• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/powerpc/kernel/
1/*
2 *  Derived from "arch/i386/kernel/process.c"
3 *    Copyright (C) 1995  Linus Torvalds
4 *
5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 *  Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 *  PowerPC version
9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 *  This program is free software; you can redistribute it and/or
12 *  modify it under the terms of the GNU General Public License
13 *  as published by the Free Software Foundation; either version
14 *  2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
31#include <linux/module.h>
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
35#include <linux/utsname.h>
36#include <linux/ftrace.h>
37#include <linux/kernel_stat.h>
38#include <linux/personality.h>
39#include <linux/random.h>
40#include <linux/hw_breakpoint.h>
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
44#include <asm/system.h>
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48#include <asm/prom.h>
49#include <asm/machdep.h>
50#include <asm/time.h>
51#include <asm/syscalls.h>
52#ifdef CONFIG_PPC64
53#include <asm/firmware.h>
54#endif
55#include <linux/kprobes.h>
56#include <linux/kdebug.h>
57
58extern unsigned long _get_SP(void);
59
60#ifndef CONFIG_SMP
61struct task_struct *last_task_used_math = NULL;
62struct task_struct *last_task_used_altivec = NULL;
63struct task_struct *last_task_used_vsx = NULL;
64struct task_struct *last_task_used_spe = NULL;
65#endif
66
67/*
68 * Make sure the floating-point register state in the
69 * the thread_struct is up to date for task tsk.
70 */
71void flush_fp_to_thread(struct task_struct *tsk)
72{
73	if (tsk->thread.regs) {
74		/*
75		 * We need to disable preemption here because if we didn't,
76		 * another process could get scheduled after the regs->msr
77		 * test but before we have finished saving the FP registers
78		 * to the thread_struct.  That process could take over the
79		 * FPU, and then when we get scheduled again we would store
80		 * bogus values for the remaining FP registers.
81		 */
82		preempt_disable();
83		if (tsk->thread.regs->msr & MSR_FP) {
84#ifdef CONFIG_SMP
85			/*
86			 * This should only ever be called for current or
87			 * for a stopped child process.  Since we save away
88			 * the FP register state on context switch on SMP,
89			 * there is something wrong if a stopped child appears
90			 * to still have its FP state in the CPU registers.
91			 */
92			BUG_ON(tsk != current);
93#endif
94			giveup_fpu(tsk);
95		}
96		preempt_enable();
97	}
98}
99
100void enable_kernel_fp(void)
101{
102	WARN_ON(preemptible());
103
104#ifdef CONFIG_SMP
105	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
106		giveup_fpu(current);
107	else
108		giveup_fpu(NULL);	/* just enables FP for kernel */
109#else
110	giveup_fpu(last_task_used_math);
111#endif /* CONFIG_SMP */
112}
113EXPORT_SYMBOL(enable_kernel_fp);
114
115#ifdef CONFIG_ALTIVEC
116void enable_kernel_altivec(void)
117{
118	WARN_ON(preemptible());
119
120#ifdef CONFIG_SMP
121	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
122		giveup_altivec(current);
123	else
124		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
125#else
126	giveup_altivec(last_task_used_altivec);
127#endif /* CONFIG_SMP */
128}
129EXPORT_SYMBOL(enable_kernel_altivec);
130
131/*
132 * Make sure the VMX/Altivec register state in the
133 * the thread_struct is up to date for task tsk.
134 */
135void flush_altivec_to_thread(struct task_struct *tsk)
136{
137	if (tsk->thread.regs) {
138		preempt_disable();
139		if (tsk->thread.regs->msr & MSR_VEC) {
140#ifdef CONFIG_SMP
141			BUG_ON(tsk != current);
142#endif
143			giveup_altivec(tsk);
144		}
145		preempt_enable();
146	}
147}
148#endif /* CONFIG_ALTIVEC */
149
150#ifdef CONFIG_VSX
151
152void giveup_vsx(struct task_struct *tsk)
153{
154	giveup_fpu(tsk);
155	giveup_altivec(tsk);
156	__giveup_vsx(tsk);
157}
158
159void flush_vsx_to_thread(struct task_struct *tsk)
160{
161	if (tsk->thread.regs) {
162		preempt_disable();
163		if (tsk->thread.regs->msr & MSR_VSX) {
164#ifdef CONFIG_SMP
165			BUG_ON(tsk != current);
166#endif
167			giveup_vsx(tsk);
168		}
169		preempt_enable();
170	}
171}
172#endif /* CONFIG_VSX */
173
174#ifdef CONFIG_SPE
175
176void enable_kernel_spe(void)
177{
178	WARN_ON(preemptible());
179
180#ifdef CONFIG_SMP
181	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
182		giveup_spe(current);
183	else
184		giveup_spe(NULL);	/* just enable SPE for kernel - force */
185#else
186	giveup_spe(last_task_used_spe);
187#endif /* __SMP __ */
188}
189EXPORT_SYMBOL(enable_kernel_spe);
190
191void flush_spe_to_thread(struct task_struct *tsk)
192{
193	if (tsk->thread.regs) {
194		preempt_disable();
195		if (tsk->thread.regs->msr & MSR_SPE) {
196#ifdef CONFIG_SMP
197			BUG_ON(tsk != current);
198#endif
199			giveup_spe(tsk);
200		}
201		preempt_enable();
202	}
203}
204#endif /* CONFIG_SPE */
205
206#ifndef CONFIG_SMP
207/*
208 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
209 * and the current task has some state, discard it.
