• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/arm/mm/
1/*
2 *  linux/arch/arm/mm/mmu.c
3 *
4 *  Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/mman.h>
15#include <linux/nodemask.h>
16#include <linux/memblock.h>
17#include <linux/sort.h>
18#include <linux/fs.h>
19
20#include <asm/cputype.h>
21#include <asm/sections.h>
22#include <asm/cachetype.h>
23#include <asm/setup.h>
24#include <asm/sizes.h>
25#include <asm/smp_plat.h>
26#include <asm/tlb.h>
27#include <asm/highmem.h>
28
29#include <asm/mach/arch.h>
30#include <asm/mach/map.h>
31
32#include "mm.h"
33
34DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
36/*
37 * empty_zero_page is a special page that is used for
38 * zero-initialized data and COW.
39 */
40struct page *empty_zero_page;
41EXPORT_SYMBOL(empty_zero_page);
42
43/*
44 * The pmd table for the upper-most set of pages.
45 */
46pmd_t *top_pmd;
47
48#define CPOLICY_UNCACHED	0
49#define CPOLICY_BUFFERED	1
50#define CPOLICY_WRITETHROUGH	2
51#define CPOLICY_WRITEBACK	3
52#define CPOLICY_WRITEALLOC	4
53
54static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55static unsigned int ecc_mask __initdata = 0;
56pgprot_t pgprot_user;
57pgprot_t pgprot_kernel;
58
59EXPORT_SYMBOL(pgprot_user);
60EXPORT_SYMBOL(pgprot_kernel);
61
62struct cachepolicy {
63	const char	policy[16];
64	unsigned int	cr_mask;
65	unsigned int	pmd;
66	unsigned int	pte;
67};
68
69static struct cachepolicy cache_policies[] __initdata = {
70	{
71		.policy		= "uncached",
72		.cr_mask	= CR_W|CR_C,
73		.pmd		= PMD_SECT_UNCACHED,
74		.pte		= L_PTE_MT_UNCACHED,
75	}, {
76		.policy		= "buffered",
77		.cr_mask	= CR_C,
78		.pmd		= PMD_SECT_BUFFERED,
79		.pte		= L_PTE_MT_BUFFERABLE,
80	}, {
81		.policy		= "writethrough",
82		.cr_mask	= 0,
83		.pmd		= PMD_SECT_WT,
84		.pte		= L_PTE_MT_WRITETHROUGH,
85	}, {
86		.policy		= "writeback",
87		.cr_mask	= 0,
88		.pmd		= PMD_SECT_WB,
89		.pte		= L_PTE_MT_WRITEBACK,
90	}, {
91		.policy		= "writealloc",
92		.cr_mask	= 0,
93		.pmd		= PMD_SECT_WBWA,
94		.pte		= L_PTE_MT_WRITEALLOC,
95	}
96};
97
98/*
99 * These are useful for identifying cache coherency
100 * problems by allowing the cache or the cache and
101 * writebuffer to be turned off.  (Note: the write
102 * buffer should not be on and the cache off).
103 */
104static int __init early_cachepolicy(char *p)
105{
106	int i;
107
108	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109		int len = strlen(cache_policies[i].policy);
110
111		if (memcmp(p, cache_policies[i].policy, len) == 0) {
112			cachepolicy = i;
113			cr_alignment &= ~cache_policies[i].cr_mask;
114			cr_no_alignment &= ~cache_policies[i].cr_mask;
115			break;
116		}
117	}
118	if (i == ARRAY_SIZE(cache_policies))
119		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120	/*
121	 * This restriction is partly to do with the way we boot; it is
122	 * unpredictable to have memory mapped using two different sets of
123	 * memory attributes (shared, type, and cache attribs).  We can not
124	 * change these attributes once the initial assembly has setup the
125	 * page tables.
