• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/mips/kernel/
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15 *
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
18 */
19
20#include <linux/clockchips.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/smp.h>
24#include <linux/cpumask.h>
25#include <linux/interrupt.h>
26#include <linux/kernel_stat.h>
27#include <linux/module.h>
28#include <linux/ftrace.h>
29#include <linux/slab.h>
30
31#include <asm/cpu.h>
32#include <asm/processor.h>
33#include <asm/atomic.h>
34#include <asm/system.h>
35#include <asm/hardirq.h>
36#include <asm/hazards.h>
37#include <asm/irq.h>
38#include <asm/mmu_context.h>
39#include <asm/mipsregs.h>
40#include <asm/cacheflush.h>
41#include <asm/time.h>
42#include <asm/addrspace.h>
43#include <asm/smtc.h>
44#include <asm/smtc_proc.h>
45
46/*
47 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
48 * in do_IRQ. These are passed in setup_irq_smtc() and stored
49 * in this table.
50 */
51unsigned long irq_hwmask[NR_IRQS];
52
53#define LOCK_MT_PRA() \
54	local_irq_save(flags); \
55	mtflags = dmt()
56
57#define UNLOCK_MT_PRA() \
58	emt(mtflags); \
59	local_irq_restore(flags)
60
61#define LOCK_CORE_PRA() \
62	local_irq_save(flags); \
63	mtflags = dvpe()
64
65#define UNLOCK_CORE_PRA() \
66	evpe(mtflags); \
67	local_irq_restore(flags)
68
69/*
70 * Data structures purely associated with SMTC parallelism
71 */
72
73
74/*
75 * Table for tracking ASIDs whose lifetime is prolonged.
76 */
77
78asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
79
80/*
81 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
82 */
83
84#define IPIBUF_PER_CPU 4
85
86struct smtc_ipi_q IPIQ[NR_CPUS];
87static struct smtc_ipi_q freeIPIq;
88
89
90/*
91 * Number of FPU contexts for each VPE
92 */
93
94static int smtc_nconf1[MAX_SMTC_VPES];
95
96
97/* Forward declarations */
98
99void ipi_decode(struct smtc_ipi *);
100static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
101static void setup_cross_vpe_interrupts(unsigned int nvpe);
102void init_smtc_stats(void);
103
104/* Global SMTC Status */
105
106unsigned int smtc_status;
107
108/* Boot command line configuration overrides */
109
110static int vpe0limit;
111static int ipibuffers;
112static int nostlb;
113static int asidmask;
114unsigned long smtc_asid_mask = 0xff;
115
116static int __init vpe0tcs(char *str)
117{
118	get_option(&str, &vpe0limit);
119
120	return 1;
121}
122
123static int __init ipibufs(char *str)
124{
125	get_option(&str, &ipibuffers);
126	return 1;
127}
128
129static int __init stlb_disable(char *s)
130{
131	nostlb = 1;
132	return 1;
133}
134
135static int __init asidmask_set(char *str)
136{
137	get_option(&str, &asidmask);
138	switch (asidmask) {
139	case 0x1:
140	case 0x3:
141	case 0x7:
142	case 0xf:
143	case 0x1f:
144	case 0x3f:
145	case 0x7f:
146	case 0xff:
147		smtc_asid_mask = (unsigned long)asidmask;
148		break;
149	default:
150		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
151	}
152	return 1;
153}
154
155__setup("vpe0tcs=", vpe0tcs);
156__setup("ipibufs=", ipibufs);
157__setup("nostlb", stlb_disable);
158__setup("asidmask=", asidmask_set);
159
160#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
161
162static int hang_trig;
163
164static int __init hangtrig_enable(char *s)
165{
166	hang_trig = 1;
167	return 1;
168}
169
170
171__setup("hangtrig", hangtrig_enable);
172
173#define DEFAULT_BLOCKED_IPI_LIMIT 32
174
175static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
176
177static int __init tintq(char *str)
178{
179	get_option(&str, &timerq_limit);
180	return 1;
181}
182
183__setup("tintq=", tintq);
184
185static int imstuckcount[MAX_SMTC_VPES][8];
186/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
187static int vpemask[MAX_SMTC_VPES][8] = {
188	{0, 0, 1, 0, 0, 0, 0, 1},
189	{0, 0, 0, 0, 0, 0, 0, 1}
190};
191int tcnoprog[NR_CPUS];
192static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
193static int clock_hang_reported[NR_CPUS];
194
195#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
196
197/*
198 * Configure shared TLB - VPC configuration bit must be set by caller
199 */
200
201static void smtc_configure_tlb(void)
202{
203	int i, tlbsiz, vpes;
204	unsigned long mvpconf0;
205	unsigned long config1val;
206
207	/* Set up ASID preservation table */
208	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
209	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
210		smtc_live_asid[vpes][i] = 0;
211	    }
212	}
213	mvpconf0 = read_c0_mvpconf0();
214
215	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
216			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
217	    /* If we have multiple VPEs, try to share the TLB */
218	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
219		/*
220		 * If TLB sizing is programmable, shared TLB
221		 * size is the total available complement.
222		 * Otherwise, we have to take the sum of all
223		 * static VPE TLB entries.
224		 */
225		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
226				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
227		    /*
228		     * If there's more than one VPE, there had better
229		     * be more than one TC, because we need one to bind
230		     * to each VPE in turn to be able to read
231		     * its configuration state!
232		     */
233		    settc(1);
234		    /* Stop the TC from doing anything foolish */
235		    write_tc_c0_tchalt(TCHALT_H);
236		    mips_ihb();
237		    /* No need to un-Halt - that happens later anyway */
238		    for (i=0; i < vpes; i++) {
239		    	write_tc_c0_tcbind(i);
240			/*
241			 * To be 100% sure we're really getting the right
242			 * information, we exit the configuration state
243			 * and do an IHB after each rebinding.