210 */
211void discard_lazy_cpu_state(void)
212{
213	preempt_disable();
214	if (last_task_used_math == current)
215		last_task_used_math = NULL;
216#ifdef CONFIG_ALTIVEC
217	if (last_task_used_altivec == current)
218		last_task_used_altivec = NULL;
219#endif /* CONFIG_ALTIVEC */
220#ifdef CONFIG_VSX
221	if (last_task_used_vsx == current)
222		last_task_used_vsx = NULL;
223#endif /* CONFIG_VSX */
224#ifdef CONFIG_SPE
225	if (last_task_used_spe == current)
226		last_task_used_spe = NULL;
227#endif
228	preempt_enable();
229}
230#endif /* CONFIG_SMP */
231
232#ifdef CONFIG_PPC_ADV_DEBUG_REGS
233void do_send_trap(struct pt_regs *regs, unsigned long address,
234		  unsigned long error_code, int signal_code, int breakpt)
235{
236	siginfo_t info;
237
238	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
239			11, SIGSEGV) == NOTIFY_STOP)
240		return;
241
242	/* Deliver the signal to userspace */
243	info.si_signo = SIGTRAP;
244	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
245	info.si_code = signal_code;
246	info.si_addr = (void __user *)address;
247	force_sig_info(SIGTRAP, &info, current);
248}
249#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
250void do_dabr(struct pt_regs *regs, unsigned long address,
251		    unsigned long error_code)
252{
253	siginfo_t info;
254
255	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
256			11, SIGSEGV) == NOTIFY_STOP)
257		return;
258
259	if (debugger_dabr_match(regs))
260		return;
261
262	/* Clear the DABR */
263	set_dabr(0);
264
265	/* Deliver the signal to userspace */
266	info.si_signo = SIGTRAP;
267	info.si_errno = 0;
268	info.si_code = TRAP_HWBKPT;
269	info.si_addr = (void __user *)address;
270	force_sig_info(SIGTRAP, &info, current);
271}
272#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
273
274static DEFINE_PER_CPU(unsigned long, current_dabr);
275
276#ifdef CONFIG_PPC_ADV_DEBUG_REGS
277/*
278 * Set the debug registers back to their default "safe" values.
279 */
280static void set_debug_reg_defaults(struct thread_struct *thread)
281{
282	thread->iac1 = thread->iac2 = 0;
283#if CONFIG_PPC_ADV_DEBUG_IACS > 2
284	thread->iac3 = thread->iac4 = 0;
285#endif
286	thread->dac1 = thread->dac2 = 0;
287#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
288	thread->dvc1 = thread->dvc2 = 0;
289#endif
290	thread->dbcr0 = 0;
291#ifdef CONFIG_BOOKE
292	/*
293	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
294	 */
295	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
296			DBCR1_IAC3US | DBCR1_IAC4US;
297	/*
298	 * Force Data Address Compare User/Supervisor bits to be User-only
299	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
300	 */
301	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
302#else
303	thread->dbcr1 = 0;
304#endif
305}
306
307static void prime_debug_regs(struct thread_struct *thread)
308{
309	mtspr(SPRN_IAC1, thread->iac1);
310	mtspr(SPRN_IAC2, thread->iac2);
311#if CONFIG_PPC_ADV_DEBUG_IACS > 2
312	mtspr(SPRN_IAC3, thread->iac3);
313	mtspr(SPRN_IAC4, thread->iac4);
314#endif
315	mtspr(SPRN_DAC1, thread->dac1);
316	mtspr(SPRN_DAC2, thread->dac2);
317#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
318	mtspr(SPRN_DVC1, thread->dvc1);
319	mtspr(SPRN_DVC2, thread->dvc2);
320#endif
321	mtspr(SPRN_DBCR0, thread->dbcr0);
322	mtspr(SPRN_DBCR1, thread->dbcr1);
323#ifdef CONFIG_BOOKE
324	mtspr(SPRN_DBCR2, thread->dbcr2);
325#endif
326}
327/*
328 * Unless neither the old or new thread are making use of the
329 * debug registers, set the debug registers from the values
330 * stored in the new thread.
