• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/powerpc/platforms/ps3/
1/*
2 *  PS3 address space management.
3 *
4 *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5 *  Copyright 2006 Sony Corp.
6 *
7 *  This program is free software; you can redistribute it and/or modify
8 *  it under the terms of the GNU General Public License as published by
9 *  the Free Software Foundation; version 2 of the License.
10 *
11 *  This program is distributed in the hope that it will be useful,
12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 *  GNU General Public License for more details.
15 *
16 *  You should have received a copy of the GNU General Public License
17 *  along with this program; if not, write to the Free Software
18 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/memory_hotplug.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26
27#include <asm/cell-regs.h>
28#include <asm/firmware.h>
29#include <asm/prom.h>
30#include <asm/udbg.h>
31#include <asm/lv1call.h>
32
33#include "platform.h"
34
35#if defined(DEBUG)
36#define DBG udbg_printf
37#else
38#define DBG pr_devel
39#endif
40
41enum {
42#if defined(CONFIG_PS3_DYNAMIC_DMA)
43	USE_DYNAMIC_DMA = 1,
44#else
45	USE_DYNAMIC_DMA = 0,
46#endif
47};
48
49enum {
50	PAGE_SHIFT_4K = 12U,
51	PAGE_SHIFT_64K = 16U,
52	PAGE_SHIFT_16M = 24U,
53};
54
55static unsigned long make_page_sizes(unsigned long a, unsigned long b)
56{
57	return (a << 56) | (b << 48);
58}
59
60enum {
61	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
62	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
63};
64
65/* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
66
67enum {
68	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
69	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
70};
71
72/*============================================================================*/
73/* virtual address space routines                                             */
74/*============================================================================*/
75
76/**
77 * struct mem_region - memory region structure
78 * @base: base address
79 * @size: size in bytes
80 * @offset: difference between base and rm.size
81 */
82
83struct mem_region {
84	u64 base;
85	u64 size;
86	unsigned long offset;
87};
88
89/**
90 * struct map - address space state variables holder
91 * @total: total memory available as reported by HV
92 * @vas_id - HV virtual address space id
93 * @htab_size: htab size in bytes
94 *
95 * The HV virtual address space (vas) allows for hotplug memory regions.
96 * Memory regions can be created and destroyed in the vas at runtime.
97 * @rm: real mode (bootmem) region
98 * @r1: hotplug memory region(s)
99 *
100 * ps3 addresses
101 * virt_addr: a cpu 'translated' effective address
102 * phys_addr: an address in what Linux thinks is the physical address space
103 * lpar_addr: an address in the HV virtual address space
104 * bus_addr: an io controller 'translated' address on a device bus
105 */
106
107struct map {
108	u64 total;
109	u64 vas_id;
110	u64 htab_size;
111	struct mem_region rm;
112	struct mem_region r1;
113};
114
115#define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
116static void __maybe_unused _debug_dump_map(const struct map *m,
117	const char *func, int line)
118{
119	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
120	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
121	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
122	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
123	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
124	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
125	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
126}
127
128static struct map map;
129
130/**
131 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
132 * @phys_addr: linux physical address
133 */
134
135unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
136{
137	BUG_ON(is_kernel_addr(phys_addr));
138	return (phys_addr < map.rm.size || phys_addr >= map.total)
139		? phys_addr : phys_addr + map.r1.offset;
140}
141
142EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
143
144/**
145 * ps3_mm_vas_create - create the virtual address space
146 */
147
148void __init ps3_mm_vas_create(unsigned long* htab_size)
149{
150	int result;
151	u64 start_address;
152	u64 size;
153	u64 access_right;
154	u64 max_page_size;
155	u64 flags;
156
157	result = lv1_query_logical_partition_address_region_info(0,
158		&start_address, &size, &access_right, &max_page_size,
159		&flags);
160
161	if (result) {
162		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
163			"failed: %s\n", __func__, __LINE__,
164			ps3_result(result));
165		goto fail;
166	}
167
168	if (max_page_size < PAGE_SHIFT_16M) {
169		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
170			max_page_size);
171		goto fail;
172	}
173
174	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
175	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
176
177	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
178			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
179			&map.vas_id, &map.htab_size);
180
181	if (result) {
182		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
