• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/mips/kernel/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/module.h>
16#include <linux/screen_info.h>
17#include <linux/bootmem.h>
18#include <linux/initrd.h>
19#include <linux/root_dev.h>
20#include <linux/highmem.h>
21#include <linux/console.h>
22#include <linux/pfn.h>
23#include <linux/debugfs.h>
24
25#include <asm/addrspace.h>
26#include <asm/bootinfo.h>
27#include <asm/bugs.h>
28#include <asm/cache.h>
29#include <asm/cpu.h>
30#include <asm/sections.h>
31#include <asm/setup.h>
32#include <asm/smp-ops.h>
33#include <asm/system.h>
34
35struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
36
37EXPORT_SYMBOL(cpu_data);
38
39#ifdef CONFIG_VT
40struct screen_info screen_info;
41#endif
42
43/*
44 * Despite it's name this variable is even if we don't have PCI
45 */
46unsigned int PCI_DMA_BUS_IS_PHYS;
47
48EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49
50/*
51 * Setup information
52 *
53 * These are initialized so they are in the .data section
54 */
55unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
56
57EXPORT_SYMBOL(mips_machtype);
58
59struct boot_mem_map boot_mem_map;
60
61static char __initdata command_line[COMMAND_LINE_SIZE];
62char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
63
64#ifdef CONFIG_CMDLINE_BOOL
65static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
66#endif
67
68/*
69 * mips_io_port_base is the begin of the address space to which x86 style
70 * I/O ports are mapped.
71 */
72const unsigned long mips_io_port_base __read_mostly = -1;
73EXPORT_SYMBOL(mips_io_port_base);
74
75static struct resource code_resource = { .name = "Kernel code", };
76static struct resource data_resource = { .name = "Kernel data", };
77
78void __init add_memory_region(phys_t start, phys_t size, long type)
79{
80	int x = boot_mem_map.nr_map;
81	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
82
83	/* Sanity check */
84	if (start + size < start) {
85		pr_warning("Trying to add an invalid memory region, skipped\n");
86		return;
87	}
88
89	/*
90	 * Try to merge with previous entry if any.  This is far less than
91	 * perfect but is sufficient for most real world cases.
92	 */
93	if (x && prev->addr + prev->size == start && prev->type == type) {
94		prev->size += size;
95		return;
96	}
97
98	if (x == BOOT_MEM_MAP_MAX) {
99		pr_err("Ooops! Too many entries in the memory map!\n");
100		return;
101	}
102
103	boot_mem_map.map[x].addr = start;
104	boot_mem_map.map[x].size = size;
105	boot_mem_map.map[x].type = type;
106	boot_mem_map.nr_map++;
107}
108
109static void __init print_memory_map(void)
110{
111	int i;
112	const int field = 2 * sizeof(unsigned long);
113
114	for (i = 0; i < boot_mem_map.nr_map; i++) {
115		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
116		       field, (unsigned long long) boot_mem_map.map[i].size,
117		       field, (unsigned long long) boot_mem_map.map[i].addr);
118
119		switch (boot_mem_map.map[i].type) {
120		case BOOT_MEM_RAM:
121			printk(KERN_CONT "(usable)\n");
122			break;
123		case BOOT_MEM_ROM_DATA:
124			printk(KERN_CONT "(ROM data)\n");
125			break;
126		case BOOT_MEM_RESERVED:
127			printk(KERN_CONT "(reserved)\n");
128			break;
129		default:
130			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
131			break;
132		}
133	}
134}
135
136/*
137 * Manage initrd
138 */
139#ifdef CONFIG_BLK_DEV_INITRD
140
141static int __init rd_start_early(char *p)
142{
143	unsigned long start = memparse(p, &p);
144
145#ifdef CONFIG_64BIT
146	/* Guess if the sign extension was forgotten by bootloader */
147	if (start < XKPHYS)
148		start = (int)start;
149#endif
150	initrd_start = start;
151	initrd_end += start;
152	return 0;
153}
154early_param("rd_start", rd_start_early);
155
156static int __init rd_size_early(char *p)
157{
158	initrd_end += memparse(p, &p);
159	return 0;
160}
161early_param("rd_size", rd_size_early);
162
163/* it returns the next free pfn after initrd */
164static unsigned long __init init_initrd(void)
165{
166	unsigned long end;
167
168	/*
169	 * Board specific code or command line parser should have
170	 * already set up initrd_start and initrd_end. In these cases
171	 * perfom sanity checks and use them if all looks good.