331 */
332static void switch_booke_debug_regs(struct thread_struct *new_thread)
333{
334	if ((current->thread.dbcr0 & DBCR0_IDM)
335		|| (new_thread->dbcr0 & DBCR0_IDM))
336			prime_debug_regs(new_thread);
337}
338#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
339static void set_debug_reg_defaults(struct thread_struct *thread)
340{
341	if (thread->dabr) {
342		thread->dabr = 0;
343		set_dabr(0);
344	}
345}
346#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
347
348int set_dabr(unsigned long dabr)
349{
350	__get_cpu_var(current_dabr) = dabr;
351
352	if (ppc_md.set_dabr)
353		return ppc_md.set_dabr(dabr);
354
355#ifdef CONFIG_PPC_ADV_DEBUG_REGS
356	mtspr(SPRN_DAC1, dabr);
357#ifdef CONFIG_PPC_47x
358	isync();
359#endif
360#elif defined(CONFIG_PPC_BOOK3S)
361	mtspr(SPRN_DABR, dabr);
362#endif
363
364
365	return 0;
366}
367
368#ifdef CONFIG_PPC64
369DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
370#endif
371
372struct task_struct *__switch_to(struct task_struct *prev,
373	struct task_struct *new)
374{
375	struct thread_struct *new_thread, *old_thread;
376	unsigned long flags;
377	struct task_struct *last;
378
379#ifdef CONFIG_SMP
380	/* avoid complexity of lazy save/restore of fpu
381	 * by just saving it every time we switch out if
382	 * this task used the fpu during the last quantum.
383	 *
384	 * If it tries to use the fpu again, it'll trap and
385	 * reload its fp regs.  So we don't have to do a restore
386	 * every switch, just a save.
387	 *  -- Cort
388	 */
389	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
390		giveup_fpu(prev);
391#ifdef CONFIG_ALTIVEC
392	/*
393	 * If the previous thread used altivec in the last quantum
394	 * (thus changing altivec regs) then save them.
395	 * We used to check the VRSAVE register but not all apps
396	 * set it, so we don't rely on it now (and in fact we need
397	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
398	 *
399	 * On SMP we always save/restore altivec regs just to avoid the
400	 * complexity of changing processors.
401	 *  -- Cort
402	 */
403	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
404		giveup_altivec(prev);
405#endif /* CONFIG_ALTIVEC */
406#ifdef CONFIG_VSX
407	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
408		/* VMX and FPU registers are already save here */
409		__giveup_vsx(prev);
410#endif /* CONFIG_VSX */
411#ifdef CONFIG_SPE
412	/*
413	 * If the previous thread used spe in the last quantum
414	 * (thus changing spe regs) then save them.
415	 *
416	 * On SMP we always save/restore spe regs just to avoid the
417	 * complexity of changing processors.
418	 */
419	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
420		giveup_spe(prev);
421#endif /* CONFIG_SPE */
422
423#else  /* CONFIG_SMP */
424#ifdef CONFIG_ALTIVEC
425	/* Avoid the trap.  On smp this this never happens since
426	 * we don't set last_task_used_altivec -- Cort
427	 */
428	if (new->thread.regs && last_task_used_altivec == new)
429		new->thread.regs->msr |= MSR_VEC;
430#endif /* CONFIG_ALTIVEC */
431#ifdef CONFIG_VSX
432	if (new->thread.regs && last_task_used_vsx == new)
433		new->thread.regs->msr |= MSR_VSX;
434#endif /* CONFIG_VSX */
435#ifdef CONFIG_SPE
436	/* Avoid the trap.  On smp this this never happens since
437	 * we don't set last_task_used_spe
438	 */
439	if (new->thread.regs && last_task_used_spe == new)
440		new->thread.regs->msr |= MSR_SPE;
441#endif /* CONFIG_SPE */
442
443#endif /* CONFIG_SMP */
444
445#ifdef CONFIG_PPC_ADV_DEBUG_REGS
446	switch_booke_debug_regs(&new->thread);
447#else
448/*
449 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
450 * schedule DABR
451 */
452#ifndef CONFIG_HAVE_HW_BREAKPOINT
453	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
454		set_dabr(new->thread.dabr);
455#endif /* CONFIG_HAVE_HW_BREAKPOINT */
456#endif
457
458
459	new_thread = &new->thread;
460	old_thread = &current->thread;
461
462#if defined(CONFIG_PPC_BOOK3E_64)
463	if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
464		u32 dbcr0;
465
466		mtmsr(mfmsr() & ~MSR_DE);
467		isync();
468		dbcr0 = mfspr(SPRN_DBCR0);
469		dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
470		mtspr(SPRN_DBCR0, dbcr0);
471	}
472#endif /* CONFIG_PPC64_BOOK3E */
473
474#ifdef CONFIG_PPC64
475	/*
476	 * Collect processor utilization data per process
477	 */
478	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
479		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
480		long unsigned start_tb, current_tb;
481		start_tb = old_thread->start_tb;
482		cu->current_tb = current_tb = mfspr(SPRN_PURR);
483		old_thread->accum_tb += (current_tb - start_tb);
484		new_thread->start_tb = current_tb;
485	}
486#endif
487
488	local_irq_save(flags);
489
490	account_system_vtime(current);
491	account_process_vtime(current);
492	calculate_steal_time();
493
494	/*
495	 * We can't take a PMU exception inside _switch() since there is a
496	 * window where the kernel stack SLB and the kernel stack are out
497	 * of sync. Hard disable here.