244			 */
245			write_c0_mvpcontrol(
246				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
247			mips_ihb();
248			/*
249			 * Only count if the MMU Type indicated is TLB
250			 */
251			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
252				config1val = read_vpe_c0_config1();
253				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
254			}
255
256			/* Put core back in configuration state */
257			write_c0_mvpcontrol(
258				read_c0_mvpcontrol() | MVPCONTROL_VPC );
259			mips_ihb();
260		    }
261		}
262		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
263		ehb();
264
265		/*
266		 * Setup kernel data structures to use software total,
267		 * rather than read the per-VPE Config1 value. The values
268		 * for "CPU 0" gets copied to all the other CPUs as part
269		 * of their initialization in smtc_cpu_setup().
270		 */
271
272		/* MIPS32 limits TLB indices to 64 */
273		if (tlbsiz > 64)
274			tlbsiz = 64;
275		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
276		smtc_status |= SMTC_TLB_SHARED;
277		local_flush_tlb_all();
278
279		printk("TLB of %d entry pairs shared by %d VPEs\n",
280			tlbsiz, vpes);
281	    } else {
282		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
283	    }
284	}
285}
286
287
288/*
289 * Incrementally build the CPU map out of constituent MIPS MT cores,
290 * using the specified available VPEs and TCs.  Plaform code needs
291 * to ensure that each MIPS MT core invokes this routine on reset,
292 * one at a time(!).
293 *
294 * This version of the build_cpu_map and prepare_cpus routines assumes
295 * that *all* TCs of a MIPS MT core will be used for Linux, and that
296 * they will be spread across *all* available VPEs (to minimise the
297 * loss of efficiency due to exception service serialization).
298 * An improved version would pick up configuration information and
299 * possibly leave some TCs/VPEs as "slave" processors.
300 *
301 * Use c0_MVPConf0 to find out how many TCs are available, setting up
302 * cpu_possible_map and the logical/physical mappings.
303 */
304
305int __init smtc_build_cpu_map(int start_cpu_slot)
306{
307	int i, ntcs;
308
309	/*
310	 * The CPU map isn't actually used for anything at this point,
311	 * so it's not clear what else we should do apart from set
312	 * everything up so that "logical" = "physical".
313	 */
314	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
315	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
316		set_cpu_possible(i, true);
317		__cpu_number_map[i] = i;
318		__cpu_logical_map[i] = i;
319	}
320#ifdef CONFIG_MIPS_MT_FPAFF
321	/* Initialize map of CPUs with FPUs */
322	cpus_clear(mt_fpu_cpumask);
323#endif
324
325	/* One of those TC's is the one booting, and not a secondary... */
326	printk("%i available secondary CPU TC(s)\n", i - 1);
327
328	return i;
329}
330
331/*
332 * Common setup before any secondaries are started
333 * Make sure all CPUs are in a sensible state before we boot any of the
334 * secondaries.
335 *
336 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
337 * as possible across the available VPEs.
338 */
339
340static void smtc_tc_setup(int vpe, int tc, int cpu)
341{
342	static int cp1contexts[MAX_SMTC_VPES];
343
344	/*
345	 * Make a local copy of the available FPU contexts in order
346	 * to keep track of TCs that can have one.
347	 */
348	if (tc == 1)
349	{
350		cp1contexts[0] = smtc_nconf1[0] - 1;
351		cp1contexts[1] = smtc_nconf1[1];
352	}
353
354	settc(tc);
355	write_tc_c0_tchalt(TCHALT_H);
356	mips_ihb();
357	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
358			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
359			| TCSTATUS_A);
360	/*
361	 * TCContext gets an offset from the base of the IPIQ array
362	 * to be used in low-level code to detect the presence of
363	 * an active IPI queue.
364	 */
365	write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
366
367	/* Bind TC to VPE. */
368	write_tc_c0_tcbind(vpe);
369
370	/* In general, all TCs should have the same cpu_data indications. */
371	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
372
373	/* Check to see if there is a FPU context available for this TC. */
374	if (!cp1contexts[vpe])
375		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
376	else
377		cp1contexts[vpe]--;
378
379	/* Store the TC and VPE into the cpu_data structure. */
380	cpu_data[cpu].vpe_id = vpe;
381	cpu_data[cpu].tc_id = tc;
382
383	cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
384}
385
386/*
387 * Tweak to get Count registers synced as closely as possible. The
388 * value seems good for 34K-class cores.
389 */
390
391#define CP0_SKEW 8
392
393void smtc_prepare_cpus(int cpus)
394{
395	int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
396	unsigned long flags;
397	unsigned long val;
398	int nipi;
399	struct smtc_ipi *pipi;
400
401	/* disable interrupts so we can disable MT */
402	local_irq_save(flags);
403	/* disable MT so we can configure */
404	dvpe();
405	dmt();
406
407	spin_lock_init(&freeIPIq.lock);
408
409	/*
410	 * We probably don't have as many VPEs as we do SMP "CPUs",
411	 * but it's possible - and in any case we'll never use more!
