• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/Documentation/DocBook/
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<!-- ****************************************************** -->
6<!-- Header  -->
7<!-- ****************************************************** -->
8<book id="Writing-an-ALSA-Driver">
9  <bookinfo>
10    <title>Writing an ALSA Driver</title>
11    <author>
12      <firstname>Takashi</firstname>
13      <surname>Iwai</surname>
14      <affiliation>
15        <address>
16          <email>tiwai@suse.de</email>
17        </address>
18      </affiliation>
19     </author>
20
21     <date>Oct 15, 2007</date>
22     <edition>0.3.7</edition>
23
24    <abstract>
25      <para>
26        This document describes how to write an ALSA (Advanced Linux
27        Sound Architecture) driver.
28      </para>
29    </abstract>
30
31    <legalnotice>
32    <para>
33    Copyright (c) 2002-2005  Takashi Iwai <email>tiwai@suse.de</email>
34    </para>
35
36    <para>
37    This document is free; you can redistribute it and/or modify it
38    under the terms of the GNU General Public License as published by
39    the Free Software Foundation; either version 2 of the License, or
40    (at your option) any later version. 
41    </para>
42
43    <para>
44    This document is distributed in the hope that it will be useful,
45    but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46    implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47    PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48    for more details.
49    </para>
50
51    <para>
52    You should have received a copy of the GNU General Public
53    License along with this program; if not, write to the Free
54    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55    MA 02111-1307 USA
56    </para>
57    </legalnotice>
58
59  </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface  -->
63<!-- ****************************************************** -->
64  <preface id="preface">
65    <title>Preface</title>
66    <para>
67      This document describes how to write an
68      <ulink url="http://www.alsa-project.org/"><citetitle>
69      ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70      driver. The document focuses mainly on PCI soundcards.
71      In the case of other device types, the API might
72      be different, too. However, at least the ALSA kernel API is
73      consistent, and therefore it would be still a bit help for
74      writing them.
75    </para>
76
77    <para>
78    This document targets people who already have enough
79    C language skills and have basic linux kernel programming
80    knowledge.  This document doesn't explain the general
81    topic of linux kernel coding and doesn't cover low-level
82    driver implementation details. It only describes
83    the standard way to write a PCI sound driver on ALSA.
84    </para>
85
86    <para>
87      If you are already familiar with the older ALSA ver.0.5.x API, you
88    can check the drivers such as <filename>sound/pci/es1938.c</filename> or
89    <filename>sound/pci/maestro3.c</filename> which have also almost the same
90    code-base in the ALSA 0.5.x tree, so you can compare the differences.
91    </para>
92
93    <para>
94      This document is still a draft version. Any feedback and
95    corrections, please!!
96    </para>
97  </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure  -->
102<!-- ****************************************************** -->
103  <chapter id="file-tree">
104    <title>File Tree Structure</title>
105
106    <section id="file-tree-general">
107      <title>General</title>
108      <para>
109        The ALSA drivers are provided in two ways.
110      </para>
111
112      <para>
113        One is the trees provided as a tarball or via cvs from the
114      ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115      tree. To synchronize both, the ALSA driver tree is split into
116      two different trees: alsa-kernel and alsa-driver. The former
117      contains purely the source code for the Linux 2.6 (or later)
118      tree. This tree is designed only for compilation on 2.6 or
119      later environment. The latter, alsa-driver, contains many subtle
120      files for compiling ALSA drivers outside of the Linux kernel tree,
121      wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API,
122      and additional drivers which are still in development or in
123      tests.  The drivers in alsa-driver tree will be moved to
124      alsa-kernel (and eventually to the 2.6 kernel tree) when they are
125      finished and confirmed to work fine.
126      </para>
127
128      <para>
129        The file tree structure of ALSA driver is depicted below. Both
130        alsa-kernel and alsa-driver have almost the same file
131        structure, except for <quote>core</quote> directory. It's
132        named as <quote>acore</quote> in alsa-driver tree. 
133
134        <example>
135          <title>ALSA File Tree Structure</title>
136          <literallayout>
137        sound
138                /core
139                        /oss
140                        /seq
141                                /oss
142                                /instr
143                /ioctl32
144                /include
145                /drivers
146                        /mpu401
147                        /opl3
148                /i2c
149                        /l3
150                /synth
151                        /emux
152                /pci
153                        /(cards)
154                /isa
155                        /(cards)
156                /arm
157                /ppc
158                /sparc
159                /usb
160                /pcmcia /(cards)
161                /oss
162          </literallayout>
163        </example>
164      </para>
165    </section>
166
167    <section id="file-tree-core-directory">
168      <title>core directory</title>
169      <para>
170        This directory contains the middle layer which is the heart
171      of ALSA drivers. In this directory, the native ALSA modules are
172      stored. The sub-directories contain different modules and are
173      dependent upon the kernel config. 
174      </para>
175
176      <section id="file-tree-core-directory-oss">
177        <title>core/oss</title>
178
179        <para>
180          The codes for PCM and mixer OSS emulation modules are stored
181        in this directory. The rawmidi OSS emulation is included in
182        the ALSA rawmidi code since it's quite small. The sequencer
183        code is stored in <filename>core/seq/oss</filename> directory (see
184        <link linkend="file-tree-core-directory-seq-oss"><citetitle>
185        below</citetitle></link>).
186        </para>
187      </section>
188
189      <section id="file-tree-core-directory-ioctl32">
190        <title>core/ioctl32</title>
191
192        <para>
193          This directory contains the 32bit-ioctl wrappers for 64bit
194        architectures such like x86-64, ppc64 and sparc64. For 32bit
195        and alpha architectures, these are not compiled. 
196        </para>
197      </section>
198
199      <section id="file-tree-core-directory-seq">
200        <title>core/seq</title>
201        <para>
202          This directory and its sub-directories are for the ALSA
203        sequencer. This directory contains the sequencer core and
204        primary sequencer modules such like snd-seq-midi,
205        snd-seq-virmidi, etc. They are compiled only when
206        <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
207        config. 
208        </para>
209      </section>
210
211      <section id="file-tree-core-directory-seq-oss">
212        <title>core/seq/oss</title>
213        <para>
214          This contains the OSS sequencer emulation codes.
215        </para>
216      </section>
217
218      <section id="file-tree-core-directory-deq-instr">
219        <title>core/seq/instr</title>
220        <para>
221          This directory contains the modules for the sequencer
222        instrument layer. 
223        </para>
224      </section>
225    </section>
226
227    <section id="file-tree-include-directory">
228      <title>include directory</title>
229      <para>
230        This is the place for the public header files of ALSA drivers,
231      which are to be exported to user-space, or included by
232      several files at different directories. Basically, the private
233      header files should not be placed in this directory, but you may
234      still find files there, due to historical reasons :) 
235      </para>
236    </section>
237
238    <section id="file-tree-drivers-directory">
239      <title>drivers directory</title>
240      <para>
241        This directory contains code shared among different drivers
242      on different architectures.  They are hence supposed not to be
243      architecture-specific.
244      For example, the dummy pcm driver and the serial MIDI
245      driver are found in this directory. In the sub-directories,
246      there is code for components which are independent from
247      bus and cpu architectures. 
248      </para>
249
250      <section id="file-tree-drivers-directory-mpu401">
251        <title>drivers/mpu401</title>
252        <para>
253          The MPU401 and MPU401-UART modules are stored here.
254        </para>
255      </section>
256
257      <section id="file-tree-drivers-directory-opl3">
258        <title>drivers/opl3 and opl4</title>
259        <para>
260          The OPL3 and OPL4 FM-synth stuff is found here.
261        </para>
262      </section>
263    </section>
264
265    <section id="file-tree-i2c-directory">
266      <title>i2c directory</title>
267      <para>
268        This contains the ALSA i2c components.
269      </para>
270
271      <para>
272        Although there is a standard i2c layer on Linux, ALSA has its
273      own i2c code for some cards, because the soundcard needs only a
274      simple operation and the standard i2c API is too complicated for
275      such a purpose. 
276      </para>
277
278      <section id="file-tree-i2c-directory-l3">
279        <title>i2c/l3</title>
280        <para>
281          This is a sub-directory for ARM L3 i2c.
282        </para>
283      </section>
284    </section>
285
286    <section id="file-tree-synth-directory">
287        <title>synth directory</title>
288        <para>
289          This contains the synth middle-level modules.
290        </para>
291
292        <para>
293          So far, there is only Emu8000/Emu10k1 synth driver under
294        the <filename>synth/emux</filename> sub-directory. 
295        </para>
296    </section>
297
298    <section id="file-tree-pci-directory">
299      <title>pci directory</title>
300      <para>
301        This directory and its sub-directories hold the top-level card modules
302      for PCI soundcards and the code specific to the PCI BUS.
303      </para>
304
305      <para>
306        The drivers compiled from a single file are stored directly
307      in the pci directory, while the drivers with several source files are
308      stored on their own sub-directory (e.g. emu10k1, ice1712). 
309      </para>
310    </section>
311
312    <section id="file-tree-isa-directory">
313      <title>isa directory</title>
314      <para>
315        This directory and its sub-directories hold the top-level card modules
316      for ISA soundcards. 
317      </para>
318    </section>
319
320    <section id="file-tree-arm-ppc-sparc-directories">
321      <title>arm, ppc, and sparc directories</title>
322      <para>
323        They are used for top-level card modules which are
324      specific to one of these architectures. 
325      </para>
326    </section>
327
328    <section id="file-tree-usb-directory">
329      <title>usb directory</title>
330      <para>
331        This directory contains the USB-audio driver. In the latest version, the
332      USB MIDI driver is integrated in the usb-audio driver. 
333      </para>
334    </section>
335
336    <section id="file-tree-pcmcia-directory">
337      <title>pcmcia directory</title>
338      <para>
339        The PCMCIA, especially PCCard drivers will go here. CardBus
340      drivers will be in the pci directory, because their API is identical
341      to that of standard PCI cards. 
342      </para>
343    </section>
344
345    <section id="file-tree-oss-directory">
346      <title>oss directory</title>
347      <para>
348        The OSS/Lite source files are stored here in Linux 2.6 (or
349      later) tree. In the ALSA driver tarball, this directory is empty,
350      of course :) 
351      </para>
352    </section>
353  </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers  -->
358<!-- ****************************************************** -->
359  <chapter id="basic-flow">
360    <title>Basic Flow for PCI Drivers</title>
361
362    <section id="basic-flow-outline">
363      <title>Outline</title>
364      <para>
365        The minimum flow for PCI soundcards is as follows:
366
367        <itemizedlist>
368          <listitem><para>define the PCI ID table (see the section
369          <link linkend="pci-resource-entries"><citetitle>PCI Entries
370          </citetitle></link>).</para></listitem> 
371          <listitem><para>create <function>probe()</function> callback.</para></listitem>
372          <listitem><para>create <function>remove()</function> callback.</para></listitem>
373          <listitem><para>create a <structname>pci_driver</structname> structure
374	  containing the three pointers above.</para></listitem>
375          <listitem><para>create an <function>init()</function> function just calling
376	  the <function>pci_register_driver()</function> to register the pci_driver table
377	  defined above.</para></listitem>
378          <listitem><para>create an <function>exit()</function> function to call
379	  the <function>pci_unregister_driver()</function> function.</para></listitem>
380        </itemizedlist>
381      </para>
382    </section>
383
384    <section id="basic-flow-example">
385      <title>Full Code Example</title>
386      <para>
387        The code example is shown below. Some parts are kept
388      unimplemented at this moment but will be filled in the
389      next sections. The numbers in the comment lines of the
390      <function>snd_mychip_probe()</function> function
391      refer to details explained in the following section. 
392
393        <example>
394          <title>Basic Flow for PCI Drivers - Example</title>
395          <programlisting>
396<![CDATA[
397  #include <linux/init.h>
398  #include <linux/pci.h>
399  #include <linux/slab.h>
400  #include <sound/core.h>
401  #include <sound/initval.h>
402
403  /* module parameters (see "Module Parameters") */
404  /* SNDRV_CARDS: maximum number of cards supported by this module */
405  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
406  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
407  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
408
409  /* definition of the chip-specific record */
410  struct mychip {
411          struct snd_card *card;
412          /* the rest of the implementation will be in section
413           * "PCI Resource Management"
414           */
415  };
416
417  /* chip-specific destructor
418   * (see "PCI Resource Management")
419   */
420  static int snd_mychip_free(struct mychip *chip)
421  {
422          .... /* will be implemented later... */
423  }
424
425  /* component-destructor
426   * (see "Management of Cards and Components")
427   */
428  static int snd_mychip_dev_free(struct snd_device *device)
429  {
430          return snd_mychip_free(device->device_data);
431  }
432
433  /* chip-specific constructor
434   * (see "Management of Cards and Components")
435   */
436  static int __devinit snd_mychip_create(struct snd_card *card,
437                                         struct pci_dev *pci,
438                                         struct mychip **rchip)
439  {
440          struct mychip *chip;
441          int err;
442          static struct snd_device_ops ops = {
443                 .dev_free = snd_mychip_dev_free,
444          };
445
446          *rchip = NULL;
447
448          /* check PCI availability here
449           * (see "PCI Resource Management")
450           */
451          ....
452
453          /* allocate a chip-specific data with zero filled */
454          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
455          if (chip == NULL)
456                  return -ENOMEM;
457
458          chip->card = card;
459
460          /* rest of initialization here; will be implemented
461           * later, see "PCI Resource Management"
462           */
463          ....
464
465          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
466          if (err < 0) {
467                  snd_mychip_free(chip);
468                  return err;
469          }
470
471          snd_card_set_dev(card, &pci->dev);
472
473          *rchip = chip;
474          return 0;
475  }
476
477  /* constructor -- see "Constructor" sub-section */
478  static int __devinit snd_mychip_probe(struct pci_dev *pci,
479                               const struct pci_device_id *pci_id)
480  {
481          static int dev;
482          struct snd_card *card;
483          struct mychip *chip;
484          int err;
485
486          /* (1) */
487          if (dev >= SNDRV_CARDS)
488                  return -ENODEV;
489          if (!enable[dev]) {
490                  dev++;
491                  return -ENOENT;
492          }
493
494          /* (2) */
495          err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
496          if (err < 0)
497                  return err;
498
499          /* (3) */
500          err = snd_mychip_create(card, pci, &chip);
501          if (err < 0) {
502                  snd_card_free(card);
503                  return err;
504          }
505
506          /* (4) */
507          strcpy(card->driver, "My Chip");
508          strcpy(card->shortname, "My Own Chip 123");
509          sprintf(card->longname, "%s at 0x%lx irq %i",
510                  card->shortname, chip->ioport, chip->irq);
511
512          /* (5) */
513          .... /* implemented later */
514
515          /* (6) */
516          err = snd_card_register(card);
517          if (err < 0) {
518                  snd_card_free(card);
519                  return err;
520          }
521
522          /* (7) */
523          pci_set_drvdata(pci, card);
524          dev++;
525          return 0;
526  }
527
528  /* destructor -- see the "Destructor" sub-section */
529  static void __devexit snd_mychip_remove(struct pci_dev *pci)
530  {
531          snd_card_free(pci_get_drvdata(pci));
532          pci_set_drvdata(pci, NULL);
533  }
534]]>
535          </programlisting>
536        </example>
537      </para>
538    </section>
539
540    <section id="basic-flow-constructor">
541      <title>Constructor</title>
542      <para>
543        The real constructor of PCI drivers is the <function>probe</function> callback.
544      The <function>probe</function> callback and other component-constructors which are called
545      from the <function>probe</function> callback should be defined with
546      the <parameter>__devinit</parameter> prefix. You 
547      cannot use the <parameter>__init</parameter> prefix for them,
548      because any PCI device could be a hotplug device. 
549      </para>
550
551      <para>
552        In the <function>probe</function> callback, the following scheme is often used.
553      </para>
554
555      <section id="basic-flow-constructor-device-index">
556        <title>1) Check and increment the device index.</title>
557        <para>
558          <informalexample>
559            <programlisting>
560<![CDATA[
561  static int dev;
562  ....
563  if (dev >= SNDRV_CARDS)
564          return -ENODEV;
565  if (!enable[dev]) {
566          dev++;
567          return -ENOENT;
568  }
569]]>
570            </programlisting>
571          </informalexample>
572
573        where enable[dev] is the module option.