183			__func__, __LINE__, ps3_result(result));
184		goto fail;
185	}
186
187	result = lv1_select_virtual_address_space(map.vas_id);
188
189	if (result) {
190		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
191			__func__, __LINE__, ps3_result(result));
192		goto fail;
193	}
194
195	*htab_size = map.htab_size;
196
197	debug_dump_map(&map);
198
199	return;
200
201fail:
202	panic("ps3_mm_vas_create failed");
203}
204
205/**
206 * ps3_mm_vas_destroy -
207 */
208
209void ps3_mm_vas_destroy(void)
210{
211	int result;
212
213	DBG("%s:%d: map.vas_id    = %llu\n", __func__, __LINE__, map.vas_id);
214
215	if (map.vas_id) {
216		result = lv1_select_virtual_address_space(0);
217		BUG_ON(result);
218		result = lv1_destruct_virtual_address_space(map.vas_id);
219		BUG_ON(result);
220		map.vas_id = 0;
221	}
222}
223
224/*============================================================================*/
225/* memory hotplug routines                                                    */
226/*============================================================================*/
227
228/**
229 * ps3_mm_region_create - create a memory region in the vas
230 * @r: pointer to a struct mem_region to accept initialized values
231 * @size: requested region size
232 *
233 * This implementation creates the region with the vas large page size.
234 * @size is rounded down to a multiple of the vas large page size.
235 */
236
237static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
238{
239	int result;
240	u64 muid;
241
242	r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
243
244	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
245	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
246	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
247		size - r->size, (size - r->size) / 1024 / 1024);
248
249	if (r->size == 0) {
250		DBG("%s:%d: size == 0\n", __func__, __LINE__);
251		result = -1;
252		goto zero_region;
253	}
254
255	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
256		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
257
258	if (result || r->base < map.rm.size) {
259		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
260			__func__, __LINE__, ps3_result(result));
261		goto zero_region;
262	}
263
264	r->offset = r->base - map.rm.size;
265	return result;
266
267zero_region:
268	r->size = r->base = r->offset = 0;
269	return result;
270}
271
272/**
273 * ps3_mm_region_destroy - destroy a memory region
274 * @r: pointer to struct mem_region
275 */
276
277static void ps3_mm_region_destroy(struct mem_region *r)
278{
279	int result;
280
281	DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base);
282	if (r->base) {
283		result = lv1_release_memory(r->base);
284		BUG_ON(result);
285		r->size = r->base = r->offset = 0;
286		map.total = map.rm.size;
287	}
288}
289
290/**
291 * ps3_mm_add_memory - hot add memory
292 */
293
294static int __init ps3_mm_add_memory(void)
295{
296	int result;
297	unsigned long start_addr;
298	unsigned long start_pfn;
299	unsigned long nr_pages;
300
301	if (!firmware_has_feature(FW_FEATURE_PS3_LV1))
302		return -ENODEV;
303
304	BUG_ON(!mem_init_done);
305
306	start_addr = map.rm.size;
307	start_pfn = start_addr >> PAGE_SHIFT;
308	nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309
310	DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n",
311		__func__, __LINE__, start_addr, start_pfn, nr_pages);
312
313	result = add_memory(0, start_addr, map.r1.size);
314
315	if (result) {
316		pr_err("%s:%d: add_memory failed: (%d)\n",
317			__func__, __LINE__, result);
318		return result;
319	}
320
321	memblock_add(start_addr, map.r1.size);
322	memblock_analyze();
323
324	result = online_pages(start_pfn, nr_pages);
325
326	if (result)
327		pr_err("%s:%d: online_pages failed: (%d)\n",
328			__func__, __LINE__, result);
329
330	return result;
331}
332
333device_initcall(ps3_mm_add_memory);
334
335/*============================================================================*/
336/* dma routines                                                               */
337/*============================================================================*/
338
339/**
340 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
341 * @r: pointer to dma region structure
342 * @lpar_addr: HV lpar address
343 */
344
345static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
346	unsigned long lpar_addr)
347{
348	if (lpar_addr >= map.rm.size)
349		lpar_addr -= map.r1.offset;
350	BUG_ON(lpar_addr < r->offset);
351	BUG_ON(lpar_addr >= r->offset + r->len);
352	return r->bus_addr + lpar_addr - r->offset;
353}
354
355#define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
356static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
357	const char *func, int line)
358{
359	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
360		r->dev->dev_id);
361	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
362	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
363	DBG("%s:%d: len        %lxh\n", func, line, r->len);
364	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
365}
366
367  /**
368 * dma_chunk - A chunk of dma pages mapped by the io controller.