412	 */
413	for (i=0; i<NR_CPUS; i++) {
414		IPIQ[i].head = IPIQ[i].tail = NULL;
415		spin_lock_init(&IPIQ[i].lock);
416		IPIQ[i].depth = 0;
417		IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
418	}
419
420	/* cpu_data index starts at zero */
421	cpu = 0;
422	cpu_data[cpu].vpe_id = 0;
423	cpu_data[cpu].tc_id = 0;
424	cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
425	cpu++;
426
427	/* Report on boot-time options */
428	mips_mt_set_cpuoptions();
429	if (vpelimit > 0)
430		printk("Limit of %d VPEs set\n", vpelimit);
431	if (tclimit > 0)
432		printk("Limit of %d TCs set\n", tclimit);
433	if (nostlb) {
434		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
435	}
436	if (asidmask)
437		printk("ASID mask value override to 0x%x\n", asidmask);
438
439	/* Temporary */
440#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
441	if (hang_trig)
442		printk("Logic Analyser Trigger on suspected TC hang\n");
443#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
444
445	/* Put MVPE's into 'configuration state' */
446	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
447
448	val = read_c0_mvpconf0();
449	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
450	if (vpelimit > 0 && nvpe > vpelimit)
451		nvpe = vpelimit;
452	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
453	if (ntc > NR_CPUS)
454		ntc = NR_CPUS;
455	if (tclimit > 0 && ntc > tclimit)
456		ntc = tclimit;
457	slop = ntc % nvpe;
458	for (i = 0; i < nvpe; i++) {
459		tcpervpe[i] = ntc / nvpe;
460		if (slop) {
461			if((slop - i) > 0) tcpervpe[i]++;
462		}
463	}
464	/* Handle command line override for VPE0 */
465	if (vpe0limit > ntc) vpe0limit = ntc;
466	if (vpe0limit > 0) {
467		int slopslop;
468		if (vpe0limit < tcpervpe[0]) {
469		    /* Reducing TC count - distribute to others */
470		    slop = tcpervpe[0] - vpe0limit;
471		    slopslop = slop % (nvpe - 1);
472		    tcpervpe[0] = vpe0limit;
473		    for (i = 1; i < nvpe; i++) {
474			tcpervpe[i] += slop / (nvpe - 1);
475			if(slopslop && ((slopslop - (i - 1) > 0)))
476				tcpervpe[i]++;
477		    }
478		} else if (vpe0limit > tcpervpe[0]) {
479		    /* Increasing TC count - steal from others */
480		    slop = vpe0limit - tcpervpe[0];
481		    slopslop = slop % (nvpe - 1);
482		    tcpervpe[0] = vpe0limit;
483		    for (i = 1; i < nvpe; i++) {
484			tcpervpe[i] -= slop / (nvpe - 1);
485			if(slopslop && ((slopslop - (i - 1) > 0)))
486				tcpervpe[i]--;
487		    }
488		}
489	}
490
491	/* Set up shared TLB */
492	smtc_configure_tlb();
493
494	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
495		/* Get number of CP1 contexts for each VPE. */
496		if (tc == 0)
497		{
498			/*
499			 * Do not call settc() for TC0 or the FPU context
500			 * value will be incorrect. Besides, we know that
501			 * we are TC0 anyway.
502			 */
503			smtc_nconf1[0] = ((read_vpe_c0_vpeconf1() &
504				VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
505			if (nvpe == 2)
506			{
507				settc(1);
508				smtc_nconf1[1] = ((read_vpe_c0_vpeconf1() &
509					VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
510				settc(0);
511			}
512		}
513		if (tcpervpe[vpe] == 0)
514			continue;
515		if (vpe != 0)
516			printk(", ");
517		printk("VPE %d: TC", vpe);
518		for (i = 0; i < tcpervpe[vpe]; i++) {
519			/*
520			 * TC 0 is bound to VPE 0 at reset,
521			 * and is presumably executing this
522			 * code.  Leave it alone!
523			 */
524			if (tc != 0) {
525				smtc_tc_setup(vpe, tc, cpu);
526				if (vpe != 0) {
527					/*
528					 * Set MVP bit (possibly again).  Do it
529					 * here to catch CPUs that have no TCs
530					 * bound to the VPE at reset.  In that
531					 * case, a TC must be bound to the VPE
532					 * before we can set VPEControl[MVP]
533					 */
534					write_vpe_c0_vpeconf0(
535						read_vpe_c0_vpeconf0() |
536						VPECONF0_MVP);
537				}
538				cpu++;
539			}
540			printk(" %d", tc);
541			tc++;
542		}
543		if (vpe != 0) {
544			/*
545			 * Allow this VPE to control others.
546			 */
547			write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
548					      VPECONF0_MVP);
549
550			/*
551			 * Clear any stale software interrupts from VPE's Cause
552			 */
553			write_vpe_c0_cause(0);
554
555			/*
556			 * Clear ERL/EXL of VPEs other than 0
557			 * and set restricted interrupt enable/mask.
558			 */
559			write_vpe_c0_status((read_vpe_c0_status()
560				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
561				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
562				| ST0_IE));
563			/*
564			 * set config to be the same as vpe0,
565			 *  particularly kseg0 coherency alg
566			 */
567			write_vpe_c0_config(read_c0_config());
568			/* Clear any pending timer interrupt */
569			write_vpe_c0_compare(0);
570			/* Propagate Config7 */
571			write_vpe_c0_config7(read_c0_config7());
572			write_vpe_c0_count(read_c0_count() + CP0_SKEW);
573			ehb();
574		}
575		/* enable multi-threading within VPE */
576		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
577		/* enable the VPE */
578		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
579	}
580
581	/*
582	 * Pull any physically present but unused TCs out of circulation.
583	 */
584	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
585		set_cpu_possible(tc, false);
586		set_cpu_present(tc, false);
587		tc++;
588	}
589
590	/* release config state */
591	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
592
593	printk("\n");
594
595	/* Set up coprocessor affinity CPU mask(s) */
596
597#ifdef CONFIG_MIPS_MT_FPAFF
598	for (tc = 0; tc < ntc; tc++) {
599		if (cpu_data[tc].options & MIPS_CPU_FPU)
600			cpu_set(tc, mt_fpu_cpumask);
601	}
602#endif
603
604	/* set up ipi interrupts... */
605
606	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
607
608	setup_cross_vpe_interrupts(nvpe);
609
610	/* Set up queue of free IPI "messages". */
611	nipi = NR_CPUS * IPIBUF_PER_CPU;
612	if (ipibuffers > 0)
613		nipi = ipibuffers;
614
615	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
616	if (pipi == NULL)
617		panic("kmalloc of IPI message buffers failed\n");
618	else
619		printk("IPI buffer pool of %d buffers\n", nipi);
620	for (i = 0; i < nipi; i++) {
621		smtc_ipi_nq(&freeIPIq, pipi);
622		pipi++;
623	}
624
625	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
626	emt(EMT_ENABLE);
627	evpe(EVPE_ENABLE);
628	local_irq_restore(flags);
629	/* Initialize SMTC /proc statistics/diagnostics */
630	init_smtc_stats();
631}
632
633
634/*
635 * Setup the PC, SP, and GP of a secondary processor and start it
636 * running!