574        </para>
575
576        <para>
577          Each time the <function>probe</function> callback is called, check the
578        availability of the device. If not available, simply increment
579        the device index and returns. dev will be incremented also
580        later (<link
581        linkend="basic-flow-constructor-set-pci"><citetitle>step
582        7</citetitle></link>). 
583        </para>
584      </section>
585
586      <section id="basic-flow-constructor-create-card">
587        <title>2) Create a card instance</title>
588        <para>
589          <informalexample>
590            <programlisting>
591<![CDATA[
592  struct snd_card *card;
593  int err;
594  ....
595  err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
596]]>
597            </programlisting>
598          </informalexample>
599        </para>
600
601        <para>
602          The details will be explained in the section
603          <link linkend="card-management-card-instance"><citetitle>
604          Management of Cards and Components</citetitle></link>.
605        </para>
606      </section>
607
608      <section id="basic-flow-constructor-create-main">
609        <title>3) Create a main component</title>
610        <para>
611          In this part, the PCI resources are allocated.
612
613          <informalexample>
614            <programlisting>
615<![CDATA[
616  struct mychip *chip;
617  ....
618  err = snd_mychip_create(card, pci, &chip);
619  if (err < 0) {
620          snd_card_free(card);
621          return err;
622  }
623]]>
624            </programlisting>
625          </informalexample>
626
627          The details will be explained in the section <link
628        linkend="pci-resource"><citetitle>PCI Resource
629        Management</citetitle></link>.
630        </para>
631      </section>
632
633      <section id="basic-flow-constructor-main-component">
634        <title>4) Set the driver ID and name strings.</title>
635        <para>
636          <informalexample>
637            <programlisting>
638<![CDATA[
639  strcpy(card->driver, "My Chip");
640  strcpy(card->shortname, "My Own Chip 123");
641  sprintf(card->longname, "%s at 0x%lx irq %i",
642          card->shortname, chip->ioport, chip->irq);
643]]>
644            </programlisting>
645          </informalexample>
646
647          The driver field holds the minimal ID string of the
648        chip. This is used by alsa-lib's configurator, so keep it
649        simple but unique. 
650          Even the same driver can have different driver IDs to
651        distinguish the functionality of each chip type. 
652        </para>
653
654        <para>
655          The shortname field is a string shown as more verbose
656        name. The longname field contains the information
657        shown in <filename>/proc/asound/cards</filename>. 
658        </para>
659      </section>
660
661      <section id="basic-flow-constructor-create-other">
662        <title>5) Create other components, such as mixer, MIDI, etc.</title>
663        <para>
664          Here you define the basic components such as
665          <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
666          mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
667          MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
668          and other interfaces.
669          Also, if you want a <link linkend="proc-interface"><citetitle>proc
670        file</citetitle></link>, define it here, too.
671        </para>
672      </section>
673
674      <section id="basic-flow-constructor-register-card">
675        <title>6) Register the card instance.</title>
676        <para>
677          <informalexample>
678            <programlisting>
679<![CDATA[
680  err = snd_card_register(card);
681  if (err < 0) {
682          snd_card_free(card);
683          return err;
684  }
685]]>
686            </programlisting>
687          </informalexample>
688        </para>
689
690        <para>
691          Will be explained in the section <link
692        linkend="card-management-registration"><citetitle>Management
693        of Cards and Components</citetitle></link>, too. 
694        </para>
695      </section>
696
697      <section id="basic-flow-constructor-set-pci">
698        <title>7) Set the PCI driver data and return zero.</title>
699        <para>
700          <informalexample>
701            <programlisting>
702<![CDATA[
703        pci_set_drvdata(pci, card);
704        dev++;
705        return 0;
706]]>
707            </programlisting>
708          </informalexample>
709
710          In the above, the card record is stored. This pointer is
711        used in the remove callback and power-management
712        callbacks, too. 
713        </para>
714      </section>
715    </section>
716
717    <section id="basic-flow-destructor">
718      <title>Destructor</title>
719      <para>
720        The destructor, remove callback, simply releases the card
721      instance. Then the ALSA middle layer will release all the
722      attached components automatically. 
723      </para>
724
725      <para>
726        It would be typically like the following:
727
728        <informalexample>
729          <programlisting>
730<![CDATA[
731  static void __devexit snd_mychip_remove(struct pci_dev *pci)
732  {
733          snd_card_free(pci_get_drvdata(pci));
734          pci_set_drvdata(pci, NULL);
735  }
736]]>
737          </programlisting>
738        </informalexample>
739
740        The above code assumes that the card pointer is set to the PCI
741	driver data.
742      </para>
743    </section>
744
745    <section id="basic-flow-header-files">
746      <title>Header Files</title>
747      <para>
748        For the above example, at least the following include files
749      are necessary. 
750
751        <informalexample>
752          <programlisting>
753<![CDATA[
754  #include <linux/init.h>
755  #include <linux/pci.h>
756  #include <linux/slab.h>
757  #include <sound/core.h>
758  #include <sound/initval.h>
759]]>
760          </programlisting>
761        </informalexample>
762
763	where the last one is necessary only when module options are
764      defined in the source file.  If the code is split into several
765      files, the files without module options don't need them.
766      </para>
767
768      <para>
769        In addition to these headers, you'll need
770      <filename>&lt;linux/interrupt.h&gt;</filename> for interrupt
771      handling, and <filename>&lt;asm/io.h&gt;</filename> for I/O
772      access. If you use the <function>mdelay()</function> or
773      <function>udelay()</function> functions, you'll need to include
774      <filename>&lt;linux/delay.h&gt;</filename> too. 
775      </para>
776
777      <para>
778      The ALSA interfaces like the PCM and control APIs are defined in other
779      <filename>&lt;sound/xxx.h&gt;</filename> header files.
780      They have to be included after
781      <filename>&lt;sound/core.h&gt;</filename>.
782      </para>
783
784    </section>
785  </chapter>
786
787
788<!-- ****************************************************** -->
789<!-- Management of Cards and Components  -->
790<!-- ****************************************************** -->
791  <chapter id="card-management">
792    <title>Management of Cards and Components</title>
793
794    <section id="card-management-card-instance">
795      <title>Card Instance</title>
796      <para>
797      For each soundcard, a <quote>card</quote> record must be allocated.
798      </para>
799
800      <para>
801      A card record is the headquarters of the soundcard.  It manages
802      the whole list of devices (components) on the soundcard, such as
803      PCM, mixers, MIDI, synthesizer, and so on.  Also, the card
804      record holds the ID and the name strings of the card, manages
805      the root of proc files, and controls the power-management states
806      and hotplug disconnections.  The component list on the card
807      record is used to manage the correct release of resources at
808      destruction. 
809      </para>
810
811      <para>
812        As mentioned above, to create a card instance, call
813      <function>snd_card_create()</function>.
814
815        <informalexample>
816          <programlisting>
817<![CDATA[
818  struct snd_card *card;
819  int err;
820  err = snd_card_create(index, id, module, extra_size, &card);
821]]>
822          </programlisting>
823        </informalexample>
824      </para>
825
826      <para>
827        The function takes five arguments, the card-index number, the
828        id string, the module pointer (usually
829        <constant>THIS_MODULE</constant>),
830        the size of extra-data space, and the pointer to return the
831        card instance.  The extra_size argument is used to
832        allocate card-&gt;private_data for the
833        chip-specific data.  Note that these data
834        are allocated by <function>snd_card_create()</function>.
835      </para>
836    </section>
837
838    <section id="card-management-component">
839      <title>Components</title>
840      <para>
841        After the card is created, you can attach the components
842      (devices) to the card instance. In an ALSA driver, a component is
843      represented as a struct <structname>snd_device</structname> object.
844      A component can be a PCM instance, a control interface, a raw
845      MIDI interface, etc.  Each such instance has one component
846      entry.
847      </para>
848
849      <para>
850        A component can be created via
851        <function>snd_device_new()</function> function. 
852
853        <informalexample>
854          <programlisting>
855<![CDATA[
856  snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
857]]>
858          </programlisting>
859        </informalexample>
860      </para>
861
862      <para>
863        This takes the card pointer, the device-level
864      (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
865      callback pointers (<parameter>&amp;ops</parameter>). The
866      device-level defines the type of components and the order of
867      registration and de-registration.  For most components, the
868      device-level is already defined.  For a user-defined component,
869      you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
870      </para>
871
872      <para>
873      This function itself doesn't allocate the data space. The data
874      must be allocated manually beforehand, and its pointer is passed
875      as the argument. This pointer is used as the
876      (<parameter>chip</parameter> identifier in the above example)
877      for the instance. 
878      </para>
879
880      <para>
881        Each pre-defined ALSA component such as ac97 and pcm calls
882      <function>snd_device_new()</function> inside its
883      constructor. The destructor for each component is defined in the
884      callback pointers.  Hence, you don't need to take care of
885      calling a destructor for such a component.
886      </para>
887
888      <para>
889        If you wish to create your own component, you need to
890      set the destructor function to the dev_free callback in
891      the <parameter>ops</parameter>, so that it can be released
892      automatically via <function>snd_card_free()</function>.
893      The next example will show an implementation of chip-specific
894      data.
895      </para>
896    </section>
897
898    <section id="card-management-chip-specific">
899      <title>Chip-Specific Data</title>
900      <para>
901      Chip-specific information, e.g. the I/O port address, its
902      resource pointer, or the irq number, is stored in the
903      chip-specific record.
904
905        <informalexample>
906          <programlisting>
907<![CDATA[
908  struct mychip {
909          ....
910  };
911]]>
912          </programlisting>
913        </informalexample>
914      </para>
915
916      <para>
917        In general, there are two ways of allocating the chip record.
918      </para>
919
920      <section id="card-management-chip-specific-snd-card-new">
921        <title>1. Allocating via <function>snd_card_create()</function>.</title>
922        <para>
923          As mentioned above, you can pass the extra-data-length
924	  to the 4th argument of <function>snd_card_create()</function>, i.e.
925
926          <informalexample>
927            <programlisting>
928<![CDATA[
929  err = snd_card_create(index[dev], id[dev], THIS_MODULE,
930                        sizeof(struct mychip), &card);
931]]>
932            </programlisting>
933          </informalexample>
934
935          struct <structname>mychip</structname> is the type of the chip record.
936        </para>
937
938        <para>
939          In return, the allocated record can be accessed as
940
941          <informalexample>
942            <programlisting>
943<![CDATA[
944  struct mychip *chip = card->private_data;
945]]>
946            </programlisting>
947          </informalexample>
948
949          With this method, you don't have to allocate twice.
950          The record is released together with the card instance.
951        </para>
952      </section>
953
954      <section id="card-management-chip-specific-allocate-extra">
955        <title>2. Allocating an extra device.</title>
956
957        <para>
958          After allocating a card instance via
959          <function>snd_card_create()</function> (with
960          <constant>0</constant> on the 4th arg), call
961          <function>kzalloc()</function>. 
962
963          <informalexample>
964            <programlisting>
965<![CDATA[
966  struct snd_card *card;
967  struct mychip *chip;
968  err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
969  .....
970  chip = kzalloc(sizeof(*chip), GFP_KERNEL);
971]]>
972            </programlisting>
973          </informalexample>
974        </para>
975
976        <para>
977          The chip record should have the field to hold the card
978          pointer at least, 
979
980          <informalexample>
981            <programlisting>
982<![CDATA[
983  struct mychip {
984          struct snd_card *card;
985          ....
986  };
987]]>
988            </programlisting>
989          </informalexample>
990        </para>
991
992        <para>
993          Then, set the card pointer in the returned chip instance.
994
995          <informalexample>
996            <programlisting>
997<![CDATA[
998  chip->card = card;
999]]>
1000            </programlisting>
1001          </informalexample>
1002        </para>
1003
1004        <para>
1005          Next, initialize the fields, and register this chip
1006          record as a low-level device with a specified
1007          <parameter>ops</parameter>, 
1008
1009          <informalexample>
1010            <programlisting>
1011<![CDATA[
1012  static struct snd_device_ops ops = {
1013          .dev_free =        snd_mychip_dev_free,
1014  };
1015  ....
1016  snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1017]]>
1018            </programlisting>
1019          </informalexample>
1020
1021          <function>snd_mychip_dev_free()</function> is the
1022        device-destructor function, which will call the real
1023        destructor. 
1024        </para>
1025
1026        <para>
1027          <informalexample>
1028            <programlisting>
1029<![CDATA[
1030  static int snd_mychip_dev_free(struct snd_device *device)
1031  {
1032          return snd_mychip_free(device->device_data);
1033  }
1034]]>
1035            </programlisting>
1036          </informalexample>
1037
1038          where <function>snd_mychip_free()</function> is the real destructor.
1039        </para>
1040      </section>
1041    </section>
1042
1043    <section id="card-management-registration">
1044      <title>Registration and Release</title>
1045      <para>
1046        After all components are assigned, register the card instance
1047      by calling <function>snd_card_register()</function>. Access
1048      to the device files is enabled at this point. That is, before
1049      <function>snd_card_register()</function> is called, the
1050      components are safely inaccessible from external side. If this
1051      call fails, exit the probe function after releasing the card via
1052      <function>snd_card_free()</function>. 
1053      </para>
1054
1055      <para>
1056        For releasing the card instance, you can call simply
1057      <function>snd_card_free()</function>. As mentioned earlier, all
1058      components are released automatically by this call. 
1059      </para>
1060
1061      <para>
1062        As further notes, the destructors (both
1063      <function>snd_mychip_dev_free</function> and
1064      <function>snd_mychip_free</function>) cannot be defined with
1065      the <parameter>__devexit</parameter> prefix, because they may be
1066      called from the constructor, too, at the false path. 
1067      </para>
1068
1069      <para>
1070      For a device which allows hotplugging, you can use
1071      <function>snd_card_free_when_closed</function>.  This one will
1072      postpone the destruction until all devices are closed.
1073      </para>
1074
1075    </section>
1076
1077  </chapter>
1078
1079
1080<!-- ****************************************************** -->
1081<!-- PCI Resource Management  -->
1082<!-- ****************************************************** -->
1083  <chapter id="pci-resource">
1084    <title>PCI Resource Management</title>
1085
1086    <section id="pci-resource-example">
1087      <title>Full Code Example</title>
1088      <para>
1089        In this section, we'll complete the chip-specific constructor,
1090      destructor and PCI entries. Example code is shown first,
1091      below. 
1092
1093        <example>
1094          <title>PCI Resource Management Example</title>
1095          <programlisting>
1096<![CDATA[
1097  struct mychip {
1098          struct snd_card *card;
1099          struct pci_dev *pci;
1100
1101          unsigned long port;
1102          int irq;
1103  };
1104
1105  static int snd_mychip_free(struct mychip *chip)
1106  {
1107          /* disable hardware here if any */
1108          .... /* (not implemented in this document) */
1109
1110          /* release the irq */
1111          if (chip->irq >= 0)
1112                  free_irq(chip->irq, chip);
1113          /* release the I/O ports & memory */
1114          pci_release_regions(chip->pci);
1115          /* disable the PCI entry */
1116          pci_disable_device(chip->pci);
1117          /* release the data */
1118          kfree(chip);
1119          return 0;
1120  }
1121
1122  /* chip-specific constructor */
1123  static int __devinit snd_mychip_create(struct snd_card *card,
1124                                         struct pci_dev *pci,
1125                                         struct mychip **rchip)
1126  {
1127          struct mychip *chip;
1128          int err;
1129          static struct snd_device_ops ops = {
1130                 .dev_free = snd_mychip_dev_free,
1131          };
1132
1133          *rchip = NULL;
1134
1135          /* initialize the PCI entry */
1136          err = pci_enable_device(pci);
1137          if (err < 0)
1138                  return err;
1139          /* check PCI availability (28bit DMA) */
1140          if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
1141              pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
1142                  printk(KERN_ERR "error to set 28bit mask DMA\n");
1143                  pci_disable_device(pci);
1144                  return -ENXIO;
1145          }
1146
1147          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1148          if (chip == NULL) {
1149                  pci_disable_device(pci);
1150                  return -ENOMEM;
1151          }
1152
1153          /* initialize the stuff */
1154          chip->card = card;
1155          chip->pci = pci;
1156          chip->irq = -1;
1157
1158          /* (1) PCI resource allocation */
1159          err = pci_request_regions(pci, "My Chip");
1160          if (err < 0) {
1161                  kfree(chip);
1162                  pci_disable_device(pci);
1163                  return err;
1164          }
1165          chip->port = pci_resource_start(pci, 0);
1166          if (request_irq(pci->irq, snd_mychip_interrupt,
1167                          IRQF_SHARED, "My Chip", chip)) {
1168                  printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1169                  snd_mychip_free(chip);
1170                  return -EBUSY;
1171          }
1172          chip->irq = pci->irq;
1173
1174          /* (2) initialization of the chip hardware */
1175          .... /*   (not implemented in this document) */
1176
1177          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1178          if (err < 0) {
1179                  snd_mychip_free(chip);
1180                  return err;
1181          }
1182
1183          snd_card_set_dev(card, &pci->dev);
1184
1185          *rchip = chip;
1186          return 0;
1187  }        
1188
1189  /* PCI IDs */
1190  static struct pci_device_id snd_mychip_ids[] = {
1191          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1192            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1193          ....