126	 */
127	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129		cachepolicy = CPOLICY_WRITEBACK;
130	}
131	flush_cache_all();
132	set_cr(cr_alignment);
133	return 0;
134}
135early_param("cachepolicy", early_cachepolicy);
136
137static int __init early_nocache(char *__unused)
138{
139	char *p = "buffered";
140	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141	early_cachepolicy(p);
142	return 0;
143}
144early_param("nocache", early_nocache);
145
146static int __init early_nowrite(char *__unused)
147{
148	char *p = "uncached";
149	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150	early_cachepolicy(p);
151	return 0;
152}
153early_param("nowb", early_nowrite);
154
155static int __init early_ecc(char *p)
156{
157	if (memcmp(p, "on", 2) == 0)
158		ecc_mask = PMD_PROTECTION;
159	else if (memcmp(p, "off", 3) == 0)
160		ecc_mask = 0;
161	return 0;
162}
163early_param("ecc", early_ecc);
164
165static int __init noalign_setup(char *__unused)
166{
167	cr_alignment &= ~CR_A;
168	cr_no_alignment &= ~CR_A;
169	set_cr(cr_alignment);
170	return 1;
171}
172__setup("noalign", noalign_setup);
173
174#ifndef CONFIG_SMP
175void adjust_cr(unsigned long mask, unsigned long set)
176{
177	unsigned long flags;
178
179	mask &= ~CR_A;
180
181	set &= mask;
182
183	local_irq_save(flags);
184
185	cr_no_alignment = (cr_no_alignment & ~mask) | set;
186	cr_alignment = (cr_alignment & ~mask) | set;
187
188	set_cr((get_cr() & ~mask) | set);
189
190	local_irq_restore(flags);
191}
192#endif
193
194#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
195#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196
197static struct mem_type mem_types[] = {
198	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
199		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200				  L_PTE_SHARED,
201		.prot_l1	= PMD_TYPE_TABLE,
202		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
203		.domain		= DOMAIN_IO,
204	},
205	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207		.prot_l1	= PMD_TYPE_TABLE,
208		.prot_sect	= PROT_SECT_DEVICE,
209		.domain		= DOMAIN_IO,
210	},
211	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
212		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213		.prot_l1	= PMD_TYPE_TABLE,
214		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
215		.domain		= DOMAIN_IO,
216	},
217	[MT_DEVICE_WC] = {	/* ioremap_wc */
218		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219		.prot_l1	= PMD_TYPE_TABLE,
220		.prot_sect	= PROT_SECT_DEVICE,
221		.domain		= DOMAIN_IO,
222	},
223	[MT_UNCACHED] = {
224		.prot_pte	= PROT_PTE_DEVICE,
225		.prot_l1	= PMD_TYPE_TABLE,
226		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
227		.domain		= DOMAIN_IO,
228	},
229	[MT_CACHECLEAN] = {
230		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231		.domain    = DOMAIN_KERNEL,
232	},
233	[MT_MINICLEAN] = {
234		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
235		.domain    = DOMAIN_KERNEL,
236	},
237	[MT_LOW_VECTORS] = {
238		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239				L_PTE_EXEC,
240		.prot_l1   = PMD_TYPE_TABLE,
241		.domain    = DOMAIN_USER,
242	},
243	[MT_HIGH_VECTORS] = {
244		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245				L_PTE_USER | L_PTE_EXEC,
246		.prot_l1   = PMD_TYPE_TABLE,
247		.domain    = DOMAIN_USER,
248	},
249	[MT_MEMORY] = {
250		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
251				L_PTE_WRITE | L_PTE_EXEC,
252		.prot_l1   = PMD_TYPE_TABLE,
253		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
254		.domain    = DOMAIN_KERNEL,
255	},
256	[MT_ROM] = {
257		.prot_sect = PMD_TYPE_SECT,
258		.domain    = DOMAIN_KERNEL,
259	},
260	[MT_MEMORY_NONCACHED] = {
261		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
262				L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
263		.prot_l1   = PMD_TYPE_TABLE,
264		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
265		.domain    = DOMAIN_KERNEL,
266	},
267	[MT_MEMORY_DTCM] = {
268		.prot_pte	= L_PTE_PRESENT | L_PTE_YOUNG |
269		                  L_PTE_DIRTY | L_PTE_WRITE,
270		.prot_l1	= PMD_TYPE_TABLE,
271		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
272		.domain		= DOMAIN_KERNEL,
273	},
274	[MT_MEMORY_ITCM] = {
275		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276				L_PTE_USER | L_PTE_EXEC,
277		.prot_l1   = PMD_TYPE_TABLE,
278		.domain    = DOMAIN_IO,
279	},
280};
281
282const struct mem_type *get_mem_type(unsigned int type)
283{
284	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
285}
286EXPORT_SYMBOL(get_mem_type);
287
288/*
289 * Adjust the PMD section entries according to the CPU in use.
