• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/tile/kernel/
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 */
14
15#include <linux/mm.h>
16#include <linux/dma-mapping.h>
17#include <linux/vmalloc.h>
18#include <asm/tlbflush.h>
19#include <asm/homecache.h>
20
21/* Generic DMA mapping functions: */
22
23/*
24 * Allocate what Linux calls "coherent" memory, which for us just
25 * means uncached.
26 */
27void *dma_alloc_coherent(struct device *dev,
28			 size_t size,
29			 dma_addr_t *dma_handle,
30			 gfp_t gfp)
31{
32	u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
33	int node = dev_to_node(dev);
34	int order = get_order(size);
35	struct page *pg;
36	dma_addr_t addr;
37
38	gfp |= __GFP_ZERO;
39
40	/*
41	 * By forcing NUMA node 0 for 32-bit masks we ensure that the
42	 * high 32 bits of the resulting PA will be zero.  If the mask
43	 * size is, e.g., 24, we may still not be able to guarantee a
44	 * suitable memory address, in which case we will return NULL.
45	 * But such devices are uncommon.
46	 */
47	if (dma_mask <= DMA_BIT_MASK(32))
48		node = 0;
49
50	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
51	if (pg == NULL)
52		return NULL;
53
54	addr = page_to_phys(pg);
55	if (addr + size > dma_mask) {
56		homecache_free_pages(addr, order);
57		return NULL;
58	}
59
60	*dma_handle = addr;
61	return page_address(pg);
62}
63EXPORT_SYMBOL(dma_alloc_coherent);
64
65/*
66 * Free memory that was allocated with dma_alloc_coherent.
67 */
68void dma_free_coherent(struct device *dev, size_t size,
69		  void *vaddr, dma_addr_t dma_handle)
70{
71	homecache_free_pages((unsigned long)vaddr, get_order(size));
72}
73EXPORT_SYMBOL(dma_free_coherent);
74
75/*
76 * The map routines "map" the specified address range for DMA
77 * accesses.  The memory belongs to the device after this call is
78 * issued, until it is unmapped with dma_unmap_single.
79 *
80 * We don't need to do any mapping, we just flush the address range
81 * out of the cache and return a DMA address.
82 *
83 * The unmap routines do whatever is necessary before the processor
84 * accesses the memory again, and must be called before the driver
85 * touches the memory.  We can get away with a cache invalidate if we
86 * can count on nothing having been touched.
87 */
88
89
90/*
91 * dma_map_single can be passed any memory address, and there appear
92 * to be no alignment constraints.
93 *
94 * There is a chance that the start of the buffer will share a cache
95 * line with some other data that has been touched in the meantime.
96 */
97dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
98	       enum dma_data_direction direction)
99{
100	struct page *page;
101	dma_addr_t dma_addr;
102	int thispage;
103
104	BUG_ON(!valid_dma_direction(direction));
105	WARN_ON(size == 0);
106
107	dma_addr = __pa(ptr);
108
109	/* We might have been handed a buffer that wraps a page boundary */
110	while ((int)size > 0) {
111		/* The amount to flush that's on this page */
112		thispage = PAGE_SIZE - ((unsigned long)ptr & (PAGE_SIZE - 1));
113		thispage = min((int)thispage, (int)size);
114		/* Is this valid for any page we could be handed? */
115		page = pfn_to_page(kaddr_to_pfn(ptr));
116		homecache_flush_cache(page, 0);
117		ptr += thispage;
118		size -= thispage;
119	}
120
121	return dma_addr;
122}
123EXPORT_SYMBOL(dma_map_single);
124
125void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
126		 enum dma_data_direction direction)
127{
128	BUG_ON(!valid_dma_direction(direction));
129}
130EXPORT_SYMBOL(dma_unmap_single);
131
132int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
133	   enum dma_data_direction direction)
134{
135	struct scatterlist *sg;
136	int i;
137
138	BUG_ON(!valid_dma_direction(direction));
139
140	WARN_ON(nents == 0 || sglist->length == 0);
141
142	for_each_sg(sglist, sg, nents, i) {
143		struct page *page;
144		sg->dma_address = sg_phys(sg);
145		page = pfn_to_page(sg->dma_address >> PAGE_SHIFT);
146		homecache_flush_cache(page, 0);
147	}
148
149	return nents;
150}
151EXPORT_SYMBOL(dma_map_sg);
152
153void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
154	     enum dma_data_direction direction)
155{
156	BUG_ON(!valid_dma_direction(direction));
157}
158EXPORT_SYMBOL(dma_unmap_sg);
159
160dma_addr_t dma_map_page(struct device *dev, struct page *page,
161			unsigned long offset, size_t size,
162			enum dma_data_direction direction)
163{
164	BUG_ON(!valid_dma_direction(direction));
165
166	homecache_flush_cache(page, 0);
167
168	return page_to_pa(page) + offset;
169}
170EXPORT_SYMBOL(dma_map_page);
171
172void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
173	       enum dma_data_direction direction)
174{
175	BUG_ON(!valid_dma_direction(direction));
176}
177EXPORT_SYMBOL(dma_unmap_page);
178
179void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
180			     size_t size, enum dma_data_direction direction)
181{
182	BUG_ON(!valid_dma_direction(direction));
183}
184EXPORT_SYMBOL(dma_sync_single_for_cpu);
185
186void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
187				size_t size, enum dma_data_direction direction)
188{
189	unsigned long start = PFN_DOWN(dma_handle);
190	unsigned long end = PFN_DOWN(dma_handle + size - 1);
191	unsigned long i;
192
193	BUG_ON(!valid_dma_direction(direction));
194	for (i = start; i <= end; ++i)
195		homecache_flush_cache(pfn_to_page(i), 0);
196}
197EXPORT_SYMBOL(dma_sync_single_for_device);
198
199void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
200		    enum dma_data_direction direction)
201{
202	BUG_ON(!valid_dma_direction(direction));
203	WARN_ON(nelems == 0 || sg[0].length == 0);
204}
205EXPORT_SYMBOL(dma_sync_sg_for_cpu);
206
207/*
208 * Flush and invalidate cache for scatterlist.
209 */
210void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
211			    int nelems, enum dma_data_direction direction)
212{
213	struct scatterlist *sg;
214	int i;
215
216	BUG_ON(!valid_dma_direction(direction));
217	WARN_ON(nelems == 0 || sglist->length == 0);
218
219	for_each_sg(sglist, sg, nelems, i) {
220		dma_sync_single_for_device(dev, sg->dma_address,
221					   sg_dma_len(sg), direction);
222	}
223}
224EXPORT_SYMBOL(dma_sync_sg_for_device);
225
226void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
227				   unsigned long offset, size_t size,
228				   enum dma_data_direction direction)
229{
230	dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
231}
232EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
233
234void dma_sync_single_range_for_device(struct device *dev,
235				      dma_addr_t dma_handle,
236				      unsigned long offset, size_t size,
237				      enum dma_data_direction direction)
238{
239	dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
240}
241EXPORT_SYMBOL(dma_sync_single_range_for_device);
242
243/*
244 * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
245 * need to do any flushing here.
246 */
247void dma_cache_sync(void *vaddr, size_t size,
248		    enum dma_data_direction direction)
249{
250}
251EXPORT_SYMBOL(dma_cache_sync);
252