• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/powerpc/platforms/pseries/
1/*
2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17 */
18
19/* Change Activity:
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21 * End Change Activity
22 */
23
24#include <linux/errno.h>
25#include <linux/threads.h>
26#include <linux/kernel_stat.h>
27#include <linux/signal.h>
28#include <linux/sched.h>
29#include <linux/ioport.h>
30#include <linux/interrupt.h>
31#include <linux/timex.h>
32#include <linux/init.h>
33#include <linux/delay.h>
34#include <linux/irq.h>
35#include <linux/random.h>
36#include <linux/sysrq.h>
37#include <linux/bitops.h>
38
39#include <asm/uaccess.h>
40#include <asm/system.h>
41#include <asm/io.h>
42#include <asm/pgtable.h>
43#include <asm/irq.h>
44#include <asm/cache.h>
45#include <asm/prom.h>
46#include <asm/ptrace.h>
47#include <asm/machdep.h>
48#include <asm/rtas.h>
49#include <asm/udbg.h>
50#include <asm/firmware.h>
51
52#include "pseries.h"
53
54static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
55static DEFINE_SPINLOCK(ras_log_buf_lock);
56
57static char mce_data_buf[RTAS_ERROR_LOG_MAX];
58
59static int ras_get_sensor_state_token;
60static int ras_check_exception_token;
61
62#define EPOW_SENSOR_TOKEN	9
63#define EPOW_SENSOR_INDEX	0
64
65static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
66static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
67
68
69/*
70 * Initialize handlers for the set of interrupts caused by hardware errors
71 * and power system events.
72 */
73static int __init init_ras_IRQ(void)
74{
75	struct device_node *np;
76
77	ras_get_sensor_state_token = rtas_token("get-sensor-state");
78	ras_check_exception_token = rtas_token("check-exception");
79
80	/* Internal Errors */
81	np = of_find_node_by_path("/event-sources/internal-errors");
82	if (np != NULL) {
83		request_event_sources_irqs(np, ras_error_interrupt,
84					   "RAS_ERROR");
85		of_node_put(np);
86	}
87
88	/* EPOW Events */
89	np = of_find_node_by_path("/event-sources/epow-events");
90	if (np != NULL) {
91		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
92		of_node_put(np);
93	}
94
95	return 0;
96}
97__initcall(init_ras_IRQ);
98
99/*
100 * Handle power subsystem events (EPOW).
101 *
102 * Presently we just log the event has occurred.  This should be fixed
103 * to examine the type of power failure and take appropriate action where
104 * the time horizon permits something useful to be done.
105 */
106static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
107{
108	int status = 0xdeadbeef;
109	int state = 0;
110	int critical;
111
112	status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
113			   EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
114
115	if (state > 3)
116		critical = 1;  /* Time Critical */
117	else
118		critical = 0;
119
120	spin_lock(&ras_log_buf_lock);
121
122	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
123			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
124			   irq_map[irq].hwirq,
125			   RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
126			   critical, __pa(&ras_log_buf),
127				rtas_get_error_log_max());
128
129	udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
130		    *((unsigned long *)&ras_log_buf), status, state);
131	printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
132	       *((unsigned long *)&ras_log_buf), status, state);
133
134	/* format and print the extended information */
135	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
136
137	spin_unlock(&ras_log_buf_lock);
138	return IRQ_HANDLED;
139}
140
141/*
142 * Handle hardware error interrupts.
143 *
144 * RTAS check-exception is called to collect data on the exception.  If
145 * the error is deemed recoverable, we log a warning and return.
146 * For nonrecoverable errors, an error is logged and we stop all processing
147 * as quickly as possible in order to prevent propagation of the failure.
148 */
149static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
150{
151	struct rtas_error_log *rtas_elog;
152	int status = 0xdeadbeef;
153	int fatal;
154
155	spin_lock(&ras_log_buf_lock);
156
157	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
158			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
159			   irq_map[irq].hwirq,
160			   RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
161			   __pa(&ras_log_buf),
162				rtas_get_error_log_max());
163
164	rtas_elog = (struct rtas_error_log *)ras_log_buf;
165
166	if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
167		fatal = 1;
168	else
169		fatal = 0;
170
171	/* format and print the extended information */
172	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
173
174	if (fatal) {
175		udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
176			    *((unsigned long *)&ras_log_buf), status);
177		printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
178		       *((unsigned long *)&ras_log_buf), status);
179
180#ifndef DEBUG_RTAS_POWER_OFF
181		/* Don't actually power off when debugging so we can test
182		 * without actually failing while injecting errors.