172	 */
173	if (!initrd_start || initrd_end <= initrd_start)
174		goto disable;
175
176	if (initrd_start & ~PAGE_MASK) {
177		pr_err("initrd start must be page aligned\n");
178		goto disable;
179	}
180	if (initrd_start < PAGE_OFFSET) {
181		pr_err("initrd start < PAGE_OFFSET\n");
182		goto disable;
183	}
184
185	/*
186	 * Sanitize initrd addresses. For example firmware
187	 * can't guess if they need to pass them through
188	 * 64-bits values if the kernel has been built in pure
189	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
190	 * addresses now, so the code can now safely use __pa().
191	 */
192	end = __pa(initrd_end);
193	initrd_end = (unsigned long)__va(end);
194	initrd_start = (unsigned long)__va(__pa(initrd_start));
195
196	ROOT_DEV = Root_RAM0;
197	return PFN_UP(end);
198disable:
199	initrd_start = 0;
200	initrd_end = 0;
201	return 0;
202}
203
204static void __init finalize_initrd(void)
205{
206	unsigned long size = initrd_end - initrd_start;
207
208	if (size == 0) {
209		printk(KERN_INFO "Initrd not found or empty");
210		goto disable;
211	}
212	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
213		printk(KERN_ERR "Initrd extends beyond end of memory");
214		goto disable;
215	}
216
217	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
218	initrd_below_start_ok = 1;
219
220	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
221		initrd_start, size);
222	return;
223disable:
224	printk(KERN_CONT " - disabling initrd\n");
225	initrd_start = 0;
226	initrd_end = 0;
227}
228
229#else  /* !CONFIG_BLK_DEV_INITRD */
230
231static unsigned long __init init_initrd(void)
232{
233	return 0;
234}
235
236#define finalize_initrd()	do {} while (0)
237
238#endif
239
240/*
241 * Initialize the bootmem allocator. It also setup initrd related data
242 * if needed.
243 */
244#ifdef CONFIG_SGI_IP27
245
246static void __init bootmem_init(void)
247{
248	init_initrd();
249	finalize_initrd();
250}
251
252#else  /* !CONFIG_SGI_IP27 */
253
254static void __init bootmem_init(void)
255{
256	unsigned long reserved_end;
257	unsigned long mapstart = ~0UL;
258	unsigned long bootmap_size;
259	int i;
260
261	/*
262	 * Init any data related to initrd. It's a nop if INITRD is
263	 * not selected. Once that done we can determine the low bound
264	 * of usable memory.
265	 */
266	reserved_end = max(init_initrd(),
267			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
268
269	/*
270	 * max_low_pfn is not a number of pages. The number of pages
271	 * of the system is given by 'max_low_pfn - min_low_pfn'.
272	 */
273	min_low_pfn = ~0UL;
274	max_low_pfn = 0;
275
276	/*
277	 * Find the highest page frame number we have available.