290 */
291static void __init build_mem_type_table(void)
292{
293	struct cachepolicy *cp;
294	unsigned int cr = get_cr();
295	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
296	int cpu_arch = cpu_architecture();
297	int i;
298
299	if (cpu_arch < CPU_ARCH_ARMv6) {
300#if defined(CONFIG_CPU_DCACHE_DISABLE)
301		if (cachepolicy > CPOLICY_BUFFERED)
302			cachepolicy = CPOLICY_BUFFERED;
303#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
304		if (cachepolicy > CPOLICY_WRITETHROUGH)
305			cachepolicy = CPOLICY_WRITETHROUGH;
306#endif
307	}
308	if (cpu_arch < CPU_ARCH_ARMv5) {
309		if (cachepolicy >= CPOLICY_WRITEALLOC)
310			cachepolicy = CPOLICY_WRITEBACK;
311		ecc_mask = 0;
312	}
313#ifdef CONFIG_SMP
314	cachepolicy = CPOLICY_WRITEALLOC;
315#else
316	/* for NS-B0 ACP on UP mode */
317	if (ACP_WAR_ENAB() || arch_is_coherent())
318		cachepolicy = CPOLICY_WRITEALLOC;
319#endif	/* CONFIG_SMP */
320
321	/*
322	 * Strip out features not present on earlier architectures.
323	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
324	 * without extended page tables don't have the 'Shared' bit.
325	 */
326	if (cpu_arch < CPU_ARCH_ARMv5)
327		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
328			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
329	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
330		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
331			mem_types[i].prot_sect &= ~PMD_SECT_S;
332
333	/*
334	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
335	 * "update-able on write" bit on ARM610).  However, Xscale and
336	 * Xscale3 require this bit to be cleared.
337	 */
338	if (cpu_is_xscale() || cpu_is_xsc3()) {
339		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
340			mem_types[i].prot_sect &= ~PMD_BIT4;
341			mem_types[i].prot_l1 &= ~PMD_BIT4;
342		}
343	} else if (cpu_arch < CPU_ARCH_ARMv6) {
344		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
345			if (mem_types[i].prot_l1)
346				mem_types[i].prot_l1 |= PMD_BIT4;
347			if (mem_types[i].prot_sect)
348				mem_types[i].prot_sect |= PMD_BIT4;
349		}
350	}
351
352	/*
353	 * Mark the device areas according to the CPU/architecture.
354	 */
355	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
356		if (!cpu_is_xsc3()) {
357			/*
358			 * Mark device regions on ARMv6+ as execute-never
359			 * to prevent speculative instruction fetches.
360			 */
361			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
362			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
363			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
364			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
365		}
366		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
367			/*
368			 * For ARMv7 with TEX remapping,
369			 * - shared device is SXCB=1100
370			 * - nonshared device is SXCB=0100
371			 * - write combine device mem is SXCB=0001
372			 * (Uncached Normal memory)
373			 */
374			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
375			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
376			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
377		} else if (cpu_is_xsc3()) {
378			/*
379			 * For Xscale3,
380			 * - shared device is TEXCB=00101
381			 * - nonshared device is TEXCB=01000
382			 * - write combine device mem is TEXCB=00100
383			 * (Inner/Outer Uncacheable in xsc3 parlance)
384			 */
385			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
386			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
387			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
388		} else {
389			/*
390			 * For ARMv6 and ARMv7 without TEX remapping,
391			 * - shared device is TEXCB=00001
392			 * - nonshared device is TEXCB=01000
393			 * - write combine device mem is TEXCB=00100
394			 * (Uncached Normal in ARMv6 parlance).