1194          { 0, }
1195  };
1196  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1197
1198  /* pci_driver definition */
1199  static struct pci_driver driver = {
1200          .name = "My Own Chip",
1201          .id_table = snd_mychip_ids,
1202          .probe = snd_mychip_probe,
1203          .remove = __devexit_p(snd_mychip_remove),
1204  };
1205
1206  /* module initialization */
1207  static int __init alsa_card_mychip_init(void)
1208  {
1209          return pci_register_driver(&driver);
1210  }
1211
1212  /* module clean up */
1213  static void __exit alsa_card_mychip_exit(void)
1214  {
1215          pci_unregister_driver(&driver);
1216  }
1217
1218  module_init(alsa_card_mychip_init)
1219  module_exit(alsa_card_mychip_exit)
1220
1221  EXPORT_NO_SYMBOLS; /* for old kernels only */
1222]]>
1223          </programlisting>
1224        </example>
1225      </para>
1226    </section>
1227
1228    <section id="pci-resource-some-haftas">
1229      <title>Some Hafta's</title>
1230      <para>
1231        The allocation of PCI resources is done in the
1232      <function>probe()</function> function, and usually an extra
1233      <function>xxx_create()</function> function is written for this
1234      purpose.
1235      </para>
1236
1237      <para>
1238        In the case of PCI devices, you first have to call
1239      the <function>pci_enable_device()</function> function before
1240      allocating resources. Also, you need to set the proper PCI DMA
1241      mask to limit the accessed I/O range. In some cases, you might
1242      need to call <function>pci_set_master()</function> function,
1243      too.
1244      </para>
1245
1246      <para>
1247        Suppose the 28bit mask, and the code to be added would be like:
1248
1249        <informalexample>
1250          <programlisting>
1251<![CDATA[
1252  err = pci_enable_device(pci);
1253  if (err < 0)
1254          return err;
1255  if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
1256      pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
1257          printk(KERN_ERR "error to set 28bit mask DMA\n");
1258          pci_disable_device(pci);
1259          return -ENXIO;
1260  }
1261  
1262]]>
1263          </programlisting>
1264        </informalexample>
1265      </para>
1266    </section>
1267
1268    <section id="pci-resource-resource-allocation">
1269      <title>Resource Allocation</title>
1270      <para>
1271        The allocation of I/O ports and irqs is done via standard kernel
1272      functions. Unlike ALSA ver.0.5.x., there are no helpers for
1273      that. And these resources must be released in the destructor
1274      function (see below). Also, on ALSA 0.9.x, you don't need to
1275      allocate (pseudo-)DMA for PCI like in ALSA 0.5.x.
1276      </para>
1277
1278      <para>
1279        Now assume that the PCI device has an I/O port with 8 bytes
1280        and an interrupt. Then struct <structname>mychip</structname> will have the
1281        following fields:
1282
1283        <informalexample>
1284          <programlisting>
1285<![CDATA[
1286  struct mychip {
1287          struct snd_card *card;
1288
1289          unsigned long port;
1290          int irq;
1291  };
1292]]>
1293          </programlisting>
1294        </informalexample>
1295      </para>
1296
1297      <para>
1298        For an I/O port (and also a memory region), you need to have
1299      the resource pointer for the standard resource management. For
1300      an irq, you have to keep only the irq number (integer). But you
1301      need to initialize this number as -1 before actual allocation,
1302      since irq 0 is valid. The port address and its resource pointer
1303      can be initialized as null by
1304      <function>kzalloc()</function> automatically, so you
1305      don't have to take care of resetting them. 
1306      </para>
1307
1308      <para>
1309        The allocation of an I/O port is done like this:
1310
1311        <informalexample>
1312          <programlisting>
1313<![CDATA[
1314  err = pci_request_regions(pci, "My Chip");
1315  if (err < 0) { 
1316          kfree(chip);
1317          pci_disable_device(pci);
1318          return err;
1319  }
1320  chip->port = pci_resource_start(pci, 0);
1321]]>
1322          </programlisting>
1323        </informalexample>
1324      </para>
1325
1326      <para>
1327        <!-- obsolete -->
1328        It will reserve the I/O port region of 8 bytes of the given
1329      PCI device. The returned value, chip-&gt;res_port, is allocated
1330      via <function>kmalloc()</function> by
1331      <function>request_region()</function>. The pointer must be
1332      released via <function>kfree()</function>, but there is a
1333      problem with this. This issue will be explained later.
1334      </para>
1335
1336      <para>
1337        The allocation of an interrupt source is done like this:
1338
1339        <informalexample>
1340          <programlisting>
1341<![CDATA[
1342  if (request_irq(pci->irq, snd_mychip_interrupt,
1343                  IRQF_SHARED, "My Chip", chip)) {
1344          printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1345          snd_mychip_free(chip);
1346          return -EBUSY;
1347  }
1348  chip->irq = pci->irq;
1349]]>
1350          </programlisting>
1351        </informalexample>
1352
1353        where <function>snd_mychip_interrupt()</function> is the
1354      interrupt handler defined <link
1355      linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1356      Note that chip-&gt;irq should be defined
1357      only when <function>request_irq()</function> succeeded.
1358      </para>
1359
1360      <para>
1361      On the PCI bus, interrupts can be shared. Thus,
1362      <constant>IRQF_SHARED</constant> is used as the interrupt flag of
1363      <function>request_irq()</function>. 
1364      </para>
1365
1366      <para>
1367        The last argument of <function>request_irq()</function> is the
1368      data pointer passed to the interrupt handler. Usually, the
1369      chip-specific record is used for that, but you can use what you
1370      like, too. 
1371      </para>
1372
1373      <para>
1374        I won't give details about the interrupt handler at this
1375        point, but at least its appearance can be explained now. The
1376        interrupt handler looks usually like the following: 
1377
1378        <informalexample>
1379          <programlisting>
1380<![CDATA[
1381  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1382  {
1383          struct mychip *chip = dev_id;
1384          ....
1385          return IRQ_HANDLED;
1386  }
1387]]>
1388          </programlisting>
1389        </informalexample>
1390      </para>
1391
1392      <para>
1393        Now let's write the corresponding destructor for the resources
1394      above. The role of destructor is simple: disable the hardware
1395      (if already activated) and release the resources. So far, we
1396      have no hardware part, so the disabling code is not written here. 
1397      </para>
1398
1399      <para>
1400        To release the resources, the <quote>check-and-release</quote>
1401        method is a safer way. For the interrupt, do like this: 
1402
1403        <informalexample>
1404          <programlisting>
1405<![CDATA[
1406  if (chip->irq >= 0)
1407          free_irq(chip->irq, chip);
1408]]>
1409          </programlisting>
1410        </informalexample>
1411
1412        Since the irq number can start from 0, you should initialize
1413        chip-&gt;irq with a negative value (e.g. -1), so that you can
1414        check the validity of the irq number as above.
1415      </para>
1416
1417      <para>
1418        When you requested I/O ports or memory regions via
1419	<function>pci_request_region()</function> or
1420	<function>pci_request_regions()</function> like in this example,
1421	release the resource(s) using the corresponding function,
1422	<function>pci_release_region()</function> or
1423	<function>pci_release_regions()</function>.
1424
1425        <informalexample>
1426          <programlisting>
1427<![CDATA[
1428  pci_release_regions(chip->pci);
1429]]>
1430          </programlisting>
1431        </informalexample>
1432      </para>
1433
1434      <para>
1435	When you requested manually via <function>request_region()</function>
1436	or <function>request_mem_region</function>, you can release it via
1437	<function>release_resource()</function>.  Suppose that you keep
1438	the resource pointer returned from <function>request_region()</function>
1439	in chip-&gt;res_port, the release procedure looks like:
1440
1441        <informalexample>
1442          <programlisting>
1443<![CDATA[
1444  release_and_free_resource(chip->res_port);
1445]]>
1446          </programlisting>
1447        </informalexample>
1448      </para>
1449
1450      <para>
1451      Don't forget to call <function>pci_disable_device()</function>
1452      before the end.
1453      </para>
1454
1455      <para>
1456        And finally, release the chip-specific record.
1457
1458        <informalexample>
1459          <programlisting>
1460<![CDATA[
1461  kfree(chip);
1462]]>
1463          </programlisting>
1464        </informalexample>
1465      </para>
1466
1467      <para>
1468      Again, remember that you cannot
1469      use the <parameter>__devexit</parameter> prefix for this destructor. 
1470      </para>
1471
1472      <para>
1473      We didn't implement the hardware disabling part in the above.
1474      If you need to do this, please note that the destructor may be
1475      called even before the initialization of the chip is completed.
1476      It would be better to have a flag to skip hardware disabling
1477      if the hardware was not initialized yet.
1478      </para>
1479
1480      <para>
1481      When the chip-data is assigned to the card using
1482      <function>snd_device_new()</function> with
1483      <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is 
1484      called at the last.  That is, it is assured that all other
1485      components like PCMs and controls have already been released.
1486      You don't have to stop PCMs, etc. explicitly, but just
1487      call low-level hardware stopping.
1488      </para>
1489
1490      <para>
1491        The management of a memory-mapped region is almost as same as
1492        the management of an I/O port. You'll need three fields like
1493        the following: 
1494
1495        <informalexample>
1496          <programlisting>
1497<![CDATA[
1498  struct mychip {
1499          ....
1500          unsigned long iobase_phys;
1501          void __iomem *iobase_virt;
1502  };
1503]]>
1504          </programlisting>
1505        </informalexample>
1506
1507        and the allocation would be like below:
1508
1509        <informalexample>
1510          <programlisting>
1511<![CDATA[
1512  if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1513          kfree(chip);
1514          return err;
1515  }
1516  chip->iobase_phys = pci_resource_start(pci, 0);
1517  chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1518                                      pci_resource_len(pci, 0));
1519]]>
1520          </programlisting>
1521        </informalexample>
1522        
1523        and the corresponding destructor would be:
1524
1525        <informalexample>
1526          <programlisting>
1527<![CDATA[
1528  static int snd_mychip_free(struct mychip *chip)
1529  {
1530          ....
1531          if (chip->iobase_virt)
1532                  iounmap(chip->iobase_virt);
1533          ....
1534          pci_release_regions(chip->pci);
1535          ....
1536  }
1537]]>
1538          </programlisting>
1539        </informalexample>
1540      </para>
1541
1542    </section>
1543
1544    <section id="pci-resource-device-struct">
1545      <title>Registration of Device Struct</title>
1546      <para>
1547	At some point, typically after calling <function>snd_device_new()</function>,
1548	you need to register the struct <structname>device</structname> of the chip
1549	you're handling for udev and co.  ALSA provides a macro for compatibility with
1550	older kernels.  Simply call like the following:
1551        <informalexample>
1552          <programlisting>
1553<![CDATA[
1554  snd_card_set_dev(card, &pci->dev);
1555]]>
1556          </programlisting>
1557        </informalexample>
1558	so that it stores the PCI's device pointer to the card.  This will be
1559	referred by ALSA core functions later when the devices are registered.
1560      </para>
1561      <para>
1562	In the case of non-PCI, pass the proper device struct pointer of the BUS
1563	instead.  (In the case of legacy ISA without PnP, you don't have to do
1564	anything.)
1565      </para>
1566    </section>
1567
1568    <section id="pci-resource-entries">
1569      <title>PCI Entries</title>
1570      <para>
1571        So far, so good. Let's finish the missing PCI
1572      stuff. At first, we need a
1573      <structname>pci_device_id</structname> table for this
1574      chipset. It's a table of PCI vendor/device ID number, and some
1575      masks. 
1576      </para>
1577
1578      <para>
1579        For example,
1580
1581        <informalexample>
1582          <programlisting>
1583<![CDATA[
1584  static struct pci_device_id snd_mychip_ids[] = {
1585          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1586            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1587          ....
1588          { 0, }
1589  };
1590  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1591]]>
1592          </programlisting>
1593        </informalexample>
1594      </para>
1595
1596      <para>
1597        The first and second fields of
1598      the <structname>pci_device_id</structname> structure are the vendor and
1599      device IDs. If you have no reason to filter the matching
1600      devices, you can leave the remaining fields as above. The last
1601      field of the <structname>pci_device_id</structname> struct contains
1602      private data for this entry. You can specify any value here, for
1603      example, to define specific operations for supported device IDs.
1604      Such an example is found in the intel8x0 driver. 
1605      </para>
1606
1607      <para>
1608        The last entry of this list is the terminator. You must
1609      specify this all-zero entry. 
1610      </para>
1611
1612      <para>
1613        Then, prepare the <structname>pci_driver</structname> record:
1614
1615        <informalexample>
1616          <programlisting>
1617<![CDATA[
1618  static struct pci_driver driver = {
1619          .name = "My Own Chip",
1620          .id_table = snd_mychip_ids,
1621          .probe = snd_mychip_probe,
1622          .remove = __devexit_p(snd_mychip_remove),
1623  };
1624]]>
1625          </programlisting>
1626        </informalexample>
1627      </para>
1628
1629      <para>
1630        The <structfield>probe</structfield> and
1631      <structfield>remove</structfield> functions have already
1632      been defined in the previous sections.
1633      The <structfield>remove</structfield> function should
1634      be defined with the 
1635      <function>__devexit_p()</function> macro, so that it's not
1636      defined for built-in (and non-hot-pluggable) case. The
1637      <structfield>name</structfield> 
1638      field is the name string of this device. Note that you must not
1639      use a slash <quote>/</quote> in this string. 
1640      </para>
1641
1642      <para>
1643        And at last, the module entries:
1644
1645        <informalexample>
1646          <programlisting>
1647<![CDATA[
1648  static int __init alsa_card_mychip_init(void)
1649  {
1650          return pci_register_driver(&driver);
1651  }
1652
1653  static void __exit alsa_card_mychip_exit(void)
1654  {
1655          pci_unregister_driver(&driver);
1656  }
1657
1658  module_init(alsa_card_mychip_init)
1659  module_exit(alsa_card_mychip_exit)
1660]]>
1661          </programlisting>
1662        </informalexample>
1663      </para>
1664
1665      <para>
1666        Note that these module entries are tagged with
1667      <parameter>__init</parameter> and 
1668      <parameter>__exit</parameter> prefixes, not
1669      <parameter>__devinit</parameter> nor
1670      <parameter>__devexit</parameter>.
1671      </para>
1672
1673      <para>
1674        Oh, one thing was forgotten. If you have no exported symbols,
1675        you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels).
1676
1677        <informalexample>
1678          <programlisting>
1679<![CDATA[
1680  EXPORT_NO_SYMBOLS;
1681]]>
1682          </programlisting>
1683        </informalexample>
1684
1685        That's all!
1686      </para>
1687    </section>
1688  </chapter>
1689
1690
1691<!-- ****************************************************** -->
1692<!-- PCM Interface  -->
1693<!-- ****************************************************** -->
1694  <chapter id="pcm-interface">
1695    <title>PCM Interface</title>
1696
1697    <section id="pcm-interface-general">
1698      <title>General</title>
1699      <para>
1700        The PCM middle layer of ALSA is quite powerful and it is only
1701      necessary for each driver to implement the low-level functions
1702      to access its hardware.
1703      </para>
1704
1705      <para>
1706        For accessing to the PCM layer, you need to include
1707      <filename>&lt;sound/pcm.h&gt;</filename> first. In addition,
1708      <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1709      if you access to some functions related with hw_param. 