498	 */
499	hard_irq_disable();
500	last = _switch(old_thread, new_thread);
501
502	local_irq_restore(flags);
503
504	return last;
505}
506
507static int instructions_to_print = 16;
508
509static void show_instructions(struct pt_regs *regs)
510{
511	int i;
512	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
513			sizeof(int));
514
515	printk("Instruction dump:");
516
517	for (i = 0; i < instructions_to_print; i++) {
518		int instr;
519
520		if (!(i % 8))
521			printk("\n");
522
523#if !defined(CONFIG_BOOKE)
524		/* If executing with the IMMU off, adjust pc rather
525		 * than print XXXXXXXX.
526		 */
527		if (!(regs->msr & MSR_IR))
528			pc = (unsigned long)phys_to_virt(pc);
529#endif
530
531		/* We use __get_user here *only* to avoid an OOPS on a
532		 * bad address because the pc *should* only be a
533		 * kernel address.
534		 */
535		if (!__kernel_text_address(pc) ||
536		     __get_user(instr, (unsigned int __user *)pc)) {
537			printk("XXXXXXXX ");
538		} else {
539			if (regs->nip == pc)
540				printk("<%08x> ", instr);
541			else
542				printk("%08x ", instr);
543		}
544
545		pc += sizeof(int);
546	}
547
548	printk("\n");
549}
550
551static struct regbit {
552	unsigned long bit;
553	const char *name;
554} msr_bits[] = {
555	{MSR_EE,	"EE"},
556	{MSR_PR,	"PR"},
557	{MSR_FP,	"FP"},
558	{MSR_VEC,	"VEC"},
559	{MSR_VSX,	"VSX"},
560	{MSR_ME,	"ME"},
561	{MSR_CE,	"CE"},
562	{MSR_DE,	"DE"},
563	{MSR_IR,	"IR"},
564	{MSR_DR,	"DR"},
565	{0,		NULL}
566};
567
568static void printbits(unsigned long val, struct regbit *bits)
569{
570	const char *sep = "";
571
572	printk("<");
573	for (; bits->bit; ++bits)
574		if (val & bits->bit) {
575			printk("%s%s", sep, bits->name);
576			sep = ",";
577		}
578	printk(">");
579}
580
581#ifdef CONFIG_PPC64
582#define REG		"%016lx"
583#define REGS_PER_LINE	4
584#define LAST_VOLATILE	13
585#else
586#define REG		"%08lx"
587#define REGS_PER_LINE	8
588#define LAST_VOLATILE	12
589#endif
590
591void show_regs(struct pt_regs * regs)
592{
593	int i, trap;
594
595	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
596	       regs->nip, regs->link, regs->ctr);
597	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
598	       regs, regs->trap, print_tainted(), init_utsname()->release);
599	printk("MSR: "REG" ", regs->msr);
600	printbits(regs->msr, msr_bits);
601	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
602	trap = TRAP(regs);
603	if (trap == 0x300 || trap == 0x600)
604#ifdef CONFIG_PPC_ADV_DEBUG_REGS
605		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
606#else
607		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
608#endif
609	printk("TASK = %p[%d] '%s' THREAD: %p",
610	       current, task_pid_nr(current), current->comm, task_thread_info(current));
611
612#ifdef CONFIG_SMP
613	printk(" CPU: %d", raw_smp_processor_id());
614#endif /* CONFIG_SMP */
615
616	for (i = 0;  i < 32;  i++) {
617		if ((i % REGS_PER_LINE) == 0)
618			printk("\nGPR%02d: ", i);
619		printk(REG " ", regs->gpr[i]);
620		if (i == LAST_VOLATILE && !FULL_REGS(regs))
621			break;
622	}
623	printk("\n");
624#ifdef CONFIG_KALLSYMS
625	/*
626	 * Lookup NIP late so we have the best change of getting the
627	 * above info out without failing
628	 */
629	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
630	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
631#endif
632	show_stack(current, (unsigned long *) regs->gpr[1]);
633	if (!user_mode(regs))
634		show_instructions(regs);
635}
636
637void exit_thread(void)
638{
639	discard_lazy_cpu_state();
640}
641
642void flush_thread(void)
643{
644	discard_lazy_cpu_state();
645
646#ifdef CONFIG_HAVE_HW_BREAKPOINTS
647	flush_ptrace_hw_breakpoint(current);
648#else /* CONFIG_HAVE_HW_BREAKPOINTS */
649	set_debug_reg_defaults(&current->thread);
650#endif /* CONFIG_HAVE_HW_BREAKPOINTS */
651}
652
653void
654release_thread(struct task_struct *t)
655{
656}
657
658/*
659 * This gets called before we allocate a new thread and copy
660 * the current task into it.