637 * smp_bootstrap is the place to resume from
638 * __KSTK_TOS(idle) is apparently the stack pointer
639 * (unsigned long)idle->thread_info the gp
640 *
641 */
642void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
643{
644	extern u32 kernelsp[NR_CPUS];
645	unsigned long flags;
646	int mtflags;
647
648	LOCK_MT_PRA();
649	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
650		dvpe();
651	}
652	settc(cpu_data[cpu].tc_id);
653
654	/* pc */
655	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
656
657	/* stack pointer */
658	kernelsp[cpu] = __KSTK_TOS(idle);
659	write_tc_gpr_sp(__KSTK_TOS(idle));
660
661	/* global pointer */
662	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
663
664	smtc_status |= SMTC_MTC_ACTIVE;
665	write_tc_c0_tchalt(0);
666	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
667		evpe(EVPE_ENABLE);
668	}
669	UNLOCK_MT_PRA();
670}
671
672void smtc_init_secondary(void)
673{
674	local_irq_enable();
675}
676
677void smtc_smp_finish(void)
678{
679	int cpu = smp_processor_id();
680
681	/*
682	 * Lowest-numbered CPU per VPE starts a clock tick.
683	 * Like per_cpu_trap_init() hack, this assumes that
684	 * SMTC init code assigns TCs consdecutively and
685	 * in ascending order across available VPEs.
686	 */
687	if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
688		write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
689
690	printk("TC %d going on-line as CPU %d\n",
691		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
692}
693
694void smtc_cpus_done(void)
695{
696}
697
698/*
699 * Support for SMTC-optimized driver IRQ registration
700 */
701
702/*
703 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
704 * in do_IRQ. These are passed in setup_irq_smtc() and stored
705 * in this table.
706 */
707
708int setup_irq_smtc(unsigned int irq, struct irqaction * new,
709			unsigned long hwmask)
710{
711#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
712	unsigned int vpe = current_cpu_data.vpe_id;
713
714	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
715#endif
716	irq_hwmask[irq] = hwmask;
717
718	return setup_irq(irq, new);
719}
720
721#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
722/*
723 * Support for IRQ affinity to TCs
724 */
725
726void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
727{
728	/*
729	 * If a "fast path" cache of quickly decodable affinity state
730	 * is maintained, this is where it gets done, on a call up
731	 * from the platform affinity code.
732	 */
733}
734
735void smtc_forward_irq(unsigned int irq)
736{
737	int target;
738
739	/*
740	 * OK wise guy, now figure out how to get the IRQ
741	 * to be serviced on an authorized "CPU".
742	 *
743	 * Ideally, to handle the situation where an IRQ has multiple
744	 * eligible CPUS, we would maintain state per IRQ that would
745	 * allow a fair distribution of service requests.  Since the
746	 * expected use model is any-or-only-one, for simplicity
747	 * and efficiency, we just pick the easiest one to find.
748	 */
749
750	target = cpumask_first(irq_desc[irq].affinity);
751
752	/*
753	 * We depend on the platform code to have correctly processed
754	 * IRQ affinity change requests to ensure that the IRQ affinity
755	 * mask has been purged of bits corresponding to nonexistent and
756	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
757	 * connected to the physical interrupt input for the interrupt
758	 * in question.  Otherwise we have a nasty problem with interrupt
759	 * mask management.  This is best handled in non-performance-critical
760	 * platform IRQ affinity setting code,  to minimize interrupt-time
761	 * checks.
762	 */
763
764	/* If no one is eligible, service locally */
765	if (target >= NR_CPUS) {
766		do_IRQ_no_affinity(irq);
767		return;
768	}
769
770	smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
771}
772
773#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
774
775/*
776 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
777 * Within a VPE one TC can interrupt another by different approaches.
778 * The easiest to get right would probably be to make all TCs except
779 * the target IXMT and set a software interrupt, but an IXMT-based
780 * scheme requires that a handler must run before a new IPI could
781 * be sent, which would break the "broadcast" loops in MIPS MT.
782 * A more gonzo approach within a VPE is to halt the TC, extract
783 * its Restart, Status, and a couple of GPRs, and program the Restart
784 * address to emulate an interrupt.
785 *
786 * Within a VPE, one can be confident that the target TC isn't in
787 * a critical EXL state when halted, since the write to the Halt
788 * register could not have issued on the writing thread if the
789 * halting thread had EXL set. So k0 and k1 of the target TC
790 * can be used by the injection code.  Across VPEs, one can't
791 * be certain that the target TC isn't in a critical exception
792 * state. So we try a two-step process of sending a software
793 * interrupt to the target VPE, which either handles the event
794 * itself (if it was the target) or injects the event within
795 * the VPE.