395			 */
396			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
397			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399		}
400	} else {
401		/*
402		 * On others, write combining is "Uncached/Buffered"
403		 */
404		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
405	}
406
407	/*
408	 * Now deal with the memory-type mappings
409	 */
410	cp = &cache_policies[cachepolicy];
411	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
412
413#ifndef CONFIG_SMP
414	/*
415	 * Only use write-through for non-SMP systems
416	 */
417	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
418		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
419#endif
420
421	/*
422	 * Enable CPU-specific coherency if supported.
423	 * (Only available on XSC3 at the moment.)
424	 */
425	if (arch_is_coherent() && cpu_is_xsc3()) {
426		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
427		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
428		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
429		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
430	}
431	/*
432	 * ARMv6 and above have extended page tables.
433	 */
434	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
435		int mem_shared = 0;
436
437		/*
438		 * Mark cache clean areas and XIP ROM read only
439		 * from SVC mode and no access from userspace.
440		 */
441		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
442		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
443		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
444
445#ifdef CONFIG_SMP
446		mem_shared = 1;
447#else
448		/* for NS-B0 ACP on UP mode */
449		if (ACP_WAR_ENAB() || arch_is_coherent())
450			mem_shared = 1;
451#endif	/* CONFIG_SMP */
452
453		/*
454		 * Mark memory with the "shared" attribute for SMP or UP systems
455		 */
456		if (mem_shared) {
457			user_pgprot |= L_PTE_SHARED;
458			kern_pgprot |= L_PTE_SHARED;
459			vecs_pgprot |= L_PTE_SHARED;
460			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
461			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
462			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
463			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
464			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
465			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
466			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
467			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
468		}
469	}
470
471	/*
472	 * Non-cacheable Normal - intended for memory areas that must
473	 * not cause dirty cache line writebacks when used
474	 */
475	if (cpu_arch >= CPU_ARCH_ARMv6) {
476		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
477			/* Non-cacheable Normal is XCB = 001 */
478			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
479				PMD_SECT_BUFFERED;
480		} else {
481			/* For both ARMv6 and non-TEX-remapping ARMv7 */
482			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
483				PMD_SECT_TEX(1);
484		}
485	} else {
486		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
487	}
488
489	for (i = 0; i < 16; i++) {
490		unsigned long v = pgprot_val(protection_map[i]);
491		protection_map[i] = __pgprot(v | user_pgprot);
492	}
493
494	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
495	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
496
497	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
498	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
499				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
500
501	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
502	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
503	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
504	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
505	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
506	mem_types[MT_ROM].prot_sect |= cp->pmd;
507
508	switch (cp->pmd) {
509	case PMD_SECT_WT:
510		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
511		break;
512	case PMD_SECT_WB:
513	case PMD_SECT_WBWA:
514		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
515		break;
516	}
517	printk("Memory policy: ECC %sabled, Data cache %s\n",
518		ecc_mask ? "en" : "dis", cp->policy);
519
520	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
521		struct mem_type *t = &mem_types[i];
522		if (t->prot_l1)
523			t->prot_l1 |= PMD_DOMAIN(t->domain);
524		if (t->prot_sect)
525			t->prot_sect |= PMD_DOMAIN(t->domain);
526	}
527}
528
529#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
530pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
531			      unsigned long size, pgprot_t vma_prot)
532{
533	if (!pfn_valid(pfn))
534		return pgprot_noncached(vma_prot);
535	else if (file->f_flags & O_SYNC)
536		return pgprot_writecombine(vma_prot);
537	return vma_prot;
538}
539EXPORT_SYMBOL(phys_mem_access_prot);
540#endif
541
542#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
543
544static void __init *early_alloc(unsigned long sz)
545{
546	void *ptr = __va(memblock_alloc(sz, sz));
547	memset(ptr, 0, sz);
548	return ptr;
549}
550
551static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
552{
553	if (pmd_none(*pmd)) {
554		pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
555		__pmd_populate(pmd, __pa(pte) | prot);
556	}
557	BUG_ON(pmd_bad(*pmd));
558	return pte_offset_kernel(pmd, addr);
559}
560
561static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
562				  unsigned long end, unsigned long pfn,
563				  const struct mem_type *type)
564{
565	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
566	do {
567		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
568		pfn++;
569	} while (pte++, addr += PAGE_SIZE, addr != end);
570}
571
572static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
573				      unsigned long end, unsigned long phys,
574				      const struct mem_type *type)
575{
576	pmd_t *pmd = pmd_offset(pgd, addr);
577
578	/*
579	 * Try a section mapping - end, addr and phys must all be aligned
580	 * to a section boundary.  Note that PMDs refer to the individual
581	 * L1 entries, whereas PGDs refer to a group of L1 entries making
582	 * up one logical pointer to an L2 table.
