• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/sparc/include/asm/
1#ifndef _SPARC64_TSB_H
2#define _SPARC64_TSB_H
3
4/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
5 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
6 * pointers into this table for 8K and 64K page sizes, and also a
7 * comparison TAG based upon the virtual address and context which
8 * faults.
9 *
10 * TLB miss trap handler software does the actual lookup via something
11 * of the form:
12 *
13 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
14 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
15 *	sllx		%g6, 22, %g6
16 *	srlx		%g6, 22, %g6
17 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
18 * 	cmp		%g4, %g6
19 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
20 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
21 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
22 * 	retry
23 *
24 *
25 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
26 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
27 * register which is:
28 *
29 * -------------------------------------------------
30 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
31 * -------------------------------------------------
32 *  63 61 60      48 47 42 41                     0
33 *
34 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
35 * field.
36 *
37 * Like the powerpc hashtables we need to use locking in order to
38 * synchronize while we update the entries.  PTE updates need locking
39 * as well.
40 *
41 * We need to carefully choose a lock bits for the TSB entry.  We
42 * choose to use bit 47 in the tag.  Also, since we never map anything
43 * at page zero in context zero, we use zero as an invalid tag entry.
44 * When the lock bit is set, this forces a tag comparison failure.
45 */
46
47#define TSB_TAG_LOCK_BIT	47
48#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
49
50#define TSB_TAG_INVALID_BIT	46
51#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
52
53/* Some cpus support physical address quad loads.  We want to use
54 * those if possible so we don't need to hard-lock the TSB mapping
55 * into the TLB.  We encode some instruction patching in order to
56 * support this.
57 *
58 * The kernel TSB is locked into the TLB by virtue of being in the
59 * kernel image, so we don't play these games for swapper_tsb access.
60 */
61#ifndef __ASSEMBLY__
62struct tsb_ldquad_phys_patch_entry {
63	unsigned int	addr;
64	unsigned int	sun4u_insn;
65	unsigned int	sun4v_insn;
66};
67extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
68	__tsb_ldquad_phys_patch_end;
69
70struct tsb_phys_patch_entry {
71	unsigned int	addr;
72	unsigned int	insn;
73};
74extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
75#endif
76#define TSB_LOAD_QUAD(TSB, REG)	\
77661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
78	.section	.tsb_ldquad_phys_patch, "ax"; \
79	.word		661b; \
80	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
81	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
82	.previous
83
84#define TSB_LOAD_TAG_HIGH(TSB, REG) \
85661:	lduwa		[TSB] ASI_N, REG; \
86	.section	.tsb_phys_patch, "ax"; \
87	.word		661b; \
88	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
89	.previous
90
91#define TSB_LOAD_TAG(TSB, REG) \
92661:	ldxa		[TSB] ASI_N, REG; \
93	.section	.tsb_phys_patch, "ax"; \
94	.word		661b; \
95	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
96	.previous
97
98#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
99661:	casa		[TSB] ASI_N, REG1, REG2; \
100	.section	.tsb_phys_patch, "ax"; \
101	.word		661b; \
102	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
103	.previous
104
105#define TSB_CAS_TAG(TSB, REG1, REG2) \
106661:	casxa		[TSB] ASI_N, REG1, REG2; \
107	.section	.tsb_phys_patch, "ax"; \
108	.word		661b; \
109	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
110	.previous
111
112#define TSB_STORE(ADDR, VAL) \
113661:	stxa		VAL, [ADDR] ASI_N; \
114	.section	.tsb_phys_patch, "ax"; \
115	.word		661b; \
116	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
117	.previous
118
119#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
12099:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
121	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
122	andcc	REG1, REG2, %g0;	\
123	bne,pn	%icc, 99b;		\
124	 nop;				\
125	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
126	cmp	REG1, REG2;		\
127	bne,pn	%icc, 99b;		\
128	 nop;				\
129
130#define TSB_WRITE(TSB, TTE, TAG) \
131	add	TSB, 0x8, TSB;   \
132	TSB_STORE(TSB, TTE);     \
133	sub	TSB, 0x8, TSB;   \
134	TSB_STORE(TSB, TAG);
135
136#define KTSB_LOAD_QUAD(TSB, REG) \
137	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG;
138
139#define KTSB_STORE(ADDR, VAL) \
140	stxa		VAL, [ADDR] ASI_N;
141
142#define KTSB_LOCK_TAG(TSB, REG1, REG2)	\
14399:	lduwa	[TSB] ASI_N, REG1;	\
144	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
145	andcc	REG1, REG2, %g0;	\
146	bne,pn	%icc, 99b;		\
147	 nop;				\
148	casa	[TSB] ASI_N, REG1, REG2;\
149	cmp	REG1, REG2;		\
150	bne,pn	%icc, 99b;		\
151	 nop;				\
152
153#define KTSB_WRITE(TSB, TTE, TAG) \
154	add	TSB, 0x8, TSB;   \
155	stxa	TTE, [TSB] ASI_N;     \
156	sub	TSB, 0x8, TSB;   \
157	stxa	TAG, [TSB] ASI_N;
158
159	/* Do a kernel page table walk.  Leaves physical PTE pointer in
160	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
161	 * VADDR will not be clobbered, but REG2 will.