1710      </para>
1711
1712      <para>
1713        Each card device can have up to four pcm instances. A pcm
1714      instance corresponds to a pcm device file. The limitation of
1715      number of instances comes only from the available bit size of
1716      the Linux's device numbers. Once when 64bit device number is
1717      used, we'll have more pcm instances available. 
1718      </para>
1719
1720      <para>
1721        A pcm instance consists of pcm playback and capture streams,
1722      and each pcm stream consists of one or more pcm substreams. Some
1723      soundcards support multiple playback functions. For example,
1724      emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1725      each open, a free substream is (usually) automatically chosen
1726      and opened. Meanwhile, when only one substream exists and it was
1727      already opened, the successful open will either block
1728      or error with <constant>EAGAIN</constant> according to the
1729      file open mode. But you don't have to care about such details in your
1730      driver. The PCM middle layer will take care of such work.
1731      </para>
1732    </section>
1733
1734    <section id="pcm-interface-example">
1735      <title>Full Code Example</title>
1736      <para>
1737      The example code below does not include any hardware access
1738      routines but shows only the skeleton, how to build up the PCM
1739      interfaces.
1740
1741        <example>
1742          <title>PCM Example Code</title>
1743          <programlisting>
1744<![CDATA[
1745  #include <sound/pcm.h>
1746  ....
1747
1748  /* hardware definition */
1749  static struct snd_pcm_hardware snd_mychip_playback_hw = {
1750          .info = (SNDRV_PCM_INFO_MMAP |
1751                   SNDRV_PCM_INFO_INTERLEAVED |
1752                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
1753                   SNDRV_PCM_INFO_MMAP_VALID),
1754          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1755          .rates =            SNDRV_PCM_RATE_8000_48000,
1756          .rate_min =         8000,
1757          .rate_max =         48000,
1758          .channels_min =     2,
1759          .channels_max =     2,
1760          .buffer_bytes_max = 32768,
1761          .period_bytes_min = 4096,
1762          .period_bytes_max = 32768,
1763          .periods_min =      1,
1764          .periods_max =      1024,
1765  };
1766
1767  /* hardware definition */
1768  static struct snd_pcm_hardware snd_mychip_capture_hw = {
1769          .info = (SNDRV_PCM_INFO_MMAP |
1770                   SNDRV_PCM_INFO_INTERLEAVED |
1771                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
1772                   SNDRV_PCM_INFO_MMAP_VALID),
1773          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1774          .rates =            SNDRV_PCM_RATE_8000_48000,
1775          .rate_min =         8000,
1776          .rate_max =         48000,
1777          .channels_min =     2,
1778          .channels_max =     2,
1779          .buffer_bytes_max = 32768,
1780          .period_bytes_min = 4096,
1781          .period_bytes_max = 32768,
1782          .periods_min =      1,
1783          .periods_max =      1024,
1784  };
1785
1786  /* open callback */
1787  static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1788  {
1789          struct mychip *chip = snd_pcm_substream_chip(substream);
1790          struct snd_pcm_runtime *runtime = substream->runtime;
1791
1792          runtime->hw = snd_mychip_playback_hw;
1793          /* more hardware-initialization will be done here */
1794          ....
1795          return 0;
1796  }
1797
1798  /* close callback */
1799  static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1800  {
1801          struct mychip *chip = snd_pcm_substream_chip(substream);
1802          /* the hardware-specific codes will be here */
1803          ....
1804          return 0;
1805
1806  }
1807
1808  /* open callback */
1809  static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1810  {
1811          struct mychip *chip = snd_pcm_substream_chip(substream);
1812          struct snd_pcm_runtime *runtime = substream->runtime;
1813
1814          runtime->hw = snd_mychip_capture_hw;
1815          /* more hardware-initialization will be done here */
1816          ....
1817          return 0;
1818  }
1819
1820  /* close callback */
1821  static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1822  {
1823          struct mychip *chip = snd_pcm_substream_chip(substream);
1824          /* the hardware-specific codes will be here */
1825          ....
1826          return 0;
1827
1828  }
1829
1830  /* hw_params callback */
1831  static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1832                               struct snd_pcm_hw_params *hw_params)
1833  {
1834          return snd_pcm_lib_malloc_pages(substream,
1835                                     params_buffer_bytes(hw_params));
1836  }
1837
1838  /* hw_free callback */
1839  static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1840  {
1841          return snd_pcm_lib_free_pages(substream);
1842  }
1843
1844  /* prepare callback */
1845  static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1846  {
1847          struct mychip *chip = snd_pcm_substream_chip(substream);
1848          struct snd_pcm_runtime *runtime = substream->runtime;
1849
1850          /* set up the hardware with the current configuration
1851           * for example...
1852           */
1853          mychip_set_sample_format(chip, runtime->format);
1854          mychip_set_sample_rate(chip, runtime->rate);
1855          mychip_set_channels(chip, runtime->channels);
1856          mychip_set_dma_setup(chip, runtime->dma_addr,
1857                               chip->buffer_size,
1858                               chip->period_size);
1859          return 0;
1860  }
1861
1862  /* trigger callback */
1863  static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1864                                    int cmd)
1865  {
1866          switch (cmd) {
1867          case SNDRV_PCM_TRIGGER_START:
1868                  /* do something to start the PCM engine */
1869                  ....
1870                  break;
1871          case SNDRV_PCM_TRIGGER_STOP:
1872                  /* do something to stop the PCM engine */
1873                  ....
1874                  break;
1875          default:
1876                  return -EINVAL;
1877          }
1878  }
1879
1880  /* pointer callback */
1881  static snd_pcm_uframes_t
1882  snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1883  {
1884          struct mychip *chip = snd_pcm_substream_chip(substream);
1885          unsigned int current_ptr;
1886
1887          /* get the current hardware pointer */
1888          current_ptr = mychip_get_hw_pointer(chip);
1889          return current_ptr;
1890  }
1891
1892  /* operators */
1893  static struct snd_pcm_ops snd_mychip_playback_ops = {
1894          .open =        snd_mychip_playback_open,
1895          .close =       snd_mychip_playback_close,
1896          .ioctl =       snd_pcm_lib_ioctl,
1897          .hw_params =   snd_mychip_pcm_hw_params,
1898          .hw_free =     snd_mychip_pcm_hw_free,
1899          .prepare =     snd_mychip_pcm_prepare,
1900          .trigger =     snd_mychip_pcm_trigger,
1901          .pointer =     snd_mychip_pcm_pointer,
1902  };
1903
1904  /* operators */
1905  static struct snd_pcm_ops snd_mychip_capture_ops = {
1906          .open =        snd_mychip_capture_open,
1907          .close =       snd_mychip_capture_close,
1908          .ioctl =       snd_pcm_lib_ioctl,
1909          .hw_params =   snd_mychip_pcm_hw_params,
1910          .hw_free =     snd_mychip_pcm_hw_free,
1911          .prepare =     snd_mychip_pcm_prepare,
1912          .trigger =     snd_mychip_pcm_trigger,
1913          .pointer =     snd_mychip_pcm_pointer,
1914  };
1915
1916  /*
1917   *  definitions of capture are omitted here...
1918   */
1919
1920  /* create a pcm device */
1921  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1922  {
1923          struct snd_pcm *pcm;
1924          int err;
1925
1926          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1927          if (err < 0) 
1928                  return err;
1929          pcm->private_data = chip;
1930          strcpy(pcm->name, "My Chip");
1931          chip->pcm = pcm;
1932          /* set operators */
1933          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1934                          &snd_mychip_playback_ops);
1935          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1936                          &snd_mychip_capture_ops);
1937          /* pre-allocation of buffers */
1938          /* NOTE: this may fail */
1939          snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940                                                snd_dma_pci_data(chip->pci),
1941                                                64*1024, 64*1024);
1942          return 0;
1943  }
1944]]>
1945          </programlisting>
1946        </example>
1947      </para>
1948    </section>
1949
1950    <section id="pcm-interface-constructor">
1951      <title>Constructor</title>
1952      <para>
1953        A pcm instance is allocated by the <function>snd_pcm_new()</function>
1954      function. It would be better to create a constructor for pcm,
1955      namely, 
1956
1957        <informalexample>
1958          <programlisting>
1959<![CDATA[
1960  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1961  {
1962          struct snd_pcm *pcm;
1963          int err;
1964
1965          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1966          if (err < 0) 
1967                  return err;
1968          pcm->private_data = chip;
1969          strcpy(pcm->name, "My Chip");
1970          chip->pcm = pcm;
1971	  ....
1972          return 0;
1973  }
1974]]>
1975          </programlisting>
1976        </informalexample>
1977      </para>
1978
1979      <para>
1980        The <function>snd_pcm_new()</function> function takes four
1981      arguments. The first argument is the card pointer to which this
1982      pcm is assigned, and the second is the ID string. 
1983      </para>
1984
1985      <para>
1986        The third argument (<parameter>index</parameter>, 0 in the
1987      above) is the index of this new pcm. It begins from zero. If
1988      you create more than one pcm instances, specify the
1989      different numbers in this argument. For example,
1990      <parameter>index</parameter> = 1 for the second PCM device.  
1991      </para>
1992
1993      <para>
1994        The fourth and fifth arguments are the number of substreams
1995      for playback and capture, respectively. Here 1 is used for
1996      both arguments. When no playback or capture substreams are available,
1997      pass 0 to the corresponding argument.
1998      </para>
1999
2000      <para>
2001        If a chip supports multiple playbacks or captures, you can
2002      specify more numbers, but they must be handled properly in
2003      open/close, etc. callbacks.  When you need to know which
2004      substream you are referring to, then it can be obtained from
2005      struct <structname>snd_pcm_substream</structname> data passed to each callback
2006      as follows: 
2007
2008        <informalexample>
2009          <programlisting>
2010<![CDATA[
2011  struct snd_pcm_substream *substream;
2012  int index = substream->number;
2013]]>
2014          </programlisting>
2015        </informalexample>
2016      </para>
2017
2018      <para>
2019        After the pcm is created, you need to set operators for each
2020        pcm stream. 
2021
2022        <informalexample>
2023          <programlisting>
2024<![CDATA[
2025  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2026                  &snd_mychip_playback_ops);
2027  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2028                  &snd_mychip_capture_ops);
2029]]>
2030          </programlisting>
2031        </informalexample>
2032      </para>
2033
2034      <para>
2035        The operators are defined typically like this:
2036
2037        <informalexample>
2038          <programlisting>
2039<![CDATA[
2040  static struct snd_pcm_ops snd_mychip_playback_ops = {
2041          .open =        snd_mychip_pcm_open,
2042          .close =       snd_mychip_pcm_close,
2043          .ioctl =       snd_pcm_lib_ioctl,
2044          .hw_params =   snd_mychip_pcm_hw_params,
2045          .hw_free =     snd_mychip_pcm_hw_free,
2046          .prepare =     snd_mychip_pcm_prepare,
2047          .trigger =     snd_mychip_pcm_trigger,
2048          .pointer =     snd_mychip_pcm_pointer,
2049  };
2050]]>
2051          </programlisting>
2052        </informalexample>
2053
2054        All the callbacks are described in the
2055        <link linkend="pcm-interface-operators"><citetitle>
2056        Operators</citetitle></link> subsection.
2057      </para>
2058
2059      <para>
2060        After setting the operators, you probably will want to
2061        pre-allocate the buffer. For the pre-allocation, simply call
2062        the following: 
2063
2064        <informalexample>
2065          <programlisting>
2066<![CDATA[
2067  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2068                                        snd_dma_pci_data(chip->pci),
2069                                        64*1024, 64*1024);
2070]]>
2071          </programlisting>
2072        </informalexample>
2073
2074        It will allocate a buffer up to 64kB as default.
2075      Buffer management details will be described in the later section <link
2076      linkend="buffer-and-memory"><citetitle>Buffer and Memory
2077      Management</citetitle></link>. 
2078      </para>
2079
2080      <para>
2081        Additionally, you can set some extra information for this pcm
2082        in pcm-&gt;info_flags.
2083        The available values are defined as
2084        <constant>SNDRV_PCM_INFO_XXX</constant> in
2085        <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2086        the hardware definition (described later). When your soundchip
2087        supports only half-duplex, specify like this: 
2088
2089        <informalexample>
2090          <programlisting>
2091<![CDATA[
2092  pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2093]]>
2094          </programlisting>
2095        </informalexample>
2096      </para>
2097    </section>
2098
2099    <section id="pcm-interface-destructor">
2100      <title>... And the Destructor?</title>
2101      <para>
2102        The destructor for a pcm instance is not always
2103      necessary. Since the pcm device will be released by the middle
2104      layer code automatically, you don't have to call the destructor
2105      explicitly.
2106      </para>
2107
2108      <para>
2109        The destructor would be necessary if you created
2110        special records internally and needed to release them. In such a
2111        case, set the destructor function to
2112        pcm-&gt;private_free: 
2113
2114        <example>
2115          <title>PCM Instance with a Destructor</title>
2116          <programlisting>
2117<![CDATA[
2118  static void mychip_pcm_free(struct snd_pcm *pcm)
2119  {
2120          struct mychip *chip = snd_pcm_chip(pcm);
2121          /* free your own data */
2122          kfree(chip->my_private_pcm_data);
2123          /* do what you like else */
2124          ....
2125  }
2126
2127  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
2128  {
2129          struct snd_pcm *pcm;
2130          ....
2131          /* allocate your own data */
2132          chip->my_private_pcm_data = kmalloc(...);
2133          /* set the destructor */
2134          pcm->private_data = chip;
2135          pcm->private_free = mychip_pcm_free;
2136          ....
2137  }
2138]]>
2139          </programlisting>
2140        </example>
2141      </para>
2142    </section>
2143
2144    <section id="pcm-interface-runtime">
2145      <title>Runtime Pointer - The Chest of PCM Information</title>
2146	<para>
2147	  When the PCM substream is opened, a PCM runtime instance is
2148	allocated and assigned to the substream. This pointer is
2149	accessible via <constant>substream-&gt;runtime</constant>.
2150	This runtime pointer holds most information you need
2151	to control the PCM: the copy of hw_params and sw_params configurations, the buffer
2152	pointers, mmap records, spinlocks, etc.
2153	</para>
2154
2155	<para>
2156	The definition of runtime instance is found in
2157	<filename>&lt;sound/pcm.h&gt;</filename>.  Here are
2158       the contents of this file:
2159          <informalexample>
2160            <programlisting>
2161<![CDATA[
2162struct _snd_pcm_runtime {
2163	/* -- Status -- */
2164	struct snd_pcm_substream *trigger_master;
2165	snd_timestamp_t trigger_tstamp;	/* trigger timestamp */
2166	int overrange;
2167	snd_pcm_uframes_t avail_max;
2168	snd_pcm_uframes_t hw_ptr_base;	/* Position at buffer restart */
2169	snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2170
2171	/* -- HW params -- */
2172	snd_pcm_access_t access;	/* access mode */
2173	snd_pcm_format_t format;	/* SNDRV_PCM_FORMAT_* */
2174	snd_pcm_subformat_t subformat;	/* subformat */
2175	unsigned int rate;		/* rate in Hz */
2176	unsigned int channels;		/* channels */
2177	snd_pcm_uframes_t period_size;	/* period size */
2178	unsigned int periods;		/* periods */
2179	snd_pcm_uframes_t buffer_size;	/* buffer size */
2180	unsigned int tick_time;		/* tick time */
2181	snd_pcm_uframes_t min_align;	/* Min alignment for the format */
2182	size_t byte_align;
2183	unsigned int frame_bits;
2184	unsigned int sample_bits;
2185	unsigned int info;
2186	unsigned int rate_num;
2187	unsigned int rate_den;
2188
2189	/* -- SW params -- */
2190	struct timespec tstamp_mode;	/* mmap timestamp is updated */
2191  	unsigned int period_step;
2192	unsigned int sleep_min;		/* min ticks to sleep */
2193	snd_pcm_uframes_t start_threshold;
2194	snd_pcm_uframes_t stop_threshold;
2195	snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2196						noise is nearest than this */
2197	snd_pcm_uframes_t silence_size;	/* Silence filling size */
2198	snd_pcm_uframes_t boundary;	/* pointers wrap point */
2199
2200	snd_pcm_uframes_t silenced_start;
2201	snd_pcm_uframes_t silenced_size;
2202
2203	snd_pcm_sync_id_t sync;		/* hardware synchronization ID */
2204
2205	/* -- mmap -- */
2206	volatile struct snd_pcm_mmap_status *status;
2207	volatile struct snd_pcm_mmap_control *control;
2208	atomic_t mmap_count;
2209
2210	/* -- locking / scheduling -- */
2211	spinlock_t lock;
2212	wait_queue_head_t sleep;
2213	struct timer_list tick_timer;
2214	struct fasync_struct *fasync;
2215
2216	/* -- private section -- */
2217	void *private_data;
2218	void (*private_free)(struct snd_pcm_runtime *runtime);
2219
2220	/* -- hardware description -- */
2221	struct snd_pcm_hardware hw;
2222	struct snd_pcm_hw_constraints hw_constraints;
2223
2224	/* -- interrupt callbacks -- */
2225	void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2226	void (*transfer_ack_end)(struct snd_pcm_substream *substream);
2227
2228	/* -- timer -- */
2229	unsigned int timer_resolution;	/* timer resolution */
2230
2231	/* -- DMA -- */           
2232	unsigned char *dma_area;	/* DMA area */
2233	dma_addr_t dma_addr;		/* physical bus address (not accessible from main CPU) */
2234	size_t dma_bytes;		/* size of DMA area */
2235
2236	struct snd_dma_buffer *dma_buffer_p;	/* allocated buffer */
2237
2238#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2239	/* -- OSS things -- */
2240	struct snd_pcm_oss_runtime oss;
2241#endif
2242};
2243]]>
2244            </programlisting>
2245          </informalexample>
2246	</para>
2247
2248	<para>
2249	  For the operators (callbacks) of each sound driver, most of
2250	these records are supposed to be read-only.  Only the PCM
2251	middle-layer changes / updates them.  The exceptions are
2252	the hardware description (hw), interrupt callbacks
2253	(transfer_ack_xxx), DMA buffer information, and the private
2254	data.  Besides, if you use the standard buffer allocation
2255	method via <function>snd_pcm_lib_malloc_pages()</function>,
2256	you don't need to set the DMA buffer information by yourself.