796 */
797
798static void smtc_ipi_qdump(void)
799{
800	int i;
801	struct smtc_ipi *temp;
802
803	for (i = 0; i < NR_CPUS ;i++) {
804		pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
805			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
806			IPIQ[i].depth);
807		temp = IPIQ[i].head;
808
809		while (temp != IPIQ[i].tail) {
810			pr_debug("%d %d %d: ", temp->type, temp->dest,
811			       (int)temp->arg);
812#ifdef	SMTC_IPI_DEBUG
813		    pr_debug("%u %lu\n", temp->sender, temp->stamp);
814#else
815		    pr_debug("\n");
816#endif
817		    temp = temp->flink;
818		}
819	}
820}
821
822/*
823 * The standard atomic.h primitives don't quite do what we want
824 * here: We need an atomic add-and-return-previous-value (which
825 * could be done with atomic_add_return and a decrement) and an
826 * atomic set/zero-and-return-previous-value (which can't really
827 * be done with the atomic.h primitives). And since this is
828 * MIPS MT, we can assume that we have LL/SC.
829 */
830static inline int atomic_postincrement(atomic_t *v)
831{
832	unsigned long result;
833
834	unsigned long temp;
835
836	__asm__ __volatile__(
837	"1:	ll	%0, %2					\n"
838	"	addu	%1, %0, 1				\n"
839	"	sc	%1, %2					\n"
840	"	beqz	%1, 1b					\n"
841	__WEAK_LLSC_MB
842	: "=&r" (result), "=&r" (temp), "=m" (v->counter)
843	: "m" (v->counter)
844	: "memory");
845
846	return result;
847}
848
849void smtc_send_ipi(int cpu, int type, unsigned int action)
850{
851	int tcstatus;
852	struct smtc_ipi *pipi;
853	unsigned long flags;
854	int mtflags;
855	unsigned long tcrestart;
856	extern void r4k_wait_irqoff(void), __pastwait(void);
857	int set_resched_flag = (type == LINUX_SMP_IPI &&
858				action == SMP_RESCHEDULE_YOURSELF);
859
860	if (cpu == smp_processor_id()) {
861		printk("Cannot Send IPI to self!\n");
862		return;
863	}
864	if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
865		return; /* There is a reschedule queued already */
866
867	/* Set up a descriptor, to be delivered either promptly or queued */
868	pipi = smtc_ipi_dq(&freeIPIq);
869	if (pipi == NULL) {
870		bust_spinlocks(1);
871		mips_mt_regdump(dvpe());
872		panic("IPI Msg. Buffers Depleted\n");
873	}
874	pipi->type = type;
875	pipi->arg = (void *)action;
876	pipi->dest = cpu;
877	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
878		/* If not on same VPE, enqueue and send cross-VPE interrupt */
879		IPIQ[cpu].resched_flag |= set_resched_flag;
880		smtc_ipi_nq(&IPIQ[cpu], pipi);
881		LOCK_CORE_PRA();
882		settc(cpu_data[cpu].tc_id);
883		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
884		UNLOCK_CORE_PRA();
885	} else {
886		/*
887		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
888		 * since ASID shootdown on the other VPE may
889		 * collide with this operation.
890		 */
891		LOCK_CORE_PRA();
892		settc(cpu_data[cpu].tc_id);
893		/* Halt the targeted TC */
894		write_tc_c0_tchalt(TCHALT_H);
895		mips_ihb();
896
897		/*
898	 	 * Inspect TCStatus - if IXMT is set, we have to queue
899		 * a message. Otherwise, we set up the "interrupt"
900		 * of the other TC
901	 	 */
902		tcstatus = read_tc_c0_tcstatus();
903
904		if ((tcstatus & TCSTATUS_IXMT) != 0) {
905			/*
906			 * If we're in the the irq-off version of the wait
907			 * loop, we need to force exit from the wait and
908			 * do a direct post of the IPI.
909			 */
910			if (cpu_wait == r4k_wait_irqoff) {
911				tcrestart = read_tc_c0_tcrestart();
912				if (tcrestart >= (unsigned long)r4k_wait_irqoff
913				    && tcrestart < (unsigned long)__pastwait) {
914					write_tc_c0_tcrestart(__pastwait);
915					tcstatus &= ~TCSTATUS_IXMT;
916					write_tc_c0_tcstatus(tcstatus);
917					goto postdirect;
918				}
919			}
920			/*
921			 * Otherwise we queue the message for the target TC
922			 * to pick up when he does a local_irq_restore()
923			 */
924			write_tc_c0_tchalt(0);
925			UNLOCK_CORE_PRA();
926			IPIQ[cpu].resched_flag |= set_resched_flag;
927			smtc_ipi_nq(&IPIQ[cpu], pipi);
928		} else {
929postdirect:
930			post_direct_ipi(cpu, pipi);
931			write_tc_c0_tchalt(0);
932			UNLOCK_CORE_PRA();
933		}
934	}
935}
936
937/*
938 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
939 */
940static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
941{
942	struct pt_regs *kstack;
943	unsigned long tcstatus;
944	unsigned long tcrestart;
945	extern u32 kernelsp[NR_CPUS];
946	extern void __smtc_ipi_vector(void);
947//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
948
949	/* Extract Status, EPC from halted TC */
950	tcstatus = read_tc_c0_tcstatus();
951	tcrestart = read_tc_c0_tcrestart();
952	/* If TCRestart indicates a WAIT instruction, advance the PC */
953	if ((tcrestart & 0x80000000)
954	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
955		tcrestart += 4;
956	}
957	/*
958	 * Save on TC's future kernel stack
959	 *
960	 * CU bit of Status is indicator that TC was
961	 * already running on a kernel stack...