369 * @region - The dma region that owns this chunk.
370 * @lpar_addr: Starting lpar address of the area to map.
371 * @bus_addr: Starting ioc bus address of the area to map.
372 * @len: Length in bytes of the area to map.
373 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
374 * list of all chuncks owned by the region.
375 *
376 * This implementation uses a very simple dma page manager
377 * based on the dma_chunk structure.  This scheme assumes
378 * that all drivers use very well behaved dma ops.
379 */
380
381struct dma_chunk {
382	struct ps3_dma_region *region;
383	unsigned long lpar_addr;
384	unsigned long bus_addr;
385	unsigned long len;
386	struct list_head link;
387	unsigned int usage_count;
388};
389
390#define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
391static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
392	int line)
393{
394	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
395		c->region->dev->bus_id, c->region->dev->dev_id);
396	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
397	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
398	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
399	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
400	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
401	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
402	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
403}
404
405static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
406	unsigned long bus_addr, unsigned long len)
407{
408	struct dma_chunk *c;
409	unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
410	unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
411					      1 << r->page_size);
412
413	list_for_each_entry(c, &r->chunk_list.head, link) {
414		/* intersection */
415		if (aligned_bus >= c->bus_addr &&
416		    aligned_bus + aligned_len <= c->bus_addr + c->len)
417			return c;
418
419		/* below */
420		if (aligned_bus + aligned_len <= c->bus_addr)
421			continue;
422
423		/* above */
424		if (aligned_bus >= c->bus_addr + c->len)
425			continue;
426
427		/* we don't handle the multi-chunk case for now */
428		dma_dump_chunk(c);
429		BUG();
430	}
431	return NULL;
432}
433
434static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
435	unsigned long lpar_addr, unsigned long len)
436{
437	struct dma_chunk *c;
438	unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
439	unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
440					      1 << r->page_size);
441
442	list_for_each_entry(c, &r->chunk_list.head, link) {
443		/* intersection */
444		if (c->lpar_addr <= aligned_lpar &&
445		    aligned_lpar < c->lpar_addr + c->len) {
446			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
447				return c;
448			else {
449				dma_dump_chunk(c);
450				BUG();
451			}
452		}
453		/* below */
454		if (aligned_lpar + aligned_len <= c->lpar_addr) {
455			continue;
456		}
457		/* above */
458		if (c->lpar_addr + c->len <= aligned_lpar) {
459			continue;
460		}
461	}
462	return NULL;
463}
464
465static int dma_sb_free_chunk(struct dma_chunk *c)
466{
467	int result = 0;
468
469	if (c->bus_addr) {
470		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
471			c->region->dev->dev_id, c->bus_addr, c->len);
472		BUG_ON(result);
473	}
474
475	kfree(c);
476	return result;
477}
478
479static int dma_ioc0_free_chunk(struct dma_chunk *c)
480{
481	int result = 0;
482	int iopage;
483	unsigned long offset;
484	struct ps3_dma_region *r = c->region;
485
486	DBG("%s:start\n", __func__);
487	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
488		offset = (1 << r->page_size) * iopage;
489		/* put INVALID entry */
490		result = lv1_put_iopte(0,
491				       c->bus_addr + offset,
492				       c->lpar_addr + offset,
493				       r->ioid,
494				       0);
495		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
496		    c->bus_addr + offset,
497		    c->lpar_addr + offset,
498		    r->ioid);
499
500		if (result) {
501			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
502			    __LINE__, ps3_result(result));
503		}
504	}
505	kfree(c);
506	DBG("%s:end\n", __func__);
507	return result;
508}
509
510/**
511 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
512 * @r: Pointer to a struct ps3_dma_region.