2257	</para>
2258
2259	<para>
2260	In the sections below, important records are explained.
2261	</para>
2262
2263	<section id="pcm-interface-runtime-hw">
2264	<title>Hardware Description</title>
2265	<para>
2266	  The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
2267	contains the definitions of the fundamental hardware
2268	configuration.  Above all, you'll need to define this in
2269	<link linkend="pcm-interface-operators-open-callback"><citetitle>
2270	the open callback</citetitle></link>.
2271	Note that the runtime instance holds the copy of the
2272	descriptor, not the pointer to the existing descriptor.  That
2273	is, in the open callback, you can modify the copied descriptor
2274	(<constant>runtime-&gt;hw</constant>) as you need.  For example, if the maximum
2275	number of channels is 1 only on some chip models, you can
2276	still use the same hardware descriptor and change the
2277	channels_max later:
2278          <informalexample>
2279            <programlisting>
2280<![CDATA[
2281          struct snd_pcm_runtime *runtime = substream->runtime;
2282          ...
2283          runtime->hw = snd_mychip_playback_hw; /* common definition */
2284          if (chip->model == VERY_OLD_ONE)
2285                  runtime->hw.channels_max = 1;
2286]]>
2287            </programlisting>
2288          </informalexample>
2289	</para>
2290
2291	<para>
2292	  Typically, you'll have a hardware descriptor as below:
2293          <informalexample>
2294            <programlisting>
2295<![CDATA[
2296  static struct snd_pcm_hardware snd_mychip_playback_hw = {
2297          .info = (SNDRV_PCM_INFO_MMAP |
2298                   SNDRV_PCM_INFO_INTERLEAVED |
2299                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
2300                   SNDRV_PCM_INFO_MMAP_VALID),
2301          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
2302          .rates =            SNDRV_PCM_RATE_8000_48000,
2303          .rate_min =         8000,
2304          .rate_max =         48000,
2305          .channels_min =     2,
2306          .channels_max =     2,
2307          .buffer_bytes_max = 32768,
2308          .period_bytes_min = 4096,
2309          .period_bytes_max = 32768,
2310          .periods_min =      1,
2311          .periods_max =      1024,
2312  };
2313]]>
2314            </programlisting>
2315          </informalexample>
2316        </para>
2317
2318        <para>
2319	<itemizedlist>
2320	<listitem><para>
2321          The <structfield>info</structfield> field contains the type and
2322        capabilities of this pcm. The bit flags are defined in
2323        <filename>&lt;sound/asound.h&gt;</filename> as
2324        <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2325        have to specify whether the mmap is supported and which
2326        interleaved format is supported.
2327        When the is supported, add the
2328        <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2329        hardware supports the interleaved or the non-interleaved
2330        formats, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2331        <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2332        be set, respectively. If both are supported, you can set both,
2333        too. 
2334        </para>
2335
2336        <para>
2337          In the above example, <constant>MMAP_VALID</constant> and
2338        <constant>BLOCK_TRANSFER</constant> are specified for the OSS mmap
2339        mode. Usually both are set. Of course,
2340        <constant>MMAP_VALID</constant> is set only if the mmap is
2341        really supported. 
2342        </para>
2343
2344        <para>
2345          The other possible flags are
2346        <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2347        <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2348        <constant>PAUSE</constant> bit means that the pcm supports the
2349        <quote>pause</quote> operation, while the
2350        <constant>RESUME</constant> bit means that the pcm supports
2351        the full <quote>suspend/resume</quote> operation.
2352	If the <constant>PAUSE</constant> flag is set,
2353	the <structfield>trigger</structfield> callback below
2354        must handle the corresponding (pause push/release) commands.
2355	The suspend/resume trigger commands can be defined even without
2356	the <constant>RESUME</constant> flag.  See <link
2357	linkend="power-management"><citetitle>
2358	Power Management</citetitle></link> section for details.
2359        </para>
2360
2361	<para>
2362	  When the PCM substreams can be synchronized (typically,
2363	synchronized start/stop of a playback and a capture streams),
2364	you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2365	too.  In this case, you'll need to check the linked-list of
2366	PCM substreams in the trigger callback.  This will be
2367	described in the later section.
2368	</para>
2369	</listitem>
2370
2371	<listitem>
2372        <para>
2373          <structfield>formats</structfield> field contains the bit-flags
2374        of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2375        If the hardware supports more than one format, give all or'ed
2376        bits.  In the example above, the signed 16bit little-endian
2377        format is specified.
2378        </para>
2379	</listitem>
2380
2381	<listitem>
2382        <para>
2383        <structfield>rates</structfield> field contains the bit-flags of
2384        supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2385        When the chip supports continuous rates, pass
2386        <constant>CONTINUOUS</constant> bit additionally.
2387        The pre-defined rate bits are provided only for typical
2388	rates. If your chip supports unconventional rates, you need to add
2389        the <constant>KNOT</constant> bit and set up the hardware
2390        constraint manually (explained later).
2391        </para>
2392	</listitem>
2393
2394	<listitem>
2395	<para>
2396	<structfield>rate_min</structfield> and
2397	<structfield>rate_max</structfield> define the minimum and
2398	maximum sample rate.  This should correspond somehow to
2399	<structfield>rates</structfield> bits.
2400	</para>
2401	</listitem>
2402
2403	<listitem>
2404	<para>
2405	<structfield>channel_min</structfield> and
2406	<structfield>channel_max</structfield> 
2407	define, as you might already expected, the minimum and maximum
2408	number of channels.
2409	</para>
2410	</listitem>
2411
2412	<listitem>
2413	<para>
2414	<structfield>buffer_bytes_max</structfield> defines the
2415	maximum buffer size in bytes.  There is no
2416	<structfield>buffer_bytes_min</structfield> field, since
2417	it can be calculated from the minimum period size and the
2418	minimum number of periods.
2419	Meanwhile, <structfield>period_bytes_min</structfield> and
2420	define the minimum and maximum size of the period in bytes.
2421	<structfield>periods_max</structfield> and
2422	<structfield>periods_min</structfield> define the maximum and
2423	minimum number of periods in the buffer.
2424        </para>
2425
2426	<para>
2427	The <quote>period</quote> is a term that corresponds to
2428	a fragment in the OSS world. The period defines the size at
2429	which a PCM interrupt is generated. This size strongly
2430	depends on the hardware. 
2431	Generally, the smaller period size will give you more
2432	interrupts, that is, more controls. 
2433	In the case of capture, this size defines the input latency.
2434	On the other hand, the whole buffer size defines the
2435	output latency for the playback direction.
2436	</para>
2437	</listitem>
2438
2439	<listitem>
2440	<para>
2441	There is also a field <structfield>fifo_size</structfield>.
2442	This specifies the size of the hardware FIFO, but currently it
2443	is neither used in the driver nor in the alsa-lib.  So, you
2444	can ignore this field.
2445	</para>
2446	</listitem>
2447	</itemizedlist>
2448	</para>
2449	</section>
2450
2451	<section id="pcm-interface-runtime-config">
2452	<title>PCM Configurations</title>
2453	<para>
2454	Ok, let's go back again to the PCM runtime records.
2455	The most frequently referred records in the runtime instance are
2456	the PCM configurations.
2457	The PCM configurations are stored in the runtime instance
2458	after the application sends <type>hw_params</type> data via
2459	alsa-lib.  There are many fields copied from hw_params and
2460	sw_params structs.  For example,
2461	<structfield>format</structfield> holds the format type
2462	chosen by the application.  This field contains the enum value
2463	<constant>SNDRV_PCM_FORMAT_XXX</constant>.
2464	</para>
2465
2466	<para>
2467	One thing to be noted is that the configured buffer and period
2468	sizes are stored in <quote>frames</quote> in the runtime.
2469        In the ALSA world, 1 frame = channels * samples-size.
2470	For conversion between frames and bytes, you can use the
2471	<function>frames_to_bytes()</function> and
2472          <function>bytes_to_frames()</function> helper functions. 
2473          <informalexample>
2474            <programlisting>
2475<![CDATA[
2476  period_bytes = frames_to_bytes(runtime, runtime->period_size);
2477]]>
2478            </programlisting>
2479          </informalexample>
2480        </para>
2481
2482	<para>
2483	Also, many software parameters (sw_params) are
2484	stored in frames, too.  Please check the type of the field.
2485	<type>snd_pcm_uframes_t</type> is for the frames as unsigned
2486	integer while <type>snd_pcm_sframes_t</type> is for the frames
2487	as signed integer.
2488	</para>
2489	</section>
2490
2491	<section id="pcm-interface-runtime-dma">
2492	<title>DMA Buffer Information</title>
2493	<para>
2494	The DMA buffer is defined by the following four fields,
2495	<structfield>dma_area</structfield>,
2496	<structfield>dma_addr</structfield>,
2497	<structfield>dma_bytes</structfield> and
2498	<structfield>dma_private</structfield>.
2499	The <structfield>dma_area</structfield> holds the buffer
2500	pointer (the logical address).  You can call
2501	<function>memcpy</function> from/to 
2502	this pointer.  Meanwhile, <structfield>dma_addr</structfield>
2503	holds the physical address of the buffer.  This field is
2504	specified only when the buffer is a linear buffer.
2505	<structfield>dma_bytes</structfield> holds the size of buffer
2506	in bytes.  <structfield>dma_private</structfield> is used for
2507	the ALSA DMA allocator.
2508	</para>
2509
2510	<para>
2511	If you use a standard ALSA function,
2512	<function>snd_pcm_lib_malloc_pages()</function>, for
2513	allocating the buffer, these fields are set by the ALSA middle
2514	layer, and you should <emphasis>not</emphasis> change them by
2515	yourself.  You can read them but not write them.
2516	On the other hand, if you want to allocate the buffer by
2517	yourself, you'll need to manage it in hw_params callback.
2518	At least, <structfield>dma_bytes</structfield> is mandatory.
2519	<structfield>dma_area</structfield> is necessary when the
2520	buffer is mmapped.  If your driver doesn't support mmap, this
2521	field is not necessary.  <structfield>dma_addr</structfield>
2522	is also optional.  You can use
2523	<structfield>dma_private</structfield> as you like, too.
2524	</para>
2525	</section>
2526
2527	<section id="pcm-interface-runtime-status">
2528	<title>Running Status</title>
2529	<para>
2530	The running status can be referred via <constant>runtime-&gt;status</constant>.
2531	This is the pointer to the struct <structname>snd_pcm_mmap_status</structname>
2532	record.  For example, you can get the current DMA hardware
2533	pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2534	</para>
2535
2536	<para>
2537	The DMA application pointer can be referred via
2538	<constant>runtime-&gt;control</constant>, which points to the
2539	struct <structname>snd_pcm_mmap_control</structname> record.
2540	However, accessing directly to this value is not recommended.
2541	</para>
2542	</section>
2543
2544	<section id="pcm-interface-runtime-private">
2545	<title>Private Data</title> 
2546	<para>
2547	You can allocate a record for the substream and store it in
2548	<constant>runtime-&gt;private_data</constant>.  Usually, this
2549	is done in
2550	<link linkend="pcm-interface-operators-open-callback"><citetitle>
2551	the open callback</citetitle></link>.
2552	Don't mix this with <constant>pcm-&gt;private_data</constant>.
2553	The <constant>pcm-&gt;private_data</constant> usually points to the
2554	chip instance assigned statically at the creation of PCM, while the 
2555	<constant>runtime-&gt;private_data</constant> points to a dynamic
2556	data structure created at the PCM open callback.
2557
2558          <informalexample>
2559            <programlisting>
2560<![CDATA[
2561  static int snd_xxx_open(struct snd_pcm_substream *substream)
2562  {
2563          struct my_pcm_data *data;
2564          ....
2565          data = kmalloc(sizeof(*data), GFP_KERNEL);
2566          substream->runtime->private_data = data;
2567          ....
2568  }
2569]]>
2570            </programlisting>
2571          </informalexample>
2572        </para>
2573
2574        <para>
2575          The allocated object must be released in
2576	<link linkend="pcm-interface-operators-open-callback"><citetitle>
2577	the close callback</citetitle></link>.
2578        </para>
2579	</section>
2580
2581	<section id="pcm-interface-runtime-intr">
2582	<title>Interrupt Callbacks</title>
2583	<para>
2584	The field <structfield>transfer_ack_begin</structfield> and
2585	<structfield>transfer_ack_end</structfield> are called at
2586	the beginning and at the end of
2587	<function>snd_pcm_period_elapsed()</function>, respectively. 
2588	</para>
2589	</section>
2590
2591    </section>
2592
2593    <section id="pcm-interface-operators">
2594      <title>Operators</title>
2595      <para>
2596        OK, now let me give details about each pcm callback
2597      (<parameter>ops</parameter>). In general, every callback must
2598      return 0 if successful, or a negative error number
2599      such as <constant>-EINVAL</constant>. To choose an appropriate
2600      error number, it is advised to check what value other parts of
2601      the kernel return when the same kind of request fails.
2602      </para>
2603
2604      <para>
2605        The callback function takes at least the argument with
2606        <structname>snd_pcm_substream</structname> pointer. To retrieve
2607        the chip record from the given substream instance, you can use the
2608        following macro. 
2609
2610        <informalexample>
2611          <programlisting>
2612<![CDATA[
2613  int xxx() {
2614          struct mychip *chip = snd_pcm_substream_chip(substream);
2615          ....
2616  }
2617]]>
2618          </programlisting>
2619        </informalexample>
2620
2621	The macro reads <constant>substream-&gt;private_data</constant>,
2622	which is a copy of <constant>pcm-&gt;private_data</constant>.
2623	You can override the former if you need to assign different data
2624	records per PCM substream.  For example, the cmi8330 driver assigns
2625	different private_data for playback and capture directions,
2626	because it uses two different codecs (SB- and AD-compatible) for
2627	different directions.