583	 */
584	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
585		pmd_t *p = pmd;
586
587		if (addr & SECTION_SIZE)
588			pmd++;
589
590		do {
591			*pmd = __pmd(phys | type->prot_sect);
592			phys += SECTION_SIZE;
593		} while (pmd++, addr += SECTION_SIZE, addr != end);
594
595		flush_pmd_entry(p);
596	} else {
597		/*
598		 * No need to loop; pte's aren't interested in the
599		 * individual L1 entries.
600		 */
601		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
602	}
603}
604
605static void __init create_36bit_mapping(struct map_desc *md,
606					const struct mem_type *type)
607{
608	unsigned long phys, addr, length, end;
609	pgd_t *pgd;
610
611	addr = md->virtual;
612	phys = (unsigned long)__pfn_to_phys(md->pfn);
613	length = PAGE_ALIGN(md->length);
614
615	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
616		printk(KERN_ERR "MM: CPU does not support supersection "
617		       "mapping for 0x%08llx at 0x%08lx\n",
618		       __pfn_to_phys((u64)md->pfn), addr);
619		return;
620	}
621
622	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
623	 *	Since domain assignments can in fact be arbitrary, the
624	 *	'domain == 0' check below is required to insure that ARMv6
625	 *	supersections are only allocated for domain 0 regardless
626	 *	of the actual domain assignments in use.
627	 */
628	if (type->domain) {
629		printk(KERN_ERR "MM: invalid domain in supersection "
630		       "mapping for 0x%08llx at 0x%08lx\n",
631		       __pfn_to_phys((u64)md->pfn), addr);
632		return;
633	}
634
635	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
636		printk(KERN_ERR "MM: cannot create mapping for "
637		       "0x%08llx at 0x%08lx invalid alignment\n",
638		       __pfn_to_phys((u64)md->pfn), addr);
639		return;
640	}
641
642	/*
643	 * Shift bits [35:32] of address into bits [23:20] of PMD
644	 * (See ARMv6 spec).
645	 */
646	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
647
648	pgd = pgd_offset_k(addr);
649	end = addr + length;
650	do {
651		pmd_t *pmd = pmd_offset(pgd, addr);
652		int i;
653
654		for (i = 0; i < 16; i++)
655			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
656
657		addr += SUPERSECTION_SIZE;
658		phys += SUPERSECTION_SIZE;
659		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
660	} while (addr != end);
661}
662
663/*
664 * Create the page directory entries and any necessary
665 * page tables for the mapping specified by `md'.  We
666 * are able to cope here with varying sizes and address
667 * offsets, and we take full advantage of sections and
668 * supersections.