661 */
662void prepare_to_copy(struct task_struct *tsk)
663{
664	flush_fp_to_thread(current);
665	flush_altivec_to_thread(current);
666	flush_vsx_to_thread(current);
667	flush_spe_to_thread(current);
668#ifdef CONFIG_HAVE_HW_BREAKPOINT
669	flush_ptrace_hw_breakpoint(tsk);
670#endif /* CONFIG_HAVE_HW_BREAKPOINT */
671}
672
673/*
674 * Copy a thread..
675 */
676int copy_thread(unsigned long clone_flags, unsigned long usp,
677		unsigned long unused, struct task_struct *p,
678		struct pt_regs *regs)
679{
680	struct pt_regs *childregs, *kregs;
681	extern void ret_from_fork(void);
682	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
683
684	CHECK_FULL_REGS(regs);
685	/* Copy registers */
686	sp -= sizeof(struct pt_regs);
687	childregs = (struct pt_regs *) sp;
688	*childregs = *regs;
689	if ((childregs->msr & MSR_PR) == 0) {
690		/* for kernel thread, set `current' and stackptr in new task */
691		childregs->gpr[1] = sp + sizeof(struct pt_regs);
692#ifdef CONFIG_PPC32
693		childregs->gpr[2] = (unsigned long) p;
694#else
695		clear_tsk_thread_flag(p, TIF_32BIT);
696#endif
697		p->thread.regs = NULL;	/* no user register state */
698	} else {
699		childregs->gpr[1] = usp;
700		p->thread.regs = childregs;
701		if (clone_flags & CLONE_SETTLS) {
702#ifdef CONFIG_PPC64
703			if (!is_32bit_task())
704				childregs->gpr[13] = childregs->gpr[6];
705			else
706#endif
707				childregs->gpr[2] = childregs->gpr[6];
708		}
709	}
710	childregs->gpr[3] = 0;  /* Result from fork() */
711	sp -= STACK_FRAME_OVERHEAD;
712
713	/*
714	 * The way this works is that at some point in the future
715	 * some task will call _switch to switch to the new task.
716	 * That will pop off the stack frame created below and start
717	 * the new task running at ret_from_fork.  The new task will
718	 * do some house keeping and then return from the fork or clone
719	 * system call, using the stack frame created above.
720	 */
721	sp -= sizeof(struct pt_regs);
722	kregs = (struct pt_regs *) sp;
723	sp -= STACK_FRAME_OVERHEAD;
724	p->thread.ksp = sp;
725	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
726				_ALIGN_UP(sizeof(struct thread_info), 16);
727
728#ifdef CONFIG_PPC_STD_MMU_64
729	if (cpu_has_feature(CPU_FTR_SLB)) {
730		unsigned long sp_vsid;
731		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
732
733		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
734			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
735				<< SLB_VSID_SHIFT_1T;
736		else
737			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
738				<< SLB_VSID_SHIFT;
739		sp_vsid |= SLB_VSID_KERNEL | llp;
740		p->thread.ksp_vsid = sp_vsid;
741	}
742#endif /* CONFIG_PPC_STD_MMU_64 */
743
744	/*
745	 * The PPC64 ABI makes use of a TOC to contain function
746	 * pointers.  The function (ret_from_except) is actually a pointer
747	 * to the TOC entry.  The first entry is a pointer to the actual
748	 * function.
749 	 */
750#ifdef CONFIG_PPC64
751	kregs->nip = *((unsigned long *)ret_from_fork);
752#else
753	kregs->nip = (unsigned long)ret_from_fork;
754#endif
755
756	return 0;
757}
758
759/*
760 * Set up a thread for executing a new program
761 */
762void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
763{
764#ifdef CONFIG_PPC64
765	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
766#endif
767
768	set_fs(USER_DS);
769
770	/*
771	 * If we exec out of a kernel thread then thread.regs will not be
772	 * set.  Do it now.
773	 */
774	if (!current->thread.regs) {
775		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
776		current->thread.regs = regs - 1;
777	}
778
779	memset(regs->gpr, 0, sizeof(regs->gpr));
780	regs->ctr = 0;
781	regs->link = 0;
782	regs->xer = 0;
783	regs->ccr = 0;
784	regs->gpr[1] = sp;
785
786	/*
787	 * We have just cleared all the nonvolatile GPRs, so make
788	 * FULL_REGS(regs) return true.  This is necessary to allow
789	 * ptrace to examine the thread immediately after exec.