278	 */
279	for (i = 0; i < boot_mem_map.nr_map; i++) {
280		unsigned long start, end;
281
282		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
283			continue;
284
285		start = PFN_UP(boot_mem_map.map[i].addr);
286		end = PFN_DOWN(boot_mem_map.map[i].addr
287				+ boot_mem_map.map[i].size);
288
289		if (end > max_low_pfn)
290			max_low_pfn = end;
291		if (start < min_low_pfn)
292			min_low_pfn = start;
293		if (end <= reserved_end)
294			continue;
295		if (start >= mapstart)
296			continue;
297		mapstart = max(reserved_end, start);
298	}
299
300	if (min_low_pfn >= max_low_pfn)
301		panic("Incorrect memory mapping !!!");
302	if (min_low_pfn > ARCH_PFN_OFFSET) {
303		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
304			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
305			min_low_pfn - ARCH_PFN_OFFSET);
306	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
307		pr_info("%lu free pages won't be used\n",
308			ARCH_PFN_OFFSET - min_low_pfn);
309	}
310	min_low_pfn = ARCH_PFN_OFFSET;
311
312	/*
313	 * Determine low and high memory ranges
314	 */
315	max_pfn = max_low_pfn;
316	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
317#ifdef CONFIG_HIGHMEM
318		highstart_pfn = PFN_DOWN(HIGHMEM_START);
319		highend_pfn = max_low_pfn;
320#endif
321		max_low_pfn = PFN_DOWN(HIGHMEM_START);
322	}
323
324	/*
325	 * Initialize the boot-time allocator with low memory only.
326	 */
327	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
328					 min_low_pfn, max_low_pfn);
329
330
331	for (i = 0; i < boot_mem_map.nr_map; i++) {
332		unsigned long start, end;
333
334		start = PFN_UP(boot_mem_map.map[i].addr);
335		end = PFN_DOWN(boot_mem_map.map[i].addr
336				+ boot_mem_map.map[i].size);
337
338		if (start <= min_low_pfn)
339			start = min_low_pfn;
340		if (start >= end)
341			continue;
342
343#ifndef CONFIG_HIGHMEM
344		if (end > max_low_pfn)
345			end = max_low_pfn;
346
347		/*
348		 * ... finally, is the area going away?
349		 */
350		if (end <= start)
351			continue;
352#endif
353
354		add_active_range(0, start, end);
355	}
356
357	/*
358	 * Register fully available low RAM pages with the bootmem allocator.
359	 */
360	for (i = 0; i < boot_mem_map.nr_map; i++) {
361		unsigned long start, end, size;
362
363		/*
364		 * Reserve usable memory.
365		 */
366		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
367			continue;
368
369		start = PFN_UP(boot_mem_map.map[i].addr);
370		end   = PFN_DOWN(boot_mem_map.map[i].addr
371				    + boot_mem_map.map[i].size);
372		/*
373		 * We are rounding up the start address of usable memory
374		 * and at the end of the usable range downwards.
375		 */
376		if (start >= max_low_pfn)
377			continue;
378		if (start < reserved_end)
379			start = reserved_end;
380		if (end > max_low_pfn)
381			end = max_low_pfn;
382
383		/*
384		 * ... finally, is the area going away?
385		 */
386		if (end <= start)
387			continue;
388		size = end - start;
389
390		/* Register lowmem ranges */
391		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
392		memory_present(0, start, end);
393	}
394
395	/*
396	 * Reserve the bootmap memory.
397	 */
398	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
399
400	/*
401	 * Reserve initrd memory if needed.
402	 */
403	finalize_initrd();
404}
405
406#endif	/* CONFIG_SGI_IP27 */
407
408/*
409 * arch_mem_init - initialize memory management subsystem
410 *
411 *  o plat_mem_setup() detects the memory configuration and will record detected
412 *    memory areas using add_memory_region.
413 *
414 * At this stage the memory configuration of the system is known to the
415 * kernel but generic memory management system is still entirely uninitialized.
416 *
417 *  o bootmem_init()
418 *  o sparse_init()
419 *  o paging_init()
420 *
421 * At this stage the bootmem allocator is ready to use.
422 *
423 * NOTE: historically plat_mem_setup did the entire platform initialization.
424 *       This was rather impractical because it meant plat_mem_setup had to
425 * get away without any kind of memory allocator.  To keep old code from
426 * breaking plat_setup was just renamed to plat_setup and a second platform
427 * initialization hook for anything else was introduced.
428 */
429
430static int usermem __initdata;
431
432static int __init early_parse_mem(char *p)
433{
434	unsigned long start, size;
435
436	/*
437	 * If a user specifies memory size, we
438	 * blow away any automatically generated
439	 * size.