962	 */
963	if (tcstatus & ST0_CU0)  {
964		/* Note that this "- 1" is pointer arithmetic */
965		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
966	} else {
967		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
968	}
969
970	kstack->cp0_epc = (long)tcrestart;
971	/* Save TCStatus */
972	kstack->cp0_tcstatus = tcstatus;
973	/* Pass token of operation to be performed kernel stack pad area */
974	kstack->pad0[4] = (unsigned long)pipi;
975	/* Pass address of function to be called likewise */
976	kstack->pad0[5] = (unsigned long)&ipi_decode;
977	/* Set interrupt exempt and kernel mode */
978	tcstatus |= TCSTATUS_IXMT;
979	tcstatus &= ~TCSTATUS_TKSU;
980	write_tc_c0_tcstatus(tcstatus);
981	ehb();
982	/* Set TC Restart address to be SMTC IPI vector */
983	write_tc_c0_tcrestart(__smtc_ipi_vector);
984}
985
986static void ipi_resched_interrupt(void)
987{
988	/* Return from interrupt should be enough to cause scheduler check */
989}
990
991static void ipi_call_interrupt(void)
992{
993	/* Invoke generic function invocation code in smp.c */
994	smp_call_function_interrupt();
995}
996
997DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
998
999static void __irq_entry smtc_clock_tick_interrupt(void)
1000{
1001	unsigned int cpu = smp_processor_id();
1002	struct clock_event_device *cd;
1003	int irq = MIPS_CPU_IRQ_BASE + 1;
1004
1005	irq_enter();
1006	kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
1007	cd = &per_cpu(mips_clockevent_device, cpu);
1008	cd->event_handler(cd);
1009	irq_exit();
1010}
1011
1012void ipi_decode(struct smtc_ipi *pipi)
1013{
1014	void *arg_copy = pipi->arg;
1015	int type_copy = pipi->type;
1016
1017	smtc_ipi_nq(&freeIPIq, pipi);
1018
1019	switch (type_copy) {
1020	case SMTC_CLOCK_TICK:
1021		smtc_clock_tick_interrupt();
1022		break;
1023
1024	case LINUX_SMP_IPI:
1025		switch ((int)arg_copy) {
1026		case SMP_RESCHEDULE_YOURSELF:
1027			ipi_resched_interrupt();
1028			break;
1029		case SMP_CALL_FUNCTION:
1030			ipi_call_interrupt();
1031			break;
1032		default:
1033			printk("Impossible SMTC IPI Argument %p\n", arg_copy);
1034			break;
1035		}
1036		break;
1037#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
1038	case IRQ_AFFINITY_IPI:
1039		/*
1040		 * Accept a "forwarded" interrupt that was initially
1041		 * taken by a TC who doesn't have affinity for the IRQ.
1042		 */
1043		do_IRQ_no_affinity((int)arg_copy);
1044		break;
1045#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
1046	default:
1047		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
1048		break;
1049	}
1050}
1051
1052/*
1053 * Similar to smtc_ipi_replay(), but invoked from context restore,
1054 * so it reuses the current exception frame rather than set up a
1055 * new one with self_ipi.
1056 */
1057
1058void deferred_smtc_ipi(void)
1059{
1060	int cpu = smp_processor_id();
1061
1062	/*
1063	 * Test is not atomic, but much faster than a dequeue,
1064	 * and the vast majority of invocations will have a null queue.
1065	 * If irq_disabled when this was called, then any IPIs queued
1066	 * after we test last will be taken on the next irq_enable/restore.
1067	 * If interrupts were enabled, then any IPIs added after the
1068	 * last test will be taken directly.
1069	 */
1070
1071	while (IPIQ[cpu].head != NULL) {
1072		struct smtc_ipi_q *q = &IPIQ[cpu];
1073		struct smtc_ipi *pipi;
1074		unsigned long flags;
1075
1076		/*
1077		 * It may be possible we'll come in with interrupts
1078		 * already enabled.
1079		 */
1080		local_irq_save(flags);
1081		spin_lock(&q->lock);
1082		pipi = __smtc_ipi_dq(q);
1083		spin_unlock(&q->lock);
1084		if (pipi != NULL) {
1085			if (pipi->type == LINUX_SMP_IPI &&
1086			    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1087				IPIQ[cpu].resched_flag = 0;
1088			ipi_decode(pipi);
1089		}
1090		/*
1091		 * The use of the __raw_local restore isn't
1092		 * as obviously necessary here as in smtc_ipi_replay(),
1093		 * but it's more efficient, given that we're already
1094		 * running down the IPI queue.
1095		 */
1096		__raw_local_irq_restore(flags);
1097	}
1098}
1099
1100/*
1101 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1102 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1103 * in some regards preferable to have external logic for "doorbell" hardware
1104 * interrupts.
1105 */
1106
1107static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1108
1109static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1110{
1111	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1112	int my_tc = cpu_data[smp_processor_id()].tc_id;
1113	int cpu;
1114	struct smtc_ipi *pipi;
1115	unsigned long tcstatus;
1116	int sent;
1117	unsigned long flags;
1118	unsigned int mtflags;
1119	unsigned int vpflags;
1120
1121	/*
1122	 * So long as cross-VPE interrupts are done via
1123	 * MFTR/MTTR read-modify-writes of Cause, we need
1124	 * to stop other VPEs whenever the local VPE does
1125	 * anything similar.
1126	 */
1127	local_irq_save(flags);
1128	vpflags = dvpe();
1129	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1130	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1131	irq_enable_hazard();
1132	evpe(vpflags);
1133	local_irq_restore(flags);
1134
1135	/*
1136	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1137	 * queued for TCs on this VPE other than the current one.
1138	 * Return-from-interrupt should cause us to drain the queue
1139	 * for the current TC, so we ought not to have to do it explicitly here.