790	 */
791	regs->trap &= ~1UL;
792
793#ifdef CONFIG_PPC32
794	regs->mq = 0;
795	regs->nip = start;
796	regs->msr = MSR_USER;
797#else
798	if (!is_32bit_task()) {
799		unsigned long entry, toc;
800
801		/* start is a relocated pointer to the function descriptor for
802		 * the elf _start routine.  The first entry in the function
803		 * descriptor is the entry address of _start and the second
804		 * entry is the TOC value we need to use.
805		 */
806		__get_user(entry, (unsigned long __user *)start);
807		__get_user(toc, (unsigned long __user *)start+1);
808
809		/* Check whether the e_entry function descriptor entries
810		 * need to be relocated before we can use them.
811		 */
812		if (load_addr != 0) {
813			entry += load_addr;
814			toc   += load_addr;
815		}
816		regs->nip = entry;
817		regs->gpr[2] = toc;
818		regs->msr = MSR_USER64;
819	} else {
820		regs->nip = start;
821		regs->gpr[2] = 0;
822		regs->msr = MSR_USER32;
823	}
824#endif
825
826	discard_lazy_cpu_state();
827#ifdef CONFIG_VSX
828	current->thread.used_vsr = 0;
829#endif
830	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
831	current->thread.fpscr.val = 0;
832#ifdef CONFIG_ALTIVEC
833	memset(current->thread.vr, 0, sizeof(current->thread.vr));
834	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
835	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
836	current->thread.vrsave = 0;
837	current->thread.used_vr = 0;
838#endif /* CONFIG_ALTIVEC */
839#ifdef CONFIG_SPE
840	memset(current->thread.evr, 0, sizeof(current->thread.evr));
841	current->thread.acc = 0;
842	current->thread.spefscr = 0;
843	current->thread.used_spe = 0;
844#endif /* CONFIG_SPE */
845}
846
847#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
848		| PR_FP_EXC_RES | PR_FP_EXC_INV)
849
850int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
851{
852	struct pt_regs *regs = tsk->thread.regs;
853
854	/* This is a bit hairy.  If we are an SPE enabled  processor
855	 * (have embedded fp) we store the IEEE exception enable flags in
856	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
857	 * mode (asyn, precise, disabled) for 'Classic' FP. */
858	if (val & PR_FP_EXC_SW_ENABLE) {
859#ifdef CONFIG_SPE
860		if (cpu_has_feature(CPU_FTR_SPE)) {
861			tsk->thread.fpexc_mode = val &
862				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
863			return 0;
864		} else {
865			return -EINVAL;
866		}
867#else
868		return -EINVAL;
869#endif
870	}
871
872	/* on a CONFIG_SPE this does not hurt us.  The bits that
873	 * __pack_fe01 use do not overlap with bits used for
874	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
875	 * on CONFIG_SPE implementations are reserved so writing to
876	 * them does not change anything */
877	if (val > PR_FP_EXC_PRECISE)
878		return -EINVAL;
879	tsk->thread.fpexc_mode = __pack_fe01(val);
880	if (regs != NULL && (regs->msr & MSR_FP) != 0)
881		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
882			| tsk->thread.fpexc_mode;
883	return 0;
884}
885
886int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
887{
888	unsigned int val;
889
890	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
891#ifdef CONFIG_SPE
892		if (cpu_has_feature(CPU_FTR_SPE))
893			val = tsk->thread.fpexc_mode;
894		else
895			return -EINVAL;
896#else
897		return -EINVAL;
898#endif
899	else
900		val = __unpack_fe01(tsk->thread.fpexc_mode);
901	return put_user(val, (unsigned int __user *) adr);
902}
903
904int set_endian(struct task_struct *tsk, unsigned int val)
905{
906	struct pt_regs *regs = tsk->thread.regs;
907
908	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
909	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
910		return -EINVAL;
911
912	if (regs == NULL)
913		return -EINVAL;
914
915	if (val == PR_ENDIAN_BIG)
916		regs->msr &= ~MSR_LE;
917	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
918		regs->msr |= MSR_LE;
919	else
920		return -EINVAL;
921
922	return 0;
923}
924
925int get_endian(struct task_struct *tsk, unsigned long adr)
926{
927	struct pt_regs *regs = tsk->thread.regs;
928	unsigned int val;
929
930	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
931	    !cpu_has_feature(CPU_FTR_REAL_LE))
932		return -EINVAL;
933
934	if (regs == NULL)
935		return -EINVAL;
936
937	if (regs->msr & MSR_LE) {
938		if (cpu_has_feature(CPU_FTR_REAL_LE))
939			val = PR_ENDIAN_LITTLE;
940		else
941			val = PR_ENDIAN_PPC_LITTLE;
942	} else
943		val = PR_ENDIAN_BIG;
944
945	return put_user(val, (unsigned int __user *)adr);
946}
947
948int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
949{
950	tsk->thread.align_ctl = val;
951	return 0;
952}
953
954int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
955{
956	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
957}
958
959#define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
960
961int sys_clone(unsigned long clone_flags, unsigned long usp,
962	      int __user *parent_tidp, void __user *child_threadptr,