440	 */
441	if (usermem == 0) {
442		boot_mem_map.nr_map = 0;
443		usermem = 1;
444 	}
445	start = 0;
446	size = memparse(p, &p);
447	if (*p == '@')
448		start = memparse(p + 1, &p);
449
450	add_memory_region(start, size, BOOT_MEM_RAM);
451	return 0;
452}
453early_param("mem", early_parse_mem);
454
455static void __init arch_mem_init(char **cmdline_p)
456{
457	extern void plat_mem_setup(void);
458
459	/* call board setup routine */
460	plat_mem_setup();
461
462	pr_info("Determined physical RAM map:\n");
463	print_memory_map();
464
465#ifdef CONFIG_CMDLINE_BOOL
466#ifdef CONFIG_CMDLINE_OVERRIDE
467	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
468#else
469	if (builtin_cmdline[0]) {
470		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
471		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
472	}
473	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
474#endif
475#else
476	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
477#endif
478	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
479
480	*cmdline_p = command_line;
481
482	parse_early_param();
483
484	if (usermem) {
485		pr_info("User-defined physical RAM map:\n");
486		print_memory_map();
487	}
488
489	bootmem_init();
490	sparse_init();
491	paging_init();
492}
493
494static void __init resource_init(void)
495{
496	int i;
497
498	if (UNCAC_BASE != IO_BASE)
499		return;
500
501	code_resource.start = __pa_symbol(&_text);
502	code_resource.end = __pa_symbol(&_etext) - 1;
503	data_resource.start = __pa_symbol(&_etext);
504	data_resource.end = __pa_symbol(&_edata) - 1;
505
506	/*
507	 * Request address space for all standard RAM.
508	 */
509	for (i = 0; i < boot_mem_map.nr_map; i++) {
510		struct resource *res;
511		unsigned long start, end;
512
513		start = boot_mem_map.map[i].addr;
514		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
515		if (start >= HIGHMEM_START)
516			continue;
517		if (end >= HIGHMEM_START)
518			end = HIGHMEM_START - 1;
519
520		res = alloc_bootmem(sizeof(struct resource));
521		switch (boot_mem_map.map[i].type) {
522		case BOOT_MEM_RAM:
523		case BOOT_MEM_ROM_DATA:
524			res->name = "System RAM";
525			break;
526		case BOOT_MEM_RESERVED:
527		default:
528			res->name = "reserved";
529		}
530
531		res->start = start;
532		res->end = end;
533
534		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
535		request_resource(&iomem_resource, res);
536
537		/*
538		 *  We don't know which RAM region contains kernel data,
539		 *  so we try it repeatedly and let the resource manager
540		 *  test it.
541		 */
542		request_resource(res, &code_resource);
543		request_resource(res, &data_resource);
544	}
545}
546
547void __init setup_arch(char **cmdline_p)
548{
549	cpu_probe();
550	prom_init();
551
552#ifdef CONFIG_EARLY_PRINTK
553	setup_early_printk();
554#endif
555	cpu_report();
556	check_bugs_early();
557
558#if defined(CONFIG_VT)
559#if defined(CONFIG_VGA_CONSOLE)
560	conswitchp = &vga_con;
561#elif defined(CONFIG_DUMMY_CONSOLE)
562	conswitchp = &dummy_con;
563#endif
564#endif
565
566	arch_mem_init(cmdline_p);
567
568	resource_init();
569	plat_smp_setup();
570}
571
572unsigned long kernelsp[NR_CPUS];
573unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
574
575#ifdef CONFIG_DEBUG_FS
576struct dentry *mips_debugfs_dir;
577static int __init debugfs_mips(void)
578{
579	struct dentry *d;
580
581	d = debugfs_create_dir("mips", NULL);
582	if (!d)
583		return -ENOMEM;
584	mips_debugfs_dir = d;
585	return 0;
586}
587arch_initcall(debugfs_mips);
588#endif
589