669 */
670static void __init create_mapping(struct map_desc *md)
671{
672	unsigned long phys, addr, length, end;
673	const struct mem_type *type;
674	pgd_t *pgd;
675
676	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
677		printk(KERN_WARNING "BUG: not creating mapping for "
678		       "0x%08llx at 0x%08lx in user region\n",
679		       __pfn_to_phys((u64)md->pfn), md->virtual);
680		return;
681	}
682
683	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
684	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
685		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
686		       "overlaps vmalloc space\n",
687		       __pfn_to_phys((u64)md->pfn), md->virtual);
688	}
689
690	type = &mem_types[md->type];
691
692	/*
693	 * Catch 36-bit addresses
694	 */
695	if (md->pfn >= 0x100000) {
696		create_36bit_mapping(md, type);
697		return;
698	}
699
700	addr = md->virtual & PAGE_MASK;
701	phys = (unsigned long)__pfn_to_phys(md->pfn);
702	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
703
704	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
705		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
706		       "be mapped using pages, ignoring.\n",
707		       __pfn_to_phys(md->pfn), addr);
708		return;
709	}
710
711	pgd = pgd_offset_k(addr);
712	end = addr + length;
713	do {
714		unsigned long next = pgd_addr_end(addr, end);
715
716		alloc_init_section(pgd, addr, next, phys, type);
717
718		phys += next - addr;
719		addr = next;
720	} while (pgd++, addr != end);
721}
722
723/*
724 * Create the architecture specific mappings
725 */
726void __init iotable_init(struct map_desc *io_desc, int nr)
727{
728	int i;
729
730	for (i = 0; i < nr; i++)
731		create_mapping(io_desc + i);
732}
733
734static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
735
736/*
737 * vmalloc=size forces the vmalloc area to be exactly 'size'
738 * bytes. This can be used to increase (or decrease) the vmalloc
739 * area - the default is 128m.
740 */
741static int __init early_vmalloc(char *arg)
742{
743	unsigned long vmalloc_reserve = memparse(arg, NULL);
744
745	if (vmalloc_reserve < SZ_16M) {
746		vmalloc_reserve = SZ_16M;
747		printk(KERN_WARNING
748			"vmalloc area too small, limiting to %luMB\n",
749			vmalloc_reserve >> 20);
750	}
751
752	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
753		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
754		printk(KERN_WARNING
755			"vmalloc area is too big, limiting to %luMB\n",
756			vmalloc_reserve >> 20);
757	}
758
759	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
760	return 0;
761}
762early_param("vmalloc", early_vmalloc);
763
764phys_addr_t lowmem_end_addr;
765
766static void __init sanity_check_meminfo(void)
767{
768	int i, j, highmem = 0;
769
770	lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
771
772	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
773		struct membank *bank = &meminfo.bank[j];
774		*bank = meminfo.bank[i];
775
776#ifdef CONFIG_HIGHMEM
777		if (__va(bank->start) > vmalloc_min ||
778		    __va(bank->start) < (void *)PAGE_OFFSET)
779			highmem = 1;
780
781		bank->highmem = highmem;
782
783		/*
784		 * Split those memory banks which are partially overlapping
785		 * the vmalloc area greatly simplifying things later.
786		 */
787		if (__va(bank->start) < vmalloc_min &&
788		    bank->size > vmalloc_min - __va(bank->start)) {
789			if (meminfo.nr_banks >= NR_BANKS) {
790				printk(KERN_CRIT "NR_BANKS too low, "
791						 "ignoring high memory\n");
792			} else {
793				memmove(bank + 1, bank,
794					(meminfo.nr_banks - i) * sizeof(*bank));
795				meminfo.nr_banks++;
796				i++;
797				bank[1].size -= vmalloc_min - __va(bank->start);
798				bank[1].start = __pa(vmalloc_min - 1) + 1;
799				bank[1].highmem = highmem = 1;
800				j++;
801			}
802			bank->size = vmalloc_min - __va(bank->start);
803		}
804#else
805		bank->highmem = highmem;
806
807		/*
808		 * Check whether this memory bank would entirely overlap
809		 * the vmalloc area.
810		 */
811		if (__va(bank->start) >= vmalloc_min ||
812		    __va(bank->start) < (void *)PAGE_OFFSET) {
813			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
814			       "(vmalloc region overlap).\n",
815			       bank->start, bank->start + bank->size - 1);
816			continue;
817		}
818
819		/*
820		 * Check whether this memory bank would partially overlap
821		 * the vmalloc area.