513 * @phys_addr: Starting physical address of the area to map.
514 * @len: Length in bytes of the area to map.
515 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
516 *
517 * This is the lowest level dma mapping routine, and is the one that will
518 * make the HV call to add the pages into the io controller address space.
519 */
520
521static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
522	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
523{
524	int result;
525	struct dma_chunk *c;
526
527	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
528
529	if (!c) {
530		result = -ENOMEM;
531		goto fail_alloc;
532	}
533
534	c->region = r;
535	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
536	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
537	c->len = len;
538
539	BUG_ON(iopte_flag != 0xf800000000000000UL);
540	result = lv1_map_device_dma_region(c->region->dev->bus_id,
541					   c->region->dev->dev_id, c->lpar_addr,
542					   c->bus_addr, c->len, iopte_flag);
543	if (result) {
544		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
545			__func__, __LINE__, ps3_result(result));
546		goto fail_map;
547	}
548
549	list_add(&c->link, &r->chunk_list.head);
550
551	*c_out = c;
552	return 0;
553
554fail_map:
555	kfree(c);
556fail_alloc:
557	*c_out = NULL;
558	DBG(" <- %s:%d\n", __func__, __LINE__);
559	return result;
560}
561
562static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
563			      unsigned long len, struct dma_chunk **c_out,
564			      u64 iopte_flag)
565{
566	int result;
567	struct dma_chunk *c, *last;
568	int iopage, pages;
569	unsigned long offset;
570
571	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
572	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
573	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
574
575	if (!c) {
576		result = -ENOMEM;
577		goto fail_alloc;
578	}
579
580	c->region = r;
581	c->len = len;
582	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
583	/* allocate IO address */
584	if (list_empty(&r->chunk_list.head)) {
585		/* first one */
586		c->bus_addr = r->bus_addr;
587	} else {
588		/* derive from last bus addr*/
589		last  = list_entry(r->chunk_list.head.next,
590				   struct dma_chunk, link);
591		c->bus_addr = last->bus_addr + last->len;
592		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
593		    last->bus_addr, last->len);
594	}
595
596
597	/* build ioptes for the area */
598	pages = len >> r->page_size;
599	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
600	    r->page_size, r->len, pages, iopte_flag);
601	for (iopage = 0; iopage < pages; iopage++) {
602		offset = (1 << r->page_size) * iopage;
603		result = lv1_put_iopte(0,
604				       c->bus_addr + offset,
605				       c->lpar_addr + offset,
606				       r->ioid,
607				       iopte_flag);
608		if (result) {
609			pr_warning("%s:%d: lv1_put_iopte failed: %s\n",
610				   __func__, __LINE__, ps3_result(result));
611			goto fail_map;
612		}
613		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
614		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
615		    r->ioid);
616	}
617
618	/* be sure that last allocated one is inserted at head */
619	list_add(&c->link, &r->chunk_list.head);
620
621	*c_out = c;
622	DBG("%s: end\n", __func__);
623	return 0;
624
625fail_map:
626	for (iopage--; 0 <= iopage; iopage--) {
627		lv1_put_iopte(0,
628			      c->bus_addr + offset,
629			      c->lpar_addr + offset,
630			      r->ioid,
631			      0);
632	}
633	kfree(c);
634fail_alloc:
635	*c_out = NULL;
636	return result;
637}
638
639/**
640 * dma_sb_region_create - Create a device dma region.
641 * @r: Pointer to a struct ps3_dma_region.
642 *
643 * This is the lowest level dma region create routine, and is the one that
644 * will make the HV call to create the region.