2628      </para>
2629
2630      <section id="pcm-interface-operators-open-callback">
2631        <title>open callback</title>
2632        <para>
2633          <informalexample>
2634            <programlisting>
2635<![CDATA[
2636  static int snd_xxx_open(struct snd_pcm_substream *substream);
2637]]>
2638            </programlisting>
2639          </informalexample>
2640
2641          This is called when a pcm substream is opened.
2642        </para>
2643
2644        <para>
2645          At least, here you have to initialize the runtime-&gt;hw
2646          record. Typically, this is done by like this: 
2647
2648          <informalexample>
2649            <programlisting>
2650<![CDATA[
2651  static int snd_xxx_open(struct snd_pcm_substream *substream)
2652  {
2653          struct mychip *chip = snd_pcm_substream_chip(substream);
2654          struct snd_pcm_runtime *runtime = substream->runtime;
2655
2656          runtime->hw = snd_mychip_playback_hw;
2657          return 0;
2658  }
2659]]>
2660            </programlisting>
2661          </informalexample>
2662
2663          where <parameter>snd_mychip_playback_hw</parameter> is the
2664          pre-defined hardware description.
2665	</para>
2666
2667	<para>
2668	You can allocate a private data in this callback, as described
2669	in <link linkend="pcm-interface-runtime-private"><citetitle>
2670	Private Data</citetitle></link> section.
2671	</para>
2672
2673	<para>
2674	If the hardware configuration needs more constraints, set the
2675	hardware constraints here, too.
2676	See <link linkend="pcm-interface-constraints"><citetitle>
2677	Constraints</citetitle></link> for more details.
2678	</para>
2679      </section>
2680
2681      <section id="pcm-interface-operators-close-callback">
2682        <title>close callback</title>
2683        <para>
2684          <informalexample>
2685            <programlisting>
2686<![CDATA[
2687  static int snd_xxx_close(struct snd_pcm_substream *substream);
2688]]>
2689            </programlisting>
2690          </informalexample>
2691
2692          Obviously, this is called when a pcm substream is closed.
2693        </para>
2694
2695        <para>
2696          Any private instance for a pcm substream allocated in the
2697          open callback will be released here. 
2698
2699          <informalexample>
2700            <programlisting>
2701<![CDATA[
2702  static int snd_xxx_close(struct snd_pcm_substream *substream)
2703  {
2704          ....
2705          kfree(substream->runtime->private_data);
2706          ....
2707  }
2708]]>
2709            </programlisting>
2710          </informalexample>
2711        </para>
2712      </section>
2713
2714      <section id="pcm-interface-operators-ioctl-callback">
2715        <title>ioctl callback</title>
2716        <para>
2717          This is used for any special call to pcm ioctls. But
2718        usually you can pass a generic ioctl callback, 
2719        <function>snd_pcm_lib_ioctl</function>.
2720        </para>
2721      </section>
2722
2723      <section id="pcm-interface-operators-hw-params-callback">
2724        <title>hw_params callback</title>
2725        <para>
2726          <informalexample>
2727            <programlisting>
2728<![CDATA[
2729  static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2730                               struct snd_pcm_hw_params *hw_params);
2731]]>
2732            </programlisting>
2733          </informalexample>
2734        </para>
2735
2736        <para>
2737          This is called when the hardware parameter
2738        (<structfield>hw_params</structfield>) is set
2739        up by the application, 
2740        that is, once when the buffer size, the period size, the
2741        format, etc. are defined for the pcm substream. 
2742        </para>
2743
2744        <para>
2745          Many hardware setups should be done in this callback,
2746        including the allocation of buffers. 
2747        </para>
2748
2749        <para>
2750          Parameters to be initialized are retrieved by
2751          <function>params_xxx()</function> macros. To allocate
2752          buffer, you can call a helper function, 
2753
2754          <informalexample>
2755            <programlisting>
2756<![CDATA[
2757  snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2758]]>
2759            </programlisting>
2760          </informalexample>
2761
2762          <function>snd_pcm_lib_malloc_pages()</function> is available
2763	  only when the DMA buffers have been pre-allocated.
2764	  See the section <link
2765	  linkend="buffer-and-memory-buffer-types"><citetitle>
2766	  Buffer Types</citetitle></link> for more details.
2767        </para>
2768
2769        <para>
2770          Note that this and <structfield>prepare</structfield> callbacks
2771        may be called multiple times per initialization.
2772        For example, the OSS emulation may
2773        call these callbacks at each change via its ioctl. 
2774        </para>
2775
2776        <para>
2777          Thus, you need to be careful not to allocate the same buffers
2778        many times, which will lead to memory leaks!  Calling the
2779        helper function above many times is OK. It will release the
2780        previous buffer automatically when it was already allocated. 
2781        </para>
2782
2783        <para>
2784          Another note is that this callback is non-atomic
2785        (schedulable). This is important, because the
2786        <structfield>trigger</structfield> callback 
2787        is atomic (non-schedulable). That is, mutexes or any
2788        schedule-related functions are not available in
2789        <structfield>trigger</structfield> callback.
2790	Please see the subsection
2791	<link linkend="pcm-interface-atomicity"><citetitle>
2792	Atomicity</citetitle></link> for details.
2793        </para>
2794      </section>
2795
2796      <section id="pcm-interface-operators-hw-free-callback">
2797        <title>hw_free callback</title>
2798        <para>
2799          <informalexample>
2800            <programlisting>
2801<![CDATA[
2802  static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
2803]]>
2804            </programlisting>
2805          </informalexample>
2806        </para>
2807
2808        <para>
2809          This is called to release the resources allocated via
2810          <structfield>hw_params</structfield>. For example, releasing the
2811          buffer via 
2812          <function>snd_pcm_lib_malloc_pages()</function> is done by
2813          calling the following: 
2814
2815          <informalexample>
2816            <programlisting>
2817<![CDATA[
2818  snd_pcm_lib_free_pages(substream);
2819]]>
2820            </programlisting>
2821          </informalexample>
2822        </para>
2823
2824        <para>
2825          This function is always called before the close callback is called.
2826          Also, the callback may be called multiple times, too.
2827          Keep track whether the resource was already released. 
2828        </para>
2829      </section>
2830
2831      <section id="pcm-interface-operators-prepare-callback">
2832       <title>prepare callback</title>
2833        <para>
2834          <informalexample>
2835            <programlisting>
2836<![CDATA[
2837  static int snd_xxx_prepare(struct snd_pcm_substream *substream);
2838]]>
2839            </programlisting>
2840          </informalexample>
2841        </para>
2842
2843        <para>
2844          This callback is called when the pcm is
2845        <quote>prepared</quote>. You can set the format type, sample
2846        rate, etc. here. The difference from
2847        <structfield>hw_params</structfield> is that the 
2848        <structfield>prepare</structfield> callback will be called each
2849        time 
2850        <function>snd_pcm_prepare()</function> is called, i.e. when
2851        recovering after underruns, etc. 
2852        </para>
2853
2854        <para>
2855	Note that this callback is now non-atomic.
2856	You can use schedule-related functions safely in this callback.
2857        </para>
2858
2859        <para>
2860          In this and the following callbacks, you can refer to the
2861        values via the runtime record,
2862        substream-&gt;runtime.
2863        For example, to get the current
2864        rate, format or channels, access to
2865        runtime-&gt;rate,
2866        runtime-&gt;format or
2867        runtime-&gt;channels, respectively. 
2868        The physical address of the allocated buffer is set to
2869	runtime-&gt;dma_area.  The buffer and period sizes are
2870	in runtime-&gt;buffer_size and runtime-&gt;period_size,
2871	respectively.
2872        </para>
2873
2874        <para>
2875          Be careful that this callback will be called many times at
2876        each setup, too. 
2877        </para>
2878      </section>
2879
2880      <section id="pcm-interface-operators-trigger-callback">
2881        <title>trigger callback</title>
2882        <para>
2883          <informalexample>
2884            <programlisting>
2885<![CDATA[
2886  static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
2887]]>
2888            </programlisting>
2889          </informalexample>
2890
2891          This is called when the pcm is started, stopped or paused.
2892        </para>
2893
2894        <para>
2895          Which action is specified in the second argument,
2896          <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2897          <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2898          the <constant>START</constant> and <constant>STOP</constant>
2899          commands must be defined in this callback. 
2900
2901          <informalexample>
2902            <programlisting>
2903<![CDATA[
2904  switch (cmd) {
2905  case SNDRV_PCM_TRIGGER_START:
2906          /* do something to start the PCM engine */
2907          break;
2908  case SNDRV_PCM_TRIGGER_STOP:
2909          /* do something to stop the PCM engine */
2910          break;
2911  default:
2912          return -EINVAL;
2913  }
2914]]>
2915            </programlisting>
2916          </informalexample>
2917        </para>
2918
2919        <para>
2920          When the pcm supports the pause operation (given in the info
2921        field of the hardware table), the <constant>PAUSE_PUSE</constant>
2922        and <constant>PAUSE_RELEASE</constant> commands must be
2923        handled here, too. The former is the command to pause the pcm,
2924        and the latter to restart the pcm again. 
2925        </para>
2926
2927        <para>
2928          When the pcm supports the suspend/resume operation,
2929	regardless of full or partial suspend/resume support,
2930        the <constant>SUSPEND</constant> and <constant>RESUME</constant>
2931        commands must be handled, too.
2932        These commands are issued when the power-management status is
2933        changed.  Obviously, the <constant>SUSPEND</constant> and
2934        <constant>RESUME</constant> commands
2935        suspend and resume the pcm substream, and usually, they
2936        are identical to the <constant>STOP</constant> and
2937        <constant>START</constant> commands, respectively.
2938	  See the <link linkend="power-management"><citetitle>
2939	Power Management</citetitle></link> section for details.
2940        </para>
2941
2942        <para>
2943          As mentioned, this callback is atomic.  You cannot call
2944	  functions which may sleep.
2945	  The trigger callback should be as minimal as possible,
2946	  just really triggering the DMA.  The other stuff should be
2947	  initialized hw_params and prepare callbacks properly
2948	  beforehand.
2949        </para>
2950      </section>
2951
2952      <section id="pcm-interface-operators-pointer-callback">
2953        <title>pointer callback</title>
2954        <para>
2955          <informalexample>
2956            <programlisting>
2957<![CDATA[
2958  static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2959]]>
2960            </programlisting>
2961          </informalexample>
2962
2963          This callback is called when the PCM middle layer inquires
2964        the current hardware position on the buffer. The position must
2965        be returned in frames,
2966        ranging from 0 to buffer_size - 1.
2967        </para>
2968
2969        <para>
2970          This is called usually from the buffer-update routine in the
2971        pcm middle layer, which is invoked when
2972        <function>snd_pcm_period_elapsed()</function> is called in the
2973        interrupt routine. Then the pcm middle layer updates the
2974        position and calculates the available space, and wakes up the
2975        sleeping poll threads, etc. 
2976        </para>
2977
2978        <para>
2979          This callback is also atomic.
2980        </para>
2981      </section>
2982
2983      <section id="pcm-interface-operators-copy-silence">
2984        <title>copy and silence callbacks</title>
2985        <para>
2986          These callbacks are not mandatory, and can be omitted in
2987        most cases. These callbacks are used when the hardware buffer
2988        cannot be in the normal memory space. Some chips have their
2989        own buffer on the hardware which is not mappable. In such a
2990        case, you have to transfer the data manually from the memory
2991        buffer to the hardware buffer. Or, if the buffer is
2992        non-contiguous on both physical and virtual memory spaces,
2993        these callbacks must be defined, too. 
2994        </para>
2995
2996        <para>
2997          If these two callbacks are defined, copy and set-silence
2998        operations are done by them. The detailed will be described in
2999        the later section <link
3000        linkend="buffer-and-memory"><citetitle>Buffer and Memory
3001        Management</citetitle></link>. 
3002        </para>
3003      </section>
3004
3005      <section id="pcm-interface-operators-ack">
3006        <title>ack callback</title>
3007        <para>
3008          This callback is also not mandatory. This callback is called
3009        when the appl_ptr is updated in read or write operations.
3010        Some drivers like emu10k1-fx and cs46xx need to track the
3011	current appl_ptr for the internal buffer, and this callback
3012	is useful only for such a purpose.
3013	</para>
3014	<para>
3015	  This callback is atomic.
3016	</para>
3017      </section>
3018
3019      <section id="pcm-interface-operators-page-callback">
3020        <title>page callback</title>
3021
3022        <para>
3023          This callback is optional too. This callback is used
3024        mainly for non-contiguous buffers. The mmap calls this
3025        callback to get the page address. Some examples will be
3026        explained in the later section <link
3027        linkend="buffer-and-memory"><citetitle>Buffer and Memory
3028        Management</citetitle></link>, too. 
3029        </para>
3030      </section>
3031    </section>
3032
3033    <section id="pcm-interface-interrupt-handler">
3034      <title>Interrupt Handler</title>
3035      <para>
3036        The rest of pcm stuff is the PCM interrupt handler. The
3037      role of PCM interrupt handler in the sound driver is to update
3038      the buffer position and to tell the PCM middle layer when the
3039      buffer position goes across the prescribed period size. To
3040      inform this, call the <function>snd_pcm_period_elapsed()</function>
3041      function. 
3042      </para>
3043
3044      <para>
3045        There are several types of sound chips to generate the interrupts.
3046      </para>
3047
3048      <section id="pcm-interface-interrupt-handler-boundary">
3049        <title>Interrupts at the period (fragment) boundary</title>
3050        <para>
3051          This is the most frequently found type:  the hardware
3052        generates an interrupt at each period boundary.
3053	In this case, you can call
3054        <function>snd_pcm_period_elapsed()</function> at each 
3055        interrupt. 
3056        </para>
3057
3058        <para>
3059          <function>snd_pcm_period_elapsed()</function> takes the
3060        substream pointer as its argument. Thus, you need to keep the
3061        substream pointer accessible from the chip instance. For
3062        example, define substream field in the chip record to hold the
3063        current running substream pointer, and set the pointer value
3064        at open callback (and reset at close callback). 
3065        </para>
3066
3067        <para>
3068          If you acquire a spinlock in the interrupt handler, and the
3069        lock is used in other pcm callbacks, too, then you have to
3070        release the lock before calling
3071        <function>snd_pcm_period_elapsed()</function>, because
3072        <function>snd_pcm_period_elapsed()</function> calls other pcm
3073        callbacks inside. 
3074        </para>
3075
3076        <para>
3077          Typical code would be like:
3078
3079          <example>
3080	    <title>Interrupt Handler Case #1</title>
3081            <programlisting>
3082<![CDATA[
3083  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3084  {
3085          struct mychip *chip = dev_id;
3086          spin_lock(&chip->lock);
3087          ....
3088          if (pcm_irq_invoked(chip)) {
3089                  /* call updater, unlock before it */
3090                  spin_unlock(&chip->lock);
3091                  snd_pcm_period_elapsed(chip->substream);
3092                  spin_lock(&chip->lock);
3093                  /* acknowledge the interrupt if necessary */
3094          }
3095          ....
3096          spin_unlock(&chip->lock);
3097          return IRQ_HANDLED;
3098  }
3099]]>
3100            </programlisting>
3101          </example>
3102        </para>
3103      </section>
3104
3105      <section id="pcm-interface-interrupt-handler-timer">
3106        <title>High frequency timer interrupts</title>
3107        <para>
3108	This happense when the hardware doesn't generate interrupts
3109        at the period boundary but issues timer interrupts at a fixed
3110        timer rate (e.g. es1968 or ymfpci drivers). 
3111        In this case, you need to check the current hardware
3112        position and accumulate the processed sample length at each
3113        interrupt.  When the accumulated size exceeds the period
3114        size, call 
3115        <function>snd_pcm_period_elapsed()</function> and reset the
3116        accumulator. 
3117        </para>
3118
3119        <para>
3120          Typical code would be like the following.
3121
3122          <example>
3123	    <title>Interrupt Handler Case #2</title>
3124            <programlisting>
3125<![CDATA[
3126  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3127  {
3128          struct mychip *chip = dev_id;
3129          spin_lock(&chip->lock);
3130          ....
3131          if (pcm_irq_invoked(chip)) {
3132                  unsigned int last_ptr, size;
3133                  /* get the current hardware pointer (in frames) */
3134                  last_ptr = get_hw_ptr(chip);
3135                  /* calculate the processed frames since the
3136                   * last update
3137                   */
3138                  if (last_ptr < chip->last_ptr)
3139                          size = runtime->buffer_size + last_ptr 
3140                                   - chip->last_ptr; 
3141                  else
3142                          size = last_ptr - chip->last_ptr;
3143                  /* remember the last updated point */
3144                  chip->last_ptr = last_ptr;
3145                  /* accumulate the size */
3146                  chip->size += size;
3147                  /* over the period boundary? */
3148                  if (chip->size >= runtime->period_size) {
3149                          /* reset the accumulator */
3150                          chip->size %= runtime->period_size;
3151                          /* call updater */
3152                          spin_unlock(&chip->lock);
3153                          snd_pcm_period_elapsed(substream);
3154                          spin_lock(&chip->lock);
3155                  }
3156                  /* acknowledge the interrupt if necessary */
3157          }
3158          ....