1140	 */
1141
1142	for_each_online_cpu(cpu) {
1143		if (cpu_data[cpu].vpe_id != my_vpe)
1144			continue;
1145
1146		pipi = smtc_ipi_dq(&IPIQ[cpu]);
1147		if (pipi != NULL) {
1148			if (cpu_data[cpu].tc_id != my_tc) {
1149				sent = 0;
1150				LOCK_MT_PRA();
1151				settc(cpu_data[cpu].tc_id);
1152				write_tc_c0_tchalt(TCHALT_H);
1153				mips_ihb();
1154				tcstatus = read_tc_c0_tcstatus();
1155				if ((tcstatus & TCSTATUS_IXMT) == 0) {
1156					post_direct_ipi(cpu, pipi);
1157					sent = 1;
1158				}
1159				write_tc_c0_tchalt(0);
1160				UNLOCK_MT_PRA();
1161				if (!sent) {
1162					smtc_ipi_req(&IPIQ[cpu], pipi);
1163				}
1164			} else {
1165				/*
1166				 * ipi_decode() should be called
1167				 * with interrupts off
1168				 */
1169				local_irq_save(flags);
1170				if (pipi->type == LINUX_SMP_IPI &&
1171				    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1172					IPIQ[cpu].resched_flag = 0;
1173				ipi_decode(pipi);
1174				local_irq_restore(flags);
1175			}
1176		}
1177	}
1178
1179	return IRQ_HANDLED;
1180}
1181
1182static void ipi_irq_dispatch(void)
1183{
1184	do_IRQ(cpu_ipi_irq);
1185}
1186
1187static struct irqaction irq_ipi = {
1188	.handler	= ipi_interrupt,
1189	.flags		= IRQF_DISABLED | IRQF_PERCPU,
1190	.name		= "SMTC_IPI"
1191};
1192
1193static void setup_cross_vpe_interrupts(unsigned int nvpe)
1194{
1195	if (nvpe < 1)
1196		return;
1197
1198	if (!cpu_has_vint)
1199		panic("SMTC Kernel requires Vectored Interrupt support");
1200
1201	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1202
1203	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1204
1205	set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1206}
1207
1208/*
1209 * SMTC-specific hacks invoked from elsewhere in the kernel.
1210 */
1211
1212 /*
1213  * smtc_ipi_replay is called from raw_local_irq_restore
1214  */
1215
1216void smtc_ipi_replay(void)
1217{
1218	unsigned int cpu = smp_processor_id();
1219
1220	/*
1221	 * To the extent that we've ever turned interrupts off,
1222	 * we may have accumulated deferred IPIs.  This is subtle.
1223	 * we should be OK:  If we pick up something and dispatch
1224	 * it here, that's great. If we see nothing, but concurrent
1225	 * with this operation, another TC sends us an IPI, IXMT
1226	 * is clear, and we'll handle it as a real pseudo-interrupt
1227	 * and not a pseudo-pseudo interrupt.  The important thing
1228	 * is to do the last check for queued message *after* the
1229	 * re-enabling of interrupts.
1230	 */
1231	while (IPIQ[cpu].head != NULL) {
1232		struct smtc_ipi_q *q = &IPIQ[cpu];
1233		struct smtc_ipi *pipi;
1234		unsigned long flags;
1235
1236		/*
1237		 * It's just possible we'll come in with interrupts
1238		 * already enabled.
1239		 */
1240		local_irq_save(flags);
1241
1242		spin_lock(&q->lock);
1243		pipi = __smtc_ipi_dq(q);
1244		spin_unlock(&q->lock);
1245		/*
1246		 ** But use a raw restore here to avoid recursion.
1247		 */
1248		__raw_local_irq_restore(flags);
1249
1250		if (pipi) {
1251			self_ipi(pipi);
1252			smtc_cpu_stats[cpu].selfipis++;
1253		}
1254	}
1255}
1256
1257EXPORT_SYMBOL(smtc_ipi_replay);
1258
1259void smtc_idle_loop_hook(void)
1260{
1261#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1262	int im;
1263	int flags;
1264	int mtflags;
1265	int bit;
1266	int vpe;
1267	int tc;
1268	int hook_ntcs;
1269	/*
1270	 * printk within DMT-protected regions can deadlock,
1271	 * so buffer diagnostic messages for later output.
1272	 */
1273	char *pdb_msg;
1274	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1275
1276	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1277		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1278			int mvpconf0;
1279			/* Tedious stuff to just do once */
1280			mvpconf0 = read_c0_mvpconf0();
1281			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1282			if (hook_ntcs > NR_CPUS)
1283				hook_ntcs = NR_CPUS;
1284			for (tc = 0; tc < hook_ntcs; tc++) {
1285				tcnoprog[tc] = 0;
1286				clock_hang_reported[tc] = 0;
1287	    		}
1288			for (vpe = 0; vpe < 2; vpe++)
1289				for (im = 0; im < 8; im++)
1290					imstuckcount[vpe][im] = 0;
1291			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1292			atomic_set(&idle_hook_initialized, 1000);
1293		} else {
1294			/* Someone else is initializing in parallel - let 'em finish */
1295			while (atomic_read(&idle_hook_initialized) < 1000)
1296				;
1297		}
1298	}
1299
1300	/* Have we stupidly left IXMT set somewhere? */
1301	if (read_c0_tcstatus() & 0x400) {
1302		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1303		ehb();
1304		printk("Dangling IXMT in cpu_idle()\n");
1305	}
1306
1307	/* Have we stupidly left an IM bit turned off? */
1308#define IM_LIMIT 2000
1309	local_irq_save(flags);
1310	mtflags = dmt();
1311	pdb_msg = &id_ho_db_msg[0];
1312	im = read_c0_status();
1313	vpe = current_cpu_data.vpe_id;
1314	for (bit = 0; bit < 8; bit++) {
1315		/*
1316		 * In current prototype, I/O interrupts
1317		 * are masked for VPE > 0
1318		 */
1319		if (vpemask[vpe][bit]) {
1320			if (!(im & (0x100 << bit)))
1321				imstuckcount[vpe][bit]++;
1322			else
1323				imstuckcount[vpe][bit] = 0;
1324			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1325				set_c0_status(0x100 << bit);
1326				ehb();
1327				imstuckcount[vpe][bit] = 0;
1328				pdb_msg += sprintf(pdb_msg,
1329					"Dangling IM %d fixed for VPE %d\n", bit,
1330					vpe);
1331			}
1332		}
1333	}
1334
1335	emt(mtflags);
1336	local_irq_restore(flags);
1337	if (pdb_msg != &id_ho_db_msg[0])
1338		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1339#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1340
1341	smtc_ipi_replay();
1342}
1343
1344void smtc_soft_dump(void)
1345{
1346	int i;
1347
1348	printk("Counter Interrupts taken per CPU (TC)\n");
1349	for (i=0; i < NR_CPUS; i++) {
1350		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1351	}
1352	printk("Self-IPI invocations:\n");
1353	for (i=0; i < NR_CPUS; i++) {
1354		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1355	}
1356	smtc_ipi_qdump();
1357	printk("%d Recoveries of \"stolen\" FPU\n",
1358	       atomic_read(&smtc_fpu_recoveries));
1359}
1360
1361
1362/*
1363 * TLB management routines special to SMTC
1364 */
1365
1366void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1367{
1368	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1369	int tlb, i;
1370
1371	/*
1372	 * It would be nice to be able to use a spinlock here,
1373	 * but this is invoked from within TLB flush routines
1374	 * that protect themselves with DVPE, so if a lock is
1375	 * held by another TC, it'll never be freed.