822		 */
823		if (__va(bank->start + bank->size) > vmalloc_min ||
824		    __va(bank->start + bank->size) < __va(bank->start)) {
825			unsigned long newsize = vmalloc_min - __va(bank->start);
826			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
827			       "to -%.8lx (vmalloc region overlap).\n",
828			       bank->start, bank->start + bank->size - 1,
829			       bank->start + newsize - 1);
830			bank->size = newsize;
831		}
832#endif
833		j++;
834	}
835#ifdef CONFIG_HIGHMEM
836	if (highmem) {
837		const char *reason = NULL;
838
839		if (cache_is_vipt_aliasing()) {
840			/*
841			 * Interactions between kmap and other mappings
842			 * make highmem support with aliasing VIPT caches
843			 * rather difficult.
844			 */
845			reason = "with VIPT aliasing cache";
846#ifdef CONFIG_SMP
847		} else if (tlb_ops_need_broadcast()) {
848			/*
849			 * kmap_high needs to occasionally flush TLB entries,
850			 * however, if the TLB entries need to be broadcast
851			 * we may deadlock:
852			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
853			 *  flush_tlb_kernel_range->smp_call_function_many
854			 *   (must not be called with irqs off)
855			 */
856			reason = "without hardware TLB ops broadcasting";
857#endif
858		}
859		if (reason) {
860			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
861				reason);
862			while (j > 0 && meminfo.bank[j - 1].highmem)
863				j--;
864		}
865	}
866#endif
867	meminfo.nr_banks = j;
868}
869
870static inline void prepare_page_table(void)
871{
872	unsigned long addr;
873
874	/*
875	 * Clear out all the mappings below the kernel image.
876	 */
877	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
878		pmd_clear(pmd_off_k(addr));
879
880#ifdef CONFIG_XIP_KERNEL
881	/* The XIP kernel is mapped in the module area -- skip over it */
882	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
883#endif
884	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
885		pmd_clear(pmd_off_k(addr));
886
887	/*
888	 * Clear out all the kernel space mappings, except for the first
889	 * memory bank, up to the end of the vmalloc region.
890	 */
891	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
892	     addr < VMALLOC_END; addr += PGDIR_SIZE)
893		pmd_clear(pmd_off_k(addr));
894}
895
896/*
897 * Reserve the special regions of memory
898 */
899void __init arm_mm_memblock_reserve(void)
900{
901	/*
902	 * Reserve the page tables.  These are already in use,
903	 * and can only be in node 0.
904	 */
905	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
906
907#ifdef CONFIG_SA1111
908	/*
909	 * Because of the SA1111 DMA bug, we want to preserve our
910	 * precious DMA-able memory...
911	 */
912	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
913#endif
914}
915
916/*
917 * Set up device the mappings.  Since we clear out the page tables for all
918 * mappings above VMALLOC_END, we will remove any debug device mappings.
919 * This means you have to be careful how you debug this function, or any
920 * called function.  This means you can't use any function or debugging
921 * method which may touch any device, otherwise the kernel _will_ crash.
922 */
923static void __init devicemaps_init(struct machine_desc *mdesc)
924{
925	struct map_desc map;
926	unsigned long addr;
927	void *vectors;
928
929	/*
930	 * Allocate the vector page early.
931	 */
932	vectors = early_alloc(PAGE_SIZE);
933
934	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
935		pmd_clear(pmd_off_k(addr));
936
937	/*
938	 * Map the kernel if it is XIP.
939	 * It is always first in the modulearea.
940	 */
941#ifdef CONFIG_XIP_KERNEL
942	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
943	map.virtual = MODULES_VADDR;
944	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
945	map.type = MT_ROM;
946	create_mapping(&map);
947#endif
948
949	/*
950	 * Map the cache flushing regions.