963	      int __user *child_tidp, int p6,
964	      struct pt_regs *regs)
965{
966	CHECK_FULL_REGS(regs);
967	if (usp == 0)
968		usp = regs->gpr[1];	/* stack pointer for child */
969#ifdef CONFIG_PPC64
970	if (is_32bit_task()) {
971		parent_tidp = TRUNC_PTR(parent_tidp);
972		child_tidp = TRUNC_PTR(child_tidp);
973	}
974#endif
975 	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
976}
977
978int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
979	     unsigned long p4, unsigned long p5, unsigned long p6,
980	     struct pt_regs *regs)
981{
982	CHECK_FULL_REGS(regs);
983	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
984}
985
986int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
987	      unsigned long p4, unsigned long p5, unsigned long p6,
988	      struct pt_regs *regs)
989{
990	CHECK_FULL_REGS(regs);
991	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
992			regs, 0, NULL, NULL);
993}
994
995int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
996	       unsigned long a3, unsigned long a4, unsigned long a5,
997	       struct pt_regs *regs)
998{
999	int error;
1000	char *filename;
1001
1002	filename = getname((const char __user *) a0);
1003	error = PTR_ERR(filename);
1004	if (IS_ERR(filename))
1005		goto out;
1006	flush_fp_to_thread(current);
1007	flush_altivec_to_thread(current);
1008	flush_spe_to_thread(current);
1009	error = do_execve(filename,
1010			  (const char __user *const __user *) a1,
1011			  (const char __user *const __user *) a2, regs);
1012	putname(filename);
1013out:
1014	return error;
1015}
1016
1017static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1018				  unsigned long nbytes)
1019{
1020	unsigned long stack_page;
1021	unsigned long cpu = task_cpu(p);
1022
1023	/*
1024	 * Avoid crashing if the stack has overflowed and corrupted
1025	 * task_cpu(p), which is in the thread_info struct.
1026	 */
1027	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1028		stack_page = (unsigned long) hardirq_ctx[cpu];
1029		if (sp >= stack_page + sizeof(struct thread_struct)
1030		    && sp <= stack_page + THREAD_SIZE - nbytes)
1031			return 1;
1032
1033		stack_page = (unsigned long) softirq_ctx[cpu];
1034		if (sp >= stack_page + sizeof(struct thread_struct)
1035		    && sp <= stack_page + THREAD_SIZE - nbytes)
1036			return 1;
1037	}
1038	return 0;
1039}
1040
1041int validate_sp(unsigned long sp, struct task_struct *p,
1042		       unsigned long nbytes)
1043{
1044	unsigned long stack_page = (unsigned long)task_stack_page(p);
1045
1046	if (sp >= stack_page + sizeof(struct thread_struct)
1047	    && sp <= stack_page + THREAD_SIZE - nbytes)
1048		return 1;
1049
1050	return valid_irq_stack(sp, p, nbytes);
1051}
1052
1053EXPORT_SYMBOL(validate_sp);
1054
1055unsigned long get_wchan(struct task_struct *p)
1056{
1057	unsigned long ip, sp;
1058	int count = 0;
1059
1060	if (!p || p == current || p->state == TASK_RUNNING)
1061		return 0;
1062
1063	sp = p->thread.ksp;
1064	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1065		return 0;
1066
1067	do {
1068		sp = *(unsigned long *)sp;
1069		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1070			return 0;
1071		if (count > 0) {
1072			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1073			if (!in_sched_functions(ip))
1074				return ip;
1075		}
1076	} while (count++ < 16);
1077	return 0;
1078}
1079
1080static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1081
1082void show_stack(struct task_struct *tsk, unsigned long *stack)
1083{
1084	unsigned long sp, ip, lr, newsp;
1085	int count = 0;
1086	int firstframe = 1;
1087#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1088	int curr_frame = current->curr_ret_stack;
1089	extern void return_to_handler(void);
1090	unsigned long rth = (unsigned long)return_to_handler;
1091	unsigned long mrth = -1;
1092#ifdef CONFIG_PPC64
1093	extern void mod_return_to_handler(void);
1094	rth = *(unsigned long *)rth;
1095	mrth = (unsigned long)mod_return_to_handler;
1096	mrth = *(unsigned long *)mrth;
1097#endif
1098#endif
1099
1100	sp = (unsigned long) stack;
1101	if (tsk == NULL)
1102		tsk = current;
1103	if (sp == 0) {
1104		if (tsk == current)
1105			asm("mr %0,1" : "=r" (sp));
1106		else
1107			sp = tsk->thread.ksp;
1108	}
1109
1110	lr = 0;
1111	printk("Call Trace:\n");
1112	do {
1113		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1114			return;
1115
1116		stack = (unsigned long *) sp;
1117		newsp = stack[0];
1118		ip = stack[STACK_FRAME_LR_SAVE];
1119		if (!firstframe || ip != lr) {
1120			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1121#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1122			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1123				printk(" (%pS)",
1124				       (void *)current->ret_stack[curr_frame].ret);
1125				curr_frame--;
1126			}
1127#endif
1128			if (firstframe)
1129				printk(" (unreliable)");
1130			printk("\n");
1131		}
1132		firstframe = 0;
1133
1134		/*
1135		 * See if this is an exception frame.
