, 8 }
527	{ bzt r8, .Lcopy_unaligned_src_loop; addi r1, r1, 4 }
528
529	{ bz r2, .Lcopy_unaligned_done }
530#endif /* !CHIP_HAS_DWORD_ALIGN() */
531
532	/* Fall through */
533
534/*
535 *
536 * 1 byte at a time copy handler.
537 *
538 */
539
540.Lcopy_unaligned_few:
541EX:	{ lb_u r3, r1; addi r1, r1, 1 }
542EX:	{ sb r0, r3;   addi r0, r0, 1; addi r2, r2, -1 }
543	{ bnzt r2, .Lcopy_unaligned_few }
544
545.Lcopy_unaligned_done:
546
547	/* For memcpy return original dest address, else zero. */
548	{ mz r0, r29, r23; jrp lr }
549
550.Lend_memcpy_common:
551	.size memcpy_common, .Lend_memcpy_common - memcpy_common
552
553	.section .fixup,"ax"
554memcpy_common_fixup:
555	.type memcpy_common_fixup, @function
556
557	/* Skip any bytes we already successfully copied.
558	 * r2 (num remaining) is correct, but r0 (dst) and r1 (src)
559	 * may not be quite right because of unrolling and prefetching.
560	 * So we need to recompute their values as the address just
561	 * after the last byte we are sure was successfully loaded and
562	 * then stored.
563	 */
564
565	/* Determine how many bytes we successfully copied. */
566	{ sub r3, r25, r2 }
567
568	/* Add this to the original r0 and r1 to get their new values. */
569	{ add r0, r23, r3; add r1, r24, r3 }
570
571	{ bzt r29, memcpy_fixup_loop }
572	{ blzt r29, copy_to_user_fixup_loop }
573
574copy_from_user_fixup_loop:
575	/* Try copying the rest one byte at a time, expecting a load fault. */
576.Lcfu:	{ lb_u r3, r1; addi r1, r1, 1 }
577	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
578	{ bnzt r2, copy_from_user_fixup_loop }
579
580.Lcopy_from_user_fixup_zero_remainder:
581	{ bbs r29, 2f }  /* low bit set means IS_COPY_FROM_USER */
582	/* byte-at-a-time loop faulted, so zero the rest. */
583	{ move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ }
5841:      { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 }
585	{ bnzt r3, 1b }
5862:	move lr, r27
587	{ move r0, r2; jrp lr }
588
589copy_to_user_fixup_loop:
590	/* Try copying the rest one byte at a time, expecting a store fault. */
591	{ lb_u r3, r1; addi r1, r1, 1 }
592.Lctu:	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
593	{ bnzt r2, copy_to_user_fixup_loop }
594.Lcopy_to_user_fixup_done:
595	move lr, r27
596	{ move r0, r2; jrp lr }
597
598memcpy_fixup_loop:
599	/* Try copying the rest one byte at a time. We expect a disastrous
600	 * fault to happen since we are in fixup code, but let it happen.
601	 */
602	{ lb_u r3, r1; addi r1, r1, 1 }
603	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
604	{ bnzt r2, memcpy_fixup_loop }
605	/* This should be unreachable, we should have faulted again.
606	 * But be paranoid and handle it in case some interrupt changed
607	 * the TLB or something.
608	 */
609	move lr, r27
610	{ move r0, r23; jrp lr }
611
612	.size memcpy_common_fixup, . - memcpy_common_fixup
613
614	.section __ex_table,"a"
615	.word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
616	.word .Lctu, .Lcopy_to_user_fixup_done
617