1376	 *
1377	 * DVPE/DMT must not be done with interrupts enabled,
1378	 * so even so most callers will already have disabled
1379	 * them, let's be really careful...
1380	 */
1381
1382	local_irq_save(flags);
1383	if (smtc_status & SMTC_TLB_SHARED) {
1384		mtflags = dvpe();
1385		tlb = 0;
1386	} else {
1387		mtflags = dmt();
1388		tlb = cpu_data[cpu].vpe_id;
1389	}
1390	asid = asid_cache(cpu);
1391
1392	do {
1393		if (!((asid += ASID_INC) & ASID_MASK) ) {
1394			if (cpu_has_vtag_icache)
1395				flush_icache_all();
1396			/* Traverse all online CPUs (hack requires contiguous range) */
1397			for_each_online_cpu(i) {
1398				/*
1399				 * We don't need to worry about our own CPU, nor those of
1400				 * CPUs who don't share our TLB.
1401				 */
1402				if ((i != smp_processor_id()) &&
1403				    ((smtc_status & SMTC_TLB_SHARED) ||
1404				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1405					settc(cpu_data[i].tc_id);
1406					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1407					if (!prevhalt) {
1408						write_tc_c0_tchalt(TCHALT_H);
1409						mips_ihb();
1410					}
1411					tcstat = read_tc_c0_tcstatus();
1412					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1413					if (!prevhalt)
1414						write_tc_c0_tchalt(0);
1415				}
1416			}
1417			if (!asid)		/* fix version if needed */
1418				asid = ASID_FIRST_VERSION;
1419			local_flush_tlb_all();	/* start new asid cycle */
1420		}
1421	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1422
1423	/*
1424	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1425	 */
1426	for_each_online_cpu(i) {
1427		if ((smtc_status & SMTC_TLB_SHARED) ||
1428		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1429			cpu_context(i, mm) = asid_cache(i) = asid;
1430	}
1431
1432	if (smtc_status & SMTC_TLB_SHARED)
1433		evpe(mtflags);
1434	else
1435		emt(mtflags);
1436	local_irq_restore(flags);
1437}
1438
1439/*
1440 * Invoked from macros defined in mmu_context.h
1441 * which must already have disabled interrupts
1442 * and done a DVPE or DMT as appropriate.
1443 */
1444
1445void smtc_flush_tlb_asid(unsigned long asid)
1446{
1447	int entry;
1448	unsigned long ehi;
1449
1450	entry = read_c0_wired();
1451
1452	/* Traverse all non-wired entries */
1453	while (entry < current_cpu_data.tlbsize) {
1454		write_c0_index(entry);
1455		ehb();
1456		tlb_read();
1457		ehb();
1458		ehi = read_c0_entryhi();
1459		if ((ehi & ASID_MASK) == asid) {
1460		    /*
1461		     * Invalidate only entries with specified ASID,
1462		     * makiing sure all entries differ.
1463		     */
1464		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1465		    write_c0_entrylo0(0);
1466		    write_c0_entrylo1(0);
1467		    mtc0_tlbw_hazard();
1468		    tlb_write_indexed();
1469		}
1470		entry++;
1471	}
1472	write_c0_index(PARKED_INDEX);
1473	tlbw_use_hazard();
1474}
1475
1476/*
1477 * Support for single-threading cache flush operations.
1478 */
1479
1480static int halt_state_save[NR_CPUS];
1481
1482/*
1483 * To really, really be sure that nothing is being done
1484 * by other TCs, halt them all.  This code assumes that
1485 * a DVPE has already been done, so while their Halted
1486 * state is theoretically architecturally unstable, in
1487 * practice, it's not going to change while we're looking
1488 * at it.
1489 */
1490
1491void smtc_cflush_lockdown(void)
1492{
1493	int cpu;
1494
1495	for_each_online_cpu(cpu) {
1496		if (cpu != smp_processor_id()) {
1497			settc(cpu_data[cpu].tc_id);
1498			halt_state_save[cpu] = read_tc_c0_tchalt();
1499			write_tc_c0_tchalt(TCHALT_H);
1500		}
1501	}
1502	mips_ihb();
1503}
1504
1505/* It would be cheating to change the cpu_online states during a flush! */
1506
1507void smtc_cflush_release(void)
1508{
1509	int cpu;
1510
1511	/*
1512	 * Start with a hazard barrier to ensure
1513	 * that all CACHE ops have played through.
1514	 */
1515	mips_ihb();
1516
1517	for_each_online_cpu(cpu) {
1518		if (cpu != smp_processor_id()) {
1519			settc(cpu_data[cpu].tc_id);
1520			write_tc_c0_tchalt(halt_state_save[cpu]);
1521		}
1522	}
1523	mips_ihb();
1524}
1525