1136		 * We look for the "regshere" marker in the current frame.
1137		 */
1138		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1139		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1140			struct pt_regs *regs = (struct pt_regs *)
1141				(sp + STACK_FRAME_OVERHEAD);
1142			lr = regs->link;
1143			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1144			       regs->trap, (void *)regs->nip, (void *)lr);
1145			firstframe = 1;
1146		}
1147
1148		sp = newsp;
1149	} while (count++ < kstack_depth_to_print);
1150}
1151
1152void dump_stack(void)
1153{
1154	show_stack(current, NULL);
1155}
1156EXPORT_SYMBOL(dump_stack);
1157
1158#ifdef CONFIG_PPC64
1159void ppc64_runlatch_on(void)
1160{
1161	unsigned long ctrl;
1162
1163	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1164		HMT_medium();
1165
1166		ctrl = mfspr(SPRN_CTRLF);
1167		ctrl |= CTRL_RUNLATCH;
1168		mtspr(SPRN_CTRLT, ctrl);
1169
1170		set_thread_flag(TIF_RUNLATCH);
1171	}
1172}
1173
1174void __ppc64_runlatch_off(void)
1175{
1176	unsigned long ctrl;
1177
1178	HMT_medium();
1179
1180	clear_thread_flag(TIF_RUNLATCH);
1181
1182	ctrl = mfspr(SPRN_CTRLF);
1183	ctrl &= ~CTRL_RUNLATCH;
1184	mtspr(SPRN_CTRLT, ctrl);
1185}
1186#endif
1187
1188#if THREAD_SHIFT < PAGE_SHIFT
1189
1190static struct kmem_cache *thread_info_cache;
1191
1192struct thread_info *alloc_thread_info(struct task_struct *tsk)
1193{
1194	struct thread_info *ti;
1195
1196	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1197	if (unlikely(ti == NULL))
1198		return NULL;
1199#ifdef CONFIG_DEBUG_STACK_USAGE
1200	memset(ti, 0, THREAD_SIZE);
1201#endif
1202	return ti;
1203}
1204
1205void free_thread_info(struct thread_info *ti)
1206{
1207	kmem_cache_free(thread_info_cache, ti);
1208}
1209
1210void thread_info_cache_init(void)
1211{
1212	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1213					      THREAD_SIZE, 0, NULL);
1214	BUG_ON(thread_info_cache == NULL);
1215}
1216
1217#endif /* THREAD_SHIFT < PAGE_SHIFT */
1218
1219unsigned long arch_align_stack(unsigned long sp)
1220{
1221	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1222		sp -= get_random_int() & ~PAGE_MASK;
1223	return sp & ~0xf;
1224}
1225
1226static inline unsigned long brk_rnd(void)
1227{
1228        unsigned long rnd = 0;
1229
1230	/* 8MB for 32bit, 1GB for 64bit */
1231	if (is_32bit_task())
1232		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1233	else
1234		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1235
1236	return rnd << PAGE_SHIFT;
1237}
1238
1239unsigned long arch_randomize_brk(struct mm_struct *mm)
1240{
1241	unsigned long base = mm->brk;
1242	unsigned long ret;
1243
1244#ifdef CONFIG_PPC_STD_MMU_64
1245	/*
1246	 * If we are using 1TB segments and we are allowed to randomise
1247	 * the heap, we can put it above 1TB so it is backed by a 1TB
1248	 * segment. Otherwise the heap will be in the bottom 1TB
1249	 * which always uses 256MB segments and this may result in a
1250	 * performance penalty.
1251	 */
1252	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1253		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1254#endif
1255
1256	ret = PAGE_ALIGN(base + brk_rnd());
1257
1258	if (ret < mm->brk)
1259		return mm->brk;
1260
1261	return ret;
1262}
1263
1264unsigned long randomize_et_dyn(unsigned long base)
1265{
1266	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1267
1268	if (ret < base)
1269		return base;
1270
1271	return ret;
1272}
1273
1274#ifdef CONFIG_SMP
1275int arch_sd_sibling_asym_packing(void)
1276{
1277	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1278		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1279		return SD_ASYM_PACKING;
1280	}
1281	return 0;
1282}
1283#endif
1284