3159          spin_unlock(&chip->lock);
3160          return IRQ_HANDLED;
3161  }
3162]]>
3163            </programlisting>
3164          </example>
3165        </para>
3166      </section>
3167
3168      <section id="pcm-interface-interrupt-handler-both">
3169        <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3170        <para>
3171          In both cases, even if more than one period are elapsed, you
3172        don't have to call
3173        <function>snd_pcm_period_elapsed()</function> many times. Call
3174        only once. And the pcm layer will check the current hardware
3175        pointer and update to the latest status. 
3176        </para>
3177      </section>
3178    </section>
3179
3180    <section id="pcm-interface-atomicity">
3181      <title>Atomicity</title>
3182      <para>
3183      One of the most important (and thus difficult to debug) problems
3184      in kernel programming are race conditions.
3185      In the Linux kernel, they are usually avoided via spin-locks, mutexes
3186      or semaphores.  In general, if a race condition can happen
3187      in an interrupt handler, it has to be managed atomically, and you
3188      have to use a spinlock to protect the critical session. If the
3189      critical section is not in interrupt handler code and
3190      if taking a relatively long time to execute is acceptable, you
3191      should use mutexes or semaphores instead.
3192      </para>
3193
3194      <para>
3195      As already seen, some pcm callbacks are atomic and some are
3196      not.  For example, the <parameter>hw_params</parameter> callback is
3197      non-atomic, while <parameter>trigger</parameter> callback is
3198      atomic.  This means, the latter is called already in a spinlock
3199      held by the PCM middle layer. Please take this atomicity into
3200      account when you choose a locking scheme in the callbacks.
3201      </para>
3202
3203      <para>
3204      In the atomic callbacks, you cannot use functions which may call
3205      <function>schedule</function> or go to
3206      <function>sleep</function>.  Semaphores and mutexes can sleep,
3207      and hence they cannot be used inside the atomic callbacks
3208      (e.g. <parameter>trigger</parameter> callback).
3209      To implement some delay in such a callback, please use
3210      <function>udelay()</function> or <function>mdelay()</function>.
3211      </para>
3212
3213      <para>
3214      All three atomic callbacks (trigger, pointer, and ack) are
3215      called with local interrupts disabled.
3216      </para>
3217
3218    </section>
3219    <section id="pcm-interface-constraints">
3220      <title>Constraints</title>
3221      <para>
3222        If your chip supports unconventional sample rates, or only the
3223      limited samples, you need to set a constraint for the
3224      condition. 
3225      </para>
3226
3227      <para>
3228        For example, in order to restrict the sample rates in the some
3229        supported values, use
3230	<function>snd_pcm_hw_constraint_list()</function>.
3231	You need to call this function in the open callback.
3232
3233        <example>
3234	  <title>Example of Hardware Constraints</title>
3235          <programlisting>
3236<![CDATA[
3237  static unsigned int rates[] =
3238          {4000, 10000, 22050, 44100};
3239  static struct snd_pcm_hw_constraint_list constraints_rates = {
3240          .count = ARRAY_SIZE(rates),
3241          .list = rates,
3242          .mask = 0,
3243  };
3244
3245  static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
3246  {
3247          int err;
3248          ....
3249          err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3250                                           SNDRV_PCM_HW_PARAM_RATE,
3251                                           &constraints_rates);
3252          if (err < 0)
3253                  return err;
3254          ....
3255  }
3256]]>
3257          </programlisting>
3258        </example>
3259      </para>
3260
3261      <para>
3262        There are many different constraints.
3263        Look at <filename>sound/pcm.h</filename> for a complete list.
3264        You can even define your own constraint rules.
3265        For example, let's suppose my_chip can manage a substream of 1 channel
3266        if and only if the format is S16_LE, otherwise it supports any format
3267        specified in the <structname>snd_pcm_hardware</structname> structure (or in any
3268        other constraint_list). You can build a rule like this:
3269
3270        <example>
3271	  <title>Example of Hardware Constraints for Channels</title>
3272	  <programlisting>
3273<![CDATA[
3274  static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3275                                        struct snd_pcm_hw_rule *rule)
3276  {
3277          struct snd_interval *c = hw_param_interval(params,
3278                SNDRV_PCM_HW_PARAM_CHANNELS);
3279          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3280          struct snd_mask fmt;
3281
3282          snd_mask_any(&fmt);    /* Init the struct */
3283          if (c->min < 2) {
3284                  fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3285                  return snd_mask_refine(f, &fmt);
3286          }
3287          return 0;
3288  }
3289]]>
3290          </programlisting>
3291        </example>
3292      </para>
3293 
3294      <para>
3295        Then you need to call this function to add your rule:
3296
3297       <informalexample>
3298	 <programlisting>
3299<![CDATA[
3300  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3301                      hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3302                      -1);
3303]]>
3304          </programlisting>
3305        </informalexample>
3306      </para>
3307
3308      <para>
3309        The rule function is called when an application sets the number of
3310        channels. But an application can set the format before the number of
3311        channels. Thus you also need to define the inverse rule:
3312
3313       <example>
3314	 <title>Example of Hardware Constraints for Channels</title>
3315	 <programlisting>
3316<![CDATA[
3317  static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3318                                        struct snd_pcm_hw_rule *rule)
3319  {
3320          struct snd_interval *c = hw_param_interval(params,
3321                        SNDRV_PCM_HW_PARAM_CHANNELS);
3322          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3323          struct snd_interval ch;
3324
3325          snd_interval_any(&ch);
3326          if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3327                  ch.min = ch.max = 1;
3328                  ch.integer = 1;
3329                  return snd_interval_refine(c, &ch);
3330          }
3331          return 0;
3332  }
3333]]>
3334          </programlisting>
3335        </example>
3336      </para>
3337
3338      <para>
3339      ...and in the open callback:
3340       <informalexample>
3341	 <programlisting>
3342<![CDATA[
3343  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3344                      hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3345                      -1);
3346]]>
3347          </programlisting>
3348        </informalexample>
3349      </para>
3350
3351      <para>
3352        I won't give more details here, rather I
3353        would like to say, <quote>Luke, use the source.</quote>
3354      </para>
3355    </section>
3356
3357  </chapter>
3358
3359
3360<!-- ****************************************************** -->
3361<!-- Control Interface  -->
3362<!-- ****************************************************** -->
3363  <chapter id="control-interface">
3364    <title>Control Interface</title>
3365
3366    <section id="control-interface-general">
3367      <title>General</title>
3368      <para>
3369        The control interface is used widely for many switches,
3370      sliders, etc. which are accessed from user-space. Its most
3371      important use is the mixer interface. In other words, since ALSA
3372      0.9.x, all the mixer stuff is implemented on the control kernel API.
3373      </para>
3374
3375      <para>
3376        ALSA has a well-defined AC97 control module. If your chip
3377      supports only the AC97 and nothing else, you can skip this
3378      section. 
3379      </para>
3380
3381      <para>
3382        The control API is defined in
3383      <filename>&lt;sound/control.h&gt;</filename>.
3384      Include this file if you want to add your own controls.
3385      </para>
3386    </section>
3387
3388    <section id="control-interface-definition">
3389      <title>Definition of Controls</title>
3390      <para>
3391        To create a new control, you need to define the
3392	following three
3393      callbacks: <structfield>info</structfield>,
3394      <structfield>get</structfield> and
3395      <structfield>put</structfield>. Then, define a
3396      struct <structname>snd_kcontrol_new</structname> record, such as: 
3397
3398        <example>
3399	  <title>Definition of a Control</title>
3400          <programlisting>
3401<![CDATA[
3402  static struct snd_kcontrol_new my_control __devinitdata = {
3403          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3404          .name = "PCM Playback Switch",
3405          .index = 0,
3406          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3407          .private_value = 0xffff,
3408          .info = my_control_info,
3409          .get = my_control_get,
3410          .put = my_control_put
3411  };
3412]]>
3413          </programlisting>
3414        </example>
3415      </para>
3416
3417      <para>
3418        Most likely the control is created via
3419      <function>snd_ctl_new1()</function>, and in such a case, you can
3420      add the <parameter>__devinitdata</parameter> prefix to the
3421      definition as above. 
3422      </para>
3423
3424      <para>
3425        The <structfield>iface</structfield> field specifies the control
3426      type, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3427      is usually <constant>MIXER</constant>.
3428      Use <constant>CARD</constant> for global controls that are not
3429      logically part of the mixer.
3430      If the control is closely associated with some specific device on
3431      the sound card, use <constant>HWDEP</constant>,
3432      <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3433      <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3434      specify the device number with the
3435      <structfield>device</structfield> and
3436      <structfield>subdevice</structfield> fields.
3437      </para>
3438
3439      <para>
3440        The <structfield>name</structfield> is the name identifier
3441      string. Since ALSA 0.9.x, the control name is very important,
3442      because its role is classified from its name. There are
3443      pre-defined standard control names. The details are described in
3444      the <link linkend="control-interface-control-names"><citetitle>
3445      Control Names</citetitle></link> subsection.
3446      </para>
3447
3448      <para>
3449        The <structfield>index</structfield> field holds the index number
3450      of this control. If there are several different controls with
3451      the same name, they can be distinguished by the index
3452      number. This is the case when 
3453      several codecs exist on the card. If the index is zero, you can
3454      omit the definition above. 
3455      </para>
3456
3457      <para>
3458        The <structfield>access</structfield> field contains the access
3459      type of this control. Give the combination of bit masks,
3460      <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3461      The details will be explained in
3462      the <link linkend="control-interface-access-flags"><citetitle>
3463      Access Flags</citetitle></link> subsection.
3464      </para>
3465
3466      <para>
3467        The <structfield>private_value</structfield> field contains
3468      an arbitrary long integer value for this record. When using
3469      the generic <structfield>info</structfield>,
3470      <structfield>get</structfield> and
3471      <structfield>put</structfield> callbacks, you can pass a value 
3472      through this field. If several small numbers are necessary, you can
3473      combine them in bitwise. Or, it's possible to give a pointer
3474      (casted to unsigned long) of some record to this field, too. 
3475      </para>
3476
3477      <para>
3478      The <structfield>tlv</structfield> field can be used to provide
3479      metadata about the control; see the
3480      <link linkend="control-interface-tlv">
3481      <citetitle>Metadata</citetitle></link> subsection.
3482      </para>
3483
3484      <para>
3485        The other three are
3486	<link linkend="control-interface-callbacks"><citetitle>
3487	callback functions</citetitle></link>.
3488      </para>
3489    </section>
3490
3491    <section id="control-interface-control-names">
3492      <title>Control Names</title>
3493      <para>
3494        There are some standards to define the control names. A
3495      control is usually defined from the three parts as
3496      <quote>SOURCE DIRECTION FUNCTION</quote>. 
3497      </para>
3498
3499      <para>
3500        The first, <constant>SOURCE</constant>, specifies the source
3501      of the control, and is a string such as <quote>Master</quote>,
3502      <quote>PCM</quote>, <quote>CD</quote> and
3503      <quote>Line</quote>. There are many pre-defined sources. 
3504      </para>
3505
3506      <para>
3507        The second, <constant>DIRECTION</constant>, is one of the
3508      following strings according to the direction of the control:
3509      <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3510      Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3511      be omitted, meaning both playback and capture directions. 
3512      </para>
3513
3514      <para>
3515        The third, <constant>FUNCTION</constant>, is one of the
3516      following strings according to the function of the control:
3517      <quote>Switch</quote>, <quote>Volume</quote> and
3518      <quote>Route</quote>. 
3519      </para>
3520
3521      <para>
3522        The example of control names are, thus, <quote>Master Capture
3523      Switch</quote> or <quote>PCM Playback Volume</quote>. 
3524      </para>
3525
3526      <para>
3527        There are some exceptions:
3528      </para>
3529
3530      <section id="control-interface-control-names-global">
3531        <title>Global capture and playback</title>
3532        <para>
3533          <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3534        and <quote>Capture Volume</quote> are used for the global
3535        capture (input) source, switch and volume. Similarly,
3536        <quote>Playback Switch</quote> and <quote>Playback
3537        Volume</quote> are used for the global output gain switch and
3538        volume. 
3539        </para>
3540      </section>
3541
3542      <section id="control-interface-control-names-tone">
3543        <title>Tone-controls</title>
3544        <para>
3545          tone-control switch and volumes are specified like
3546        <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3547        Switch</quote>, <quote>Tone Control - Bass</quote>,
3548        <quote>Tone Control - Center</quote>.  
3549        </para>
3550      </section>
3551
3552      <section id="control-interface-control-names-3d">
3553        <title>3D controls</title>
3554        <para>
3555          3D-control switches and volumes are specified like <quote>3D
3556        Control - XXX</quote>, e.g. <quote>3D Control -
3557        Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3558        Control - Space</quote>. 
3559        </para>
3560      </section>
3561
3562      <section id="control-interface-control-names-mic">
3563        <title>Mic boost</title>
3564        <para>
3565          Mic-boost switch is set as <quote>Mic Boost</quote> or
3566        <quote>Mic Boost (6dB)</quote>. 
3567        </para>
3568
3569        <para>
3570          More precise information can be found in
3571        <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3572        </para>
3573      </section>
3574    </section>
3575
3576    <section id="control-interface-access-flags">
3577      <title>Access Flags</title>
3578
3579      <para>
3580      The access flag is the bitmask which specifies the access type
3581      of the given control.  The default access type is
3582      <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, 
3583      which means both read and write are allowed to this control.
3584      When the access flag is omitted (i.e. = 0), it is
3585      considered as <constant>READWRITE</constant> access as default. 
3586      </para>
3587
3588      <para>
3589      When the control is read-only, pass
3590      <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3591      In this case, you don't have to define
3592      the <structfield>put</structfield> callback.
3593      Similarly, when the control is write-only (although it's a rare
3594      case), you can use the <constant>WRITE</constant> flag instead, and
3595      you don't need the <structfield>get</structfield> callback.
3596      </para>
3597
3598      <para>
3599      If the control value changes frequently (e.g. the VU meter),
3600      <constant>VOLATILE</constant> flag should be given.  This means
3601      that the control may be changed without
3602      <link linkend="control-interface-change-notification"><citetitle>
3603      notification</citetitle></link>. Applications should poll such
3604      a control constantly.
3605      </para>
3606
3607      <para>
3608      When the control is inactive, set
3609      the <constant>INACTIVE</constant> flag, too.
3610      There are <constant>LOCK</constant> and
3611      <constant>OWNER</constant> flags to change the write
3612      permissions.
3613      </para>
3614
3615    </section>
3616
3617    <section id="control-interface-callbacks">
3618      <title>Callbacks</title>
3619
3620      <section id="control-interface-callbacks-info">
3621        <title>info callback</title>
3622        <para>
3623          The <structfield>info</structfield> callback is used to get
3624        detailed information on this control. This must store the
3625        values of the given struct <structname>snd_ctl_elem_info</structname>
3626        object. For example, for a boolean control with a single
3627        element: 
3628
3629          <example>
3630	    <title>Example of info callback</title>
3631            <programlisting>
3632<![CDATA[
3633  static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
3634                          struct snd_ctl_elem_info *uinfo)
3635  {
3636          uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3637          uinfo->count = 1;
3638          uinfo->value.integer.min = 0;
3639          uinfo->value.integer.max = 1;
3640          return 0;
3641  }
3642]]>
3643            </programlisting>
3644          </example>
3645        </para>
3646
3647        <para>
3648          The <structfield>type</structfield> field specifies the type
3649        of the control. There are <constant>BOOLEAN</constant>,
3650        <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3651        <constant>BYTES</constant>, <constant>IEC958</constant> and
3652        <constant>INTEGER64</constant>. The
3653        <structfield>count</structfield> field specifies the 
3654        number of elements in this control. For example, a stereo
3655        volume would have count = 2. The
3656        <structfield>value</structfield> field is a union, and 
3657        the values stored are depending on the type. The boolean and
3658        integer types are identical. 
3659        </para>
3660
3661        <para>
3662          The enumerated type is a bit different from others.  You'll
3663          need to set the string for the currently given item index. 