645 */
646
647static int dma_sb_region_create(struct ps3_dma_region *r)
648{
649	int result;
650	u64 bus_addr;
651
652	DBG(" -> %s:%d:\n", __func__, __LINE__);
653
654	BUG_ON(!r);
655
656	if (!r->dev->bus_id) {
657		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
658			r->dev->bus_id, r->dev->dev_id);
659		return 0;
660	}
661
662	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
663	    __LINE__, r->len, r->page_size, r->offset);
664
665	BUG_ON(!r->len);
666	BUG_ON(!r->page_size);
667	BUG_ON(!r->region_ops);
668
669	INIT_LIST_HEAD(&r->chunk_list.head);
670	spin_lock_init(&r->chunk_list.lock);
671
672	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
673		roundup_pow_of_two(r->len), r->page_size, r->region_type,
674		&bus_addr);
675	r->bus_addr = bus_addr;
676
677	if (result) {
678		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
679			__func__, __LINE__, ps3_result(result));
680		r->len = r->bus_addr = 0;
681	}
682
683	return result;
684}
685
686static int dma_ioc0_region_create(struct ps3_dma_region *r)
687{
688	int result;
689	u64 bus_addr;
690
691	INIT_LIST_HEAD(&r->chunk_list.head);
692	spin_lock_init(&r->chunk_list.lock);
693
694	result = lv1_allocate_io_segment(0,
695					 r->len,
696					 r->page_size,
697					 &bus_addr);
698	r->bus_addr = bus_addr;
699	if (result) {
700		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
701			__func__, __LINE__, ps3_result(result));
702		r->len = r->bus_addr = 0;
703	}
704	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
705	    r->len, r->page_size, r->bus_addr);
706	return result;
707}
708
709/**
710 * dma_region_free - Free a device dma region.
711 * @r: Pointer to a struct ps3_dma_region.
712 *
713 * This is the lowest level dma region free routine, and is the one that
714 * will make the HV call to free the region.
715 */
716
717static int dma_sb_region_free(struct ps3_dma_region *r)
718{
719	int result;
720	struct dma_chunk *c;
721	struct dma_chunk *tmp;
722
723	BUG_ON(!r);
724
725	if (!r->dev->bus_id) {
726		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
727			r->dev->bus_id, r->dev->dev_id);
728		return 0;
729	}
730
731	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
732		list_del(&c->link);
733		dma_sb_free_chunk(c);
734	}
735
736	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
737		r->bus_addr);
738
739	if (result)
740		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
741			__func__, __LINE__, ps3_result(result));
742
743	r->bus_addr = 0;
744
745	return result;
746}
747
748static int dma_ioc0_region_free(struct ps3_dma_region *r)
749{
750	int result;
751	struct dma_chunk *c, *n;
752
753	DBG("%s: start\n", __func__);
754	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
755		list_del(&c->link);
756		dma_ioc0_free_chunk(c);
757	}
758
759	result = lv1_release_io_segment(0, r->bus_addr);
760
761	if (result)
762		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
763			__func__, __LINE__, ps3_result(result));
764
765	r->bus_addr = 0;
766	DBG("%s: end\n", __func__);
767
768	return result;
769}
770
771/**
772 * dma_sb_map_area - Map an area of memory into a device dma region.
773 * @r: Pointer to a struct ps3_dma_region.
774 * @virt_addr: Starting virtual address of the area to map.
775 * @len: Length in bytes of the area to map.
776 * @bus_addr: A pointer to return the starting ioc bus address of the area to
777 * map.
778 *
779 * This is the common dma mapping routine.