951	 */
952#ifdef FLUSH_BASE
953	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
954	map.virtual = FLUSH_BASE;
955	map.length = SZ_1M;
956	map.type = MT_CACHECLEAN;
957	create_mapping(&map);
958#endif
959#ifdef FLUSH_BASE_MINICACHE
960	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
961	map.virtual = FLUSH_BASE_MINICACHE;
962	map.length = SZ_1M;
963	map.type = MT_MINICLEAN;
964	create_mapping(&map);
965#endif
966
967	/*
968	 * Create a mapping for the machine vectors at the high-vectors
969	 * location (0xffff0000).  If we aren't using high-vectors, also
970	 * create a mapping at the low-vectors virtual address.
971	 */
972	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
973	map.virtual = 0xffff0000;
974	map.length = PAGE_SIZE;
975	map.type = MT_HIGH_VECTORS;
976	create_mapping(&map);
977
978	if (!vectors_high()) {
979		map.virtual = 0;
980		map.type = MT_LOW_VECTORS;
981		create_mapping(&map);
982	}
983
984	/*
985	 * Ask the machine support to map in the statically mapped devices.
986	 */
987	if (mdesc->map_io)
988		mdesc->map_io();
989
990	/*
991	 * Finally flush the caches and tlb to ensure that we're in a
992	 * consistent state wrt the writebuffer.  This also ensures that
993	 * any write-allocated cache lines in the vector page are written
994	 * back.  After this point, we can start to touch devices again.
995	 */
996	local_flush_tlb_all();
997	flush_cache_all();
998}
999
1000static void __init kmap_init(void)
1001{
1002#ifdef CONFIG_HIGHMEM
1003	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1004		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1005#endif
1006}
1007
1008static inline void map_memory_bank(struct membank *bank)
1009{
1010	struct map_desc map;
1011
1012	map.pfn = bank_pfn_start(bank);
1013	map.virtual = __phys_to_virt(bank_phys_start(bank));
1014	map.length = bank_phys_size(bank);
1015	map.type = MT_MEMORY;
1016
1017	create_mapping(&map);
1018}
1019
1020static void __init map_lowmem(void)
1021{
1022	struct meminfo *mi = &meminfo;
1023	int i;
1024
1025	/* Map all the lowmem memory banks. */
1026	for (i = 0; i < mi->nr_banks; i++) {
1027		struct membank *bank = &mi->bank[i];
1028
1029		if (!bank->highmem)
1030			map_memory_bank(bank);
1031	}
1032}
1033
1034static int __init meminfo_cmp(const void *_a, const void *_b)
1035{
1036	const struct membank *a = _a, *b = _b;
1037	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1038	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1039}
1040
1041/*
1042 * paging_init() sets up the page tables, initialises the zone memory
1043 * maps, and sets up the zero page, bad page and bad page tables.
1044 */
1045void __init paging_init(struct machine_desc *mdesc)
1046{
1047	void *zero_page;
1048
1049	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1050
1051	build_mem_type_table();
1052	sanity_check_meminfo();
1053	prepare_page_table();
1054	map_lowmem();
1055	devicemaps_init(mdesc);
1056	kmap_init();
1057
1058	top_pmd = pmd_off_k(0xffff0000);
1059
1060	/* allocate the zero page. */
1061	zero_page = early_alloc(PAGE_SIZE);
1062
1063	bootmem_init();
1064
1065	empty_zero_page = virt_to_page(zero_page);
1066	__flush_dcache_page(NULL, empty_zero_page);
1067}
1068
1069/*
1070 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1071 * the user-mode pages.  This will then ensure that we have predictable
1072 * results when turning the mmu off
1073 */
1074void setup_mm_for_reboot(char mode)
1075{
1076	unsigned long base_pmdval;
1077	pgd_t *pgd;
1078	int i;
1079
1080	/*
1081	 * We need to access to user-mode page tables here. For kernel threads
1082	 * we don't have any user-mode mappings so we use the context that we
1083	 * "borrowed".
1084	 */
1085	pgd = current->active_mm->pgd;
1086
1087	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1088	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1089		base_pmdval |= PMD_BIT4;
1090
1091	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1092		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1093		pmd_t *pmd;
1094
1095		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1096		pmd[0] = __pmd(pmdval);
1097		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1098		flush_pmd_entry(pmd);
1099	}
1100
1101	local_flush_tlb_all();
1102}
1103