183		 * Error data will not be logged to syslog.
184		 */
185		ppc_md.power_off();
186#endif
187	} else {
188		udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
189			    *((unsigned long *)&ras_log_buf), status);
190		printk(KERN_WARNING
191		       "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
192		       *((unsigned long *)&ras_log_buf), status);
193	}
194
195	spin_unlock(&ras_log_buf_lock);
196	return IRQ_HANDLED;
197}
198
199/* Get the error information for errors coming through the
200 * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
201 * the actual r3 if possible, and a ptr to the error log entry
202 * will be returned if found.
203 *
204 * The mce_data_buf does not have any locks or protection around it,
205 * if a second machine check comes in, or a system reset is done
206 * before we have logged the error, then we will get corruption in the
207 * error log.  This is preferable over holding off on calling
208 * ibm,nmi-interlock which would result in us checkstopping if a
209 * second machine check did come in.
210 */
211static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
212{
213	unsigned long errdata = regs->gpr[3];
214	struct rtas_error_log *errhdr = NULL;
215	unsigned long *savep;
216
217	if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
218	    (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
219		savep = __va(errdata);
220		regs->gpr[3] = savep[0];	/* restore original r3 */
221		memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
222		memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
223		errhdr = (struct rtas_error_log *)mce_data_buf;
224	} else {
225		printk("FWNMI: corrupt r3\n");
226	}
227	return errhdr;
228}
229
230/* Call this when done with the data returned by FWNMI_get_errinfo.
231 * It will release the saved data area for other CPUs in the
232 * partition to receive FWNMI errors.
233 */
234static void fwnmi_release_errinfo(void)
235{
236	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
237	if (ret != 0)
238		printk("FWNMI: nmi-interlock failed: %d\n", ret);
239}
240
241int pSeries_system_reset_exception(struct pt_regs *regs)
242{
243	if (fwnmi_active) {
244		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
245		if (errhdr) {
246		}
247		fwnmi_release_errinfo();
248	}
249	return 0; /* need to perform reset */
250}
251
252/*
253 * See if we can recover from a machine check exception.
254 * This is only called on power4 (or above) and only via
255 * the Firmware Non-Maskable Interrupts (fwnmi) handler
256 * which provides the error analysis for us.
257 *
258 * Return 1 if corrected (or delivered a signal).
259 * Return 0 if there is nothing we can do.
260 */
261static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
262{
263	int nonfatal = 0;
264
265	if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
266		/* Platform corrected itself */
267		nonfatal = 1;
268	} else if ((regs->msr & MSR_RI) &&
269		   user_mode(regs) &&
270		   err->severity == RTAS_SEVERITY_ERROR_SYNC &&
271		   err->disposition == RTAS_DISP_NOT_RECOVERED &&
272		   err->target == RTAS_TARGET_MEMORY &&
273		   err->type == RTAS_TYPE_ECC_UNCORR &&
274		   !(current->pid == 0 || is_global_init(current))) {
275		/* Kill off a user process with an ECC error */
276		printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
277		       current->pid);
278		_exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
279		nonfatal = 1;
280	}
281
282	log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
283
284	return nonfatal;
285}
286
287/*
288 * Handle a machine check.
289 *
290 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
291 * should be present.  If so the handler which called us tells us if the
292 * error was recovered (never true if RI=0).
293 *
294 * On hardware prior to Power 4 these exceptions were asynchronous which
295 * means we can't tell exactly where it occurred and so we can't recover.
296 */
297int pSeries_machine_check_exception(struct pt_regs *regs)
298{
299	struct rtas_error_log *errp;
300
301	if (fwnmi_active) {
302		errp = fwnmi_get_errinfo(regs);
303		fwnmi_release_errinfo();
304		if (errp && recover_mce(regs, errp))
305			return 1;
306	}
307
308	return 0;
309}
310