780 */
781
782static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
783	   unsigned long len, dma_addr_t *bus_addr,
784	   u64 iopte_flag)
785{
786	int result;
787	unsigned long flags;
788	struct dma_chunk *c;
789	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
790		: virt_addr;
791	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
792	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
793					      1 << r->page_size);
794	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
795
796	if (!USE_DYNAMIC_DMA) {
797		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
798		DBG(" -> %s:%d\n", __func__, __LINE__);
799		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
800			virt_addr);
801		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
802			phys_addr);
803		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
804			lpar_addr);
805		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
806		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
807		*bus_addr, len);
808	}
809
810	spin_lock_irqsave(&r->chunk_list.lock, flags);
811	c = dma_find_chunk(r, *bus_addr, len);
812
813	if (c) {
814		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
815		dma_dump_chunk(c);
816		c->usage_count++;
817		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
818		return 0;
819	}
820
821	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
822
823	if (result) {
824		*bus_addr = 0;
825		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
826			__func__, __LINE__, result);
827		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
828		return result;
829	}
830
831	c->usage_count = 1;
832
833	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
834	return result;
835}
836
837static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
838	     unsigned long len, dma_addr_t *bus_addr,
839	     u64 iopte_flag)
840{
841	int result;
842	unsigned long flags;
843	struct dma_chunk *c;
844	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
845		: virt_addr;
846	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
847	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
848					      1 << r->page_size);
849
850	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
851	    virt_addr, len);
852	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
853	    phys_addr, aligned_phys, aligned_len);
854
855	spin_lock_irqsave(&r->chunk_list.lock, flags);
856	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
857
858	if (c) {
859		BUG();
860		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
861		c->usage_count++;
862		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
863		return 0;
864	}
865
866	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
867				    iopte_flag);
868
869	if (result) {
870		*bus_addr = 0;
871		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
872			__func__, __LINE__, result);
873		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
874		return result;
875	}
876	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
877	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
878	    virt_addr, phys_addr, aligned_phys, *bus_addr);
879	c->usage_count = 1;
880
881	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
882	return result;
883}
884
885/**
886 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
887 * @r: Pointer to a struct ps3_dma_region.
888 * @bus_addr: The starting ioc bus address of the area to unmap.
889 * @len: Length in bytes of the area to unmap.
890 *
891 * This is the common dma unmap routine.
892 */
893
894static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
895	unsigned long len)
896{
897	unsigned long flags;
898	struct dma_chunk *c;
899
900	spin_lock_irqsave(&r->chunk_list.lock, flags);
901	c = dma_find_chunk(r, bus_addr, len);
902
903	if (!c) {
904		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
905			1 << r->page_size);
906		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
907			- aligned_bus, 1 << r->page_size);
908		DBG("%s:%d: not found: bus_addr %llxh\n",
909			__func__, __LINE__, bus_addr);
910		DBG("%s:%d: not found: len %lxh\n",
911			__func__, __LINE__, len);
912		DBG("%s:%d: not found: aligned_bus %lxh\n",
913			__func__, __LINE__, aligned_bus);
914		DBG("%s:%d: not found: aligned_len %lxh\n",
915			__func__, __LINE__, aligned_len);
916		BUG();
917	}
918
919	c->usage_count--;
920
921	if (!c->usage_count) {
922		list_del(&c->link);
923		dma_sb_free_chunk(c);
924	}
925
926	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
927	return 0;
928}
929
930static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
931			dma_addr_t bus_addr, unsigned long len)
932{
933	unsigned long flags;
934	struct dma_chunk *c;
935
936	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
937	spin_lock_irqsave(&r->chunk_list.lock, flags);
938	c = dma_find_chunk(r, bus_addr, len);
939
940	if (!c) {
941		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
942							1 << r->page_size);
943		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
944						      - aligned_bus,
945						      1 << r->page_size);
946		DBG("%s:%d: not found: bus_addr %llxh\n",
947		    __func__, __LINE__, bus_addr);
948		DBG("%s:%d: not found: len %lxh\n",
949		    __func__, __LINE__, len);
950		DBG("%s:%d: not found: aligned_bus %lxh\n",
951		    __func__, __LINE__, aligned_bus);
952		DBG("%s:%d: not found: aligned_len %lxh\n",
953		    __func__, __LINE__, aligned_len);
954		BUG();
955	}
956
957	c->usage_count--;
958
959	if (!c->usage_count) {
960		list_del(&c->link);
961		dma_ioc0_free_chunk(c);
962	}
963
964	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
965	DBG("%s: end\n", __func__);
966	return 0;
967}
968
969/**
970 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
971 * @r: Pointer to a struct ps3_dma_region.