162	 */
163#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
164	sethi		%hi(swapper_pg_dir), REG1; \
165	or		REG1, %lo(swapper_pg_dir), REG1; \
166	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
167	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
168	andn		REG2, 0x3, REG2; \
169	lduw		[REG1 + REG2], REG1; \
170	brz,pn		REG1, FAIL_LABEL; \
171	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
172	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
173	sllx		REG1, 11, REG1; \
174	andn		REG2, 0x3, REG2; \
175	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
176	brz,pn		REG1, FAIL_LABEL; \
177	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
178	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
179	sllx		REG1, 11, REG1; \
180	andn		REG2, 0x7, REG2; \
181	add		REG1, REG2, REG1;
182
183	/* Do a user page table walk in MMU globals.  Leaves physical PTE
184	 * pointer in REG1.  Jumps to FAIL_LABEL on early page table walk
185	 * termination.  Physical base of page tables is in PHYS_PGD which
186	 * will not be modified.
187	 *
188	 * VADDR will not be clobbered, but REG1 and REG2 will.
189	 */
190#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
191	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
192	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
193	andn		REG2, 0x3, REG2; \
194	lduwa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
195	brz,pn		REG1, FAIL_LABEL; \
196	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
197	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
198	sllx		REG1, 11, REG1; \
199	andn		REG2, 0x3, REG2; \
200	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
201	brz,pn		REG1, FAIL_LABEL; \
202	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
203	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
204	sllx		REG1, 11, REG1; \
205	andn		REG2, 0x7, REG2; \
206	add		REG1, REG2, REG1;
207
208/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
209 * If no entry is found, FAIL_LABEL will be branched to.  On success
210 * the resulting PTE value will be left in REG1.  VADDR is preserved
211 * by this routine.
212 */
213#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
214	sethi		%hi(prom_trans), REG1; \
215	or		REG1, %lo(prom_trans), REG1; \
21697:	ldx		[REG1 + 0x00], REG2; \
217	brz,pn		REG2, FAIL_LABEL; \
218	 nop; \
219	ldx		[REG1 + 0x08], REG3; \
220	add		REG2, REG3, REG3; \
221	cmp		REG2, VADDR; \
222	bgu,pt		%xcc, 98f; \
223	 cmp		VADDR, REG3; \
224	bgeu,pt		%xcc, 98f; \
225	 ldx		[REG1 + 0x10], REG3; \
226	sub		VADDR, REG2, REG2; \
227	ba,pt		%xcc, 99f; \
228	 add		REG3, REG2, REG1; \
22998:	ba,pt		%xcc, 97b; \
230	 add		REG1, (3 * 8), REG1; \
23199:
232
233	/* We use a 32K TSB for the whole kernel, this allows to
234	 * handle about 16MB of modules and vmalloc mappings without
235	 * incurring many hash conflicts.
236	 */
237#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
238#define KERNEL_TSB_NENTRIES	\
239	(KERNEL_TSB_SIZE_BYTES / 16)
240#define KERNEL_TSB4M_NENTRIES	4096
241
242	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
243	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
244	 * and the found TTE will be left in REG1.  REG3 and REG4 must
245	 * be an even/odd pair of registers.
246	 *
247	 * VADDR and TAG will be preserved and not clobbered by this macro.
248	 */
249#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
250	sethi		%hi(swapper_tsb), REG1; \
251	or		REG1, %lo(swapper_tsb), REG1; \
252	srlx		VADDR, PAGE_SHIFT, REG2; \
253	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
254	sllx		REG2, 4, REG2; \
255	add		REG1, REG2, REG2; \
256	KTSB_LOAD_QUAD(REG2, REG3); \
257	cmp		REG3, TAG; \
258	be,a,pt		%xcc, OK_LABEL; \
259	 mov		REG4, REG1;
260
261#ifndef CONFIG_DEBUG_PAGEALLOC
262	/* This version uses a trick, the TAG is already (VADDR >> 22) so
263	 * we can make use of that for the index computation.
264	 */
265#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
266	sethi		%hi(swapper_4m_tsb), REG1; \
267	or		REG1, %lo(swapper_4m_tsb), REG1; \
268	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
269	sllx		REG2, 4, REG2; \
270	add		REG1, REG2, REG2; \
271	KTSB_LOAD_QUAD(REG2, REG3); \
272	cmp		REG3, TAG; \
273	be,a,pt		%xcc, OK_LABEL; \
274	 mov		REG4, REG1;
275#endif
276
277#endif /* !(_SPARC64_TSB_H) */
278