972 *
973 * This routine creates an HV dma region for the device and maps all available
974 * ram into the io controller bus address space.
975 */
976
977static int dma_sb_region_create_linear(struct ps3_dma_region *r)
978{
979	int result;
980	unsigned long virt_addr, len;
981	dma_addr_t tmp;
982
983	if (r->len > 16*1024*1024) {
984		/* force 16M dma pages for linear mapping */
985		if (r->page_size != PS3_DMA_16M) {
986			pr_info("%s:%d: forcing 16M pages for linear map\n",
987				__func__, __LINE__);
988			r->page_size = PS3_DMA_16M;
989			r->len = _ALIGN_UP(r->len, 1 << r->page_size);
990		}
991	}
992
993	result = dma_sb_region_create(r);
994	BUG_ON(result);
995
996	if (r->offset < map.rm.size) {
997		/* Map (part of) 1st RAM chunk */
998		virt_addr = map.rm.base + r->offset;
999		len = map.rm.size - r->offset;
1000		if (len > r->len)
1001			len = r->len;
1002		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1003			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1004			CBE_IOPTE_M);
1005		BUG_ON(result);
1006	}
1007
1008	if (r->offset + r->len > map.rm.size) {
1009		/* Map (part of) 2nd RAM chunk */
1010		virt_addr = map.rm.size;
1011		len = r->len;
1012		if (r->offset >= map.rm.size)
1013			virt_addr += r->offset - map.rm.size;
1014		else
1015			len -= map.rm.size - r->offset;
1016		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1017			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1018			CBE_IOPTE_M);
1019		BUG_ON(result);
1020	}
1021
1022	return result;
1023}
1024
1025/**
1026 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1027 * @r: Pointer to a struct ps3_dma_region.
1028 *
1029 * This routine will unmap all mapped areas and free the HV dma region.
1030 */
1031
1032static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1033{
1034	int result;
1035	dma_addr_t bus_addr;
1036	unsigned long len, lpar_addr;
1037
1038	if (r->offset < map.rm.size) {
1039		/* Unmap (part of) 1st RAM chunk */
1040		lpar_addr = map.rm.base + r->offset;
1041		len = map.rm.size - r->offset;
1042		if (len > r->len)
1043			len = r->len;
1044		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1045		result = dma_sb_unmap_area(r, bus_addr, len);
1046		BUG_ON(result);
1047	}
1048
1049	if (r->offset + r->len > map.rm.size) {
1050		/* Unmap (part of) 2nd RAM chunk */
1051		lpar_addr = map.r1.base;
1052		len = r->len;
1053		if (r->offset >= map.rm.size)
1054			lpar_addr += r->offset - map.rm.size;
1055		else
1056			len -= map.rm.size - r->offset;
1057		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1058		result = dma_sb_unmap_area(r, bus_addr, len);
1059		BUG_ON(result);
1060	}
1061
1062	result = dma_sb_region_free(r);
1063	BUG_ON(result);
1064
1065	return result;
1066}
1067
1068/**
1069 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1070 * @r: Pointer to a struct ps3_dma_region.
1071 * @virt_addr: Starting virtual address of the area to map.
1072 * @len: Length in bytes of the area to map.
1073 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1074 * map.
1075 *
1076 * This routine just returns the corresponding bus address.  Actual mapping
1077 * occurs in dma_region_create_linear().
1078 */
1079
1080static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1081	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1082	u64 iopte_flag)
1083{
1084	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1085		: virt_addr;
1086	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1087	return 0;
1088}
1089
1090/**
1091 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1092 * @r: Pointer to a struct ps3_dma_region.
1093 * @bus_addr: The starting ioc bus address of the area to unmap.
1094 * @len: Length in bytes of the area to unmap.
1095 *
1096 * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1097 */
1098
1099static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1100	dma_addr_t bus_addr, unsigned long len)
1101{
1102	return 0;
1103};
1104
1105static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1106	.create = dma_sb_region_create,
1107	.free = dma_sb_region_free,
1108	.map = dma_sb_map_area,
1109	.unmap = dma_sb_unmap_area
1110};
1111
1112static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1113	.create = dma_sb_region_create_linear,
1114	.free = dma_sb_region_free_linear,
1115	.map = dma_sb_map_area_linear,
1116	.unmap = dma_sb_unmap_area_linear
1117};
1118
1119static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1120	.create = dma_ioc0_region_create,
1121	.free = dma_ioc0_region_free,
1122	.map = dma_ioc0_map_area,
1123	.unmap = dma_ioc0_unmap_area
1124};
1125
1126int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1127	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1128	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1129{
1130	unsigned long lpar_addr;
1131
1132	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1133
1134	r->dev = dev;
1135	r->page_size = page_size;
1136	r->region_type = region_type;
1137	r->offset = lpar_addr;
1138	if (r->offset >= map.rm.size)
1139		r->offset -= map.r1.offset;
1140	r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
1141
1142	switch (dev->dev_type) {
1143	case PS3_DEVICE_TYPE_SB:
1144		r->region_ops =  (USE_DYNAMIC_DMA)
1145			? &ps3_dma_sb_region_ops
1146			: &ps3_dma_sb_region_linear_ops;
1147		break;
1148	case PS3_DEVICE_TYPE_IOC0:
1149		r->region_ops = &ps3_dma_ioc0_region_ops;
1150		break;
1151	default:
1152		BUG();
1153		return -EINVAL;
1154	}
1155	return 0;
1156}
1157EXPORT_SYMBOL(ps3_dma_region_init);
1158
1159int ps3_dma_region_create(struct ps3_dma_region *r)
1160{
1161	BUG_ON(!r);
1162	BUG_ON(!r->region_ops);
1163	BUG_ON(!r->region_ops->create);
1164	return r->region_ops->create(r);
1165}
1166EXPORT_SYMBOL(ps3_dma_region_create);
1167
1168int ps3_dma_region_free(struct ps3_dma_region *r)
1169{
1170	BUG_ON(!r);
1171	BUG_ON(!r->region_ops);
1172	BUG_ON(!r->region_ops->free);
1173	return r->region_ops->free(r);
1174}
1175EXPORT_SYMBOL(ps3_dma_region_free);
1176
1177int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1178	unsigned long len, dma_addr_t *bus_addr,
1179	u64 iopte_flag)
1180{
1181	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1182}
1183
1184int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1185	unsigned long len)
1186{
1187	return r->region_ops->unmap(r, bus_addr, len);
1188}
1189
1190/*============================================================================*/
1191/* system startup routines                                                    */
1192/*============================================================================*/
1193
1194/**
1195 * ps3_mm_init - initialize the address space state variables
1196 */
1197
1198void __init ps3_mm_init(void)
1199{
1200	int result;
1201
1202	DBG(" -> %s:%d\n", __func__, __LINE__);
1203
1204	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1205		&map.total);
1206
1207	if (result)
1208		panic("ps3_repository_read_mm_info() failed");
1209
1210	map.rm.offset = map.rm.base;
1211	map.vas_id = map.htab_size = 0;
1212
1213	/* this implementation assumes map.rm.base is zero */
1214
1215	BUG_ON(map.rm.base);
1216	BUG_ON(!map.rm.size);
1217
1218
1219	/* arrange to do this in ps3_mm_add_memory */
1220	ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1221
1222	/* correct map.total for the real total amount of memory we use */
1223	map.total = map.rm.size + map.r1.size;
1224
1225	DBG(" <- %s:%d\n", __func__, __LINE__);
1226}
1227
1228/**
1229 * ps3_mm_shutdown - final cleanup of address space
1230 */
1231
1232void ps3_mm_shutdown(void)
1233{
1234	ps3_mm_region_destroy(&map.r1);
1235}
1236