3664
3665          <informalexample>
3666            <programlisting>
3667<![CDATA[
3668  static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
3669                          struct snd_ctl_elem_info *uinfo)
3670  {
3671          static char *texts[4] = {
3672                  "First", "Second", "Third", "Fourth"
3673          };
3674          uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3675          uinfo->count = 1;
3676          uinfo->value.enumerated.items = 4;
3677          if (uinfo->value.enumerated.item > 3)
3678                  uinfo->value.enumerated.item = 3;
3679          strcpy(uinfo->value.enumerated.name,
3680                 texts[uinfo->value.enumerated.item]);
3681          return 0;
3682  }
3683]]>
3684            </programlisting>
3685          </informalexample>
3686        </para>
3687
3688        <para>
3689	  Some common info callbacks are available for your convenience:
3690	<function>snd_ctl_boolean_mono_info()</function> and
3691	<function>snd_ctl_boolean_stereo_info()</function>.
3692	Obviously, the former is an info callback for a mono channel
3693	boolean item, just like <function>snd_myctl_mono_info</function>
3694	above, and the latter is for a stereo channel boolean item.
3695	</para>
3696
3697      </section>
3698
3699      <section id="control-interface-callbacks-get">
3700        <title>get callback</title>
3701
3702        <para>
3703          This callback is used to read the current value of the
3704        control and to return to user-space. 
3705        </para>
3706
3707        <para>
3708          For example,
3709
3710          <example>
3711	    <title>Example of get callback</title>
3712            <programlisting>
3713<![CDATA[
3714  static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3715                           struct snd_ctl_elem_value *ucontrol)
3716  {
3717          struct mychip *chip = snd_kcontrol_chip(kcontrol);
3718          ucontrol->value.integer.value[0] = get_some_value(chip);
3719          return 0;
3720  }
3721]]>
3722            </programlisting>
3723          </example>
3724        </para>
3725
3726        <para>
3727	The <structfield>value</structfield> field depends on 
3728        the type of control as well as on the info callback.  For example,
3729	the sb driver uses this field to store the register offset,
3730        the bit-shift and the bit-mask.  The
3731        <structfield>private_value</structfield> field is set as follows:
3732          <informalexample>
3733            <programlisting>
3734<![CDATA[
3735  .private_value = reg | (shift << 16) | (mask << 24)
3736]]>
3737            </programlisting>
3738          </informalexample>
3739	and is retrieved in callbacks like
3740          <informalexample>
3741            <programlisting>
3742<![CDATA[
3743  static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3744                                    struct snd_ctl_elem_value *ucontrol)
3745  {
3746          int reg = kcontrol->private_value & 0xff;
3747          int shift = (kcontrol->private_value >> 16) & 0xff;
3748          int mask = (kcontrol->private_value >> 24) & 0xff;
3749          ....
3750  }
3751]]>
3752            </programlisting>
3753          </informalexample>
3754	</para>
3755
3756	<para>
3757	In the <structfield>get</structfield> callback,
3758	you have to fill all the elements if the
3759        control has more than one elements,
3760        i.e. <structfield>count</structfield> &gt; 1.
3761	In the example above, we filled only one element
3762        (<structfield>value.integer.value[0]</structfield>) since it's
3763        assumed as <structfield>count</structfield> = 1.
3764        </para>
3765      </section>
3766
3767      <section id="control-interface-callbacks-put">
3768        <title>put callback</title>
3769
3770        <para>
3771          This callback is used to write a value from user-space.
3772        </para>
3773
3774        <para>
3775          For example,
3776
3777          <example>
3778	    <title>Example of put callback</title>
3779            <programlisting>
3780<![CDATA[
3781  static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3782                           struct snd_ctl_elem_value *ucontrol)
3783  {
3784          struct mychip *chip = snd_kcontrol_chip(kcontrol);
3785          int changed = 0;
3786          if (chip->current_value !=
3787               ucontrol->value.integer.value[0]) {
3788                  change_current_value(chip,
3789                              ucontrol->value.integer.value[0]);
3790                  changed = 1;
3791          }
3792          return changed;
3793  }
3794]]>
3795            </programlisting>
3796          </example>
3797
3798          As seen above, you have to return 1 if the value is
3799        changed. If the value is not changed, return 0 instead. 
3800	If any fatal error happens, return a negative error code as
3801        usual.
3802        </para>
3803
3804        <para>
3805	As in the <structfield>get</structfield> callback,
3806	when the control has more than one elements,
3807	all elements must be evaluated in this callback, too.
3808        </para>
3809      </section>
3810
3811      <section id="control-interface-callbacks-all">
3812        <title>Callbacks are not atomic</title>
3813        <para>
3814          All these three callbacks are basically not atomic.
3815        </para>
3816      </section>
3817    </section>
3818
3819    <section id="control-interface-constructor">
3820      <title>Constructor</title>
3821      <para>
3822        When everything is ready, finally we can create a new
3823      control. To create a control, there are two functions to be
3824      called, <function>snd_ctl_new1()</function> and
3825      <function>snd_ctl_add()</function>. 
3826      </para>
3827
3828      <para>
3829        In the simplest way, you can do like this:
3830
3831        <informalexample>
3832          <programlisting>
3833<![CDATA[
3834  err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
3835  if (err < 0)
3836          return err;
3837]]>
3838          </programlisting>
3839        </informalexample>
3840
3841        where <parameter>my_control</parameter> is the
3842      struct <structname>snd_kcontrol_new</structname> object defined above, and chip
3843      is the object pointer to be passed to
3844      kcontrol-&gt;private_data 
3845      which can be referred to in callbacks. 
3846      </para>
3847
3848      <para>
3849        <function>snd_ctl_new1()</function> allocates a new
3850      <structname>snd_kcontrol</structname> instance (that's why the definition
3851      of <parameter>my_control</parameter> can be with
3852      the <parameter>__devinitdata</parameter> 
3853      prefix), and <function>snd_ctl_add</function> assigns the given
3854      control component to the card. 
3855      </para>
3856    </section>
3857
3858    <section id="control-interface-change-notification">
3859      <title>Change Notification</title>
3860      <para>
3861        If you need to change and update a control in the interrupt
3862      routine, you can call <function>snd_ctl_notify()</function>. For
3863      example, 
3864
3865        <informalexample>
3866          <programlisting>
3867<![CDATA[
3868  snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3869]]>
3870          </programlisting>
3871        </informalexample>
3872
3873        This function takes the card pointer, the event-mask, and the
3874      control id pointer for the notification. The event-mask
3875      specifies the types of notification, for example, in the above
3876      example, the change of control values is notified.
3877      The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
3878      to be notified.
3879      You can find some examples in <filename>es1938.c</filename> or
3880      <filename>es1968.c</filename> for hardware volume interrupts. 
3881      </para>
3882    </section>
3883
3884    <section id="control-interface-tlv">
3885      <title>Metadata</title>
3886      <para>
3887      To provide information about the dB values of a mixer control, use
3888      on of the <constant>DECLARE_TLV_xxx</constant> macros from
3889      <filename>&lt;sound/tlv.h&gt;</filename> to define a variable
3890      containing this information, set the<structfield>tlv.p
3891      </structfield> field to point to this variable, and include the
3892      <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the
3893      <structfield>access</structfield> field; like this:
3894      <informalexample>
3895        <programlisting>
3896<![CDATA[
3897  static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
3898
3899  static struct snd_kcontrol_new my_control __devinitdata = {
3900          ...
3901          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
3902                    SNDRV_CTL_ELEM_ACCESS_TLV_READ,
3903          ...
3904          .tlv.p = db_scale_my_control,
3905  };
3906]]>
3907        </programlisting>
3908      </informalexample>
3909      </para>
3910
3911      <para>
3912      The <function>DECLARE_TLV_DB_SCALE</function> macro defines
3913      information about a mixer control where each step in the control's
3914      value changes the dB value by a constant dB amount.
3915      The first parameter is the name of the variable to be defined.
3916      The second parameter is the minimum value, in units of 0.01 dB.
3917      The third parameter is the step size, in units of 0.01 dB.
3918      Set the fourth parameter to 1 if the minimum value actually mutes
3919      the control.
3920      </para>
3921
3922      <para>
3923      The <function>DECLARE_TLV_DB_LINEAR</function> macro defines
3924      information about a mixer control where the control's value affects
3925      the output linearly.
3926      The first parameter is the name of the variable to be defined.
3927      The second parameter is the minimum value, in units of 0.01 dB.
3928      The third parameter is the maximum value, in units of 0.01 dB.
3929      If the minimum value mutes the control, set the second parameter to
3930      <constant>TLV_DB_GAIN_MUTE</constant>.
3931      </para>
3932    </section>
3933
3934  </chapter>
3935
3936
3937<!-- ****************************************************** -->
3938<!-- API for AC97 Codec  -->
3939<!-- ****************************************************** -->
3940  <chapter id="api-ac97">
3941    <title>API for AC97 Codec</title>
3942
3943    <section>
3944      <title>General</title>
3945      <para>
3946        The ALSA AC97 codec layer is a well-defined one, and you don't
3947      have to write much code to control it. Only low-level control
3948      routines are necessary. The AC97 codec API is defined in
3949      <filename>&lt;sound/ac97_codec.h&gt;</filename>. 
3950      </para>
3951    </section>
3952
3953    <section id="api-ac97-example">
3954      <title>Full Code Example</title>
3955      <para>
3956          <example>
3957	    <title>Example of AC97 Interface</title>
3958            <programlisting>
3959<![CDATA[
3960  struct mychip {
3961          ....
3962          struct snd_ac97 *ac97;
3963          ....
3964  };
3965
3966  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
3967                                             unsigned short reg)
3968  {
3969          struct mychip *chip = ac97->private_data;
3970          ....
3971          /* read a register value here from the codec */
3972          return the_register_value;
3973  }
3974
3975  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
3976                                   unsigned short reg, unsigned short val)
3977  {
3978          struct mychip *chip = ac97->private_data;
3979          ....
3980          /* write the given register value to the codec */
3981  }
3982
3983  static int snd_mychip_ac97(struct mychip *chip)
3984  {
3985          struct snd_ac97_bus *bus;
3986          struct snd_ac97_template ac97;
3987          int err;
3988          static struct snd_ac97_bus_ops ops = {
3989                  .write = snd_mychip_ac97_write,
3990                  .read = snd_mychip_ac97_read,
3991          };
3992
3993          err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
3994          if (err < 0)
3995                  return err;
3996          memset(&ac97, 0, sizeof(ac97));
3997          ac97.private_data = chip;
3998          return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3999  }
4000
4001]]>
4002          </programlisting>
4003        </example>
4004      </para>
4005    </section>
4006
4007    <section id="api-ac97-constructor">
4008      <title>Constructor</title>
4009      <para>
4010        To create an ac97 instance, first call <function>snd_ac97_bus</function>
4011      with an <type>ac97_bus_ops_t</type> record with callback functions.
4012
4013        <informalexample>
4014          <programlisting>
4015<![CDATA[
4016  struct snd_ac97_bus *bus;
4017  static struct snd_ac97_bus_ops ops = {
4018        .write = snd_mychip_ac97_write,
4019        .read = snd_mychip_ac97_read,
4020  };
4021
4022  snd_ac97_bus(card, 0, &ops, NULL, &pbus);
4023]]>
4024          </programlisting>
4025        </informalexample>
4026
4027      The bus record is shared among all belonging ac97 instances.
4028      </para>
4029
4030      <para>
4031      And then call <function>snd_ac97_mixer()</function> with an
4032      struct <structname>snd_ac97_template</structname>
4033      record together with the bus pointer created above.
4034
4035        <informalexample>
4036          <programlisting>
4037<![CDATA[
4038  struct snd_ac97_template ac97;
4039  int err;
4040
4041  memset(&ac97, 0, sizeof(ac97));
4042  ac97.private_data = chip;
4043  snd_ac97_mixer(bus, &ac97, &chip->ac97);
4044]]>
4045          </programlisting>
4046        </informalexample>
4047
4048        where chip-&gt;ac97 is a pointer to a newly created
4049        <type>ac97_t</type> instance.
4050        In this case, the chip pointer is set as the private data, so that
4051        the read/write callback functions can refer to this chip instance.
4052        This instance is not necessarily stored in the chip
4053	record.  If you need to change the register values from the
4054        driver, or need the suspend/resume of ac97 codecs, keep this
4055        pointer to pass to the corresponding functions.
4056      </para>
4057    </section>
4058
4059    <section id="api-ac97-callbacks">
4060      <title>Callbacks</title>
4061      <para>
4062        The standard callbacks are <structfield>read</structfield> and
4063      <structfield>write</structfield>. Obviously they 
4064      correspond to the functions for read and write accesses to the
4065      hardware low-level codes. 
4066      </para>
4067
4068      <para>
4069        The <structfield>read</structfield> callback returns the
4070        register value specified in the argument. 
4071
4072        <informalexample>
4073          <programlisting>
4074<![CDATA[
4075  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
4076                                             unsigned short reg)
4077  {
4078          struct mychip *chip = ac97->private_data;
4079          ....
4080          return the_register_value;
4081  }
4082]]>
4083          </programlisting>
4084        </informalexample>
4085
4086        Here, the chip can be cast from ac97-&gt;private_data.
4087      </para>
4088
4089      <para>
4090        Meanwhile, the <structfield>write</structfield> callback is
4091        used to set the register value. 
4092
4093        <informalexample>
4094          <programlisting>
4095<![CDATA[
4096  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
4097                       unsigned short reg, unsigned short val)
4098]]>
4099          </programlisting>
4100        </informalexample>
4101      </para>
4102
4103      <para>
4104      These callbacks are non-atomic like the control API callbacks.
4105      </para>
4106
4107      <para>
4108        There are also other callbacks:
4109      <structfield>reset</structfield>,
4110      <structfield>wait</structfield> and
4111      <structfield>init</structfield>. 
4112      </para>
4113
4114      <para>
4115        The <structfield>reset</structfield> callback is used to reset
4116      the codec. If the chip requires a special kind of reset, you can
4117      define this callback. 
4118      </para>
4119
4120      <para>
4121        The <structfield>wait</structfield> callback is used to
4122      add some waiting time in the standard initialization of the codec. If the
4123      chip requires the extra waiting time, define this callback. 
4124      </para>
4125
4126      <para>
4127        The <structfield>init</structfield> callback is used for
4128      additional initialization of the codec.
4129      </para>
4130    </section>
4131
4132    <section id="api-ac97-updating-registers">
4133      <title>Updating Registers in The Driver</title>
4134      <para>
4135        If you need to access to the codec from the driver, you can
4136      call the following functions:
4137      <function>snd_ac97_write()</function>,
4138      <function>snd_ac97_read()</function>,
4139      <function>snd_ac97_update()</function> and
4140      <function>snd_ac97_update_bits()</function>. 
4141      </para>
4142
4143      <para>
4144        Both <function>snd_ac97_write()</function> and
4145        <function>snd_ac97_update()</function> functions are used to
4146        set a value to the given register
4147        (<constant>AC97_XXX</constant>). The difference between them is
4148        that <function>snd_ac97_update()</function> doesn't write a
4149        value if the given value has been already set, while
4150        <function>snd_ac97_write()</function> always rewrites the
4151        value. 
4152
4153        <informalexample>
4154          <programlisting>
4155<![CDATA[
4156  snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4157  snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4158]]>
4159          </programlisting>
4160        </informalexample>
4161      </para>
4162
4163      <para>
4164        <function>snd_ac97_read()</function> is used to read the value
4165        of the given register. For example, 
4166
4167        <informalexample>
4168          <programlisting>
4169<![CDATA[
4170  value = snd_ac97_read(ac97, AC97_MASTER);
4171]]>
4172          </programlisting>
4173        </informalexample>
4174      </para>
4175
4176      <para>
4177        <function>snd_ac97_update_bits()</function> is used to update
4178        some bits in the given register.  
4179
4180        <informalexample>
4181          <programlisting>
4182<![CDATA[
4183  snd_ac97_update_bits(ac97, reg, mask, value);
4184]]>
4185          </programlisting>
4186        </informalexample>
4187      </para>
4188
4189      <para>
4190        Also, there is a function to change the sample rate (of a
4191        given register such as
4192        <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4193        DRA is supported by the codec:
4194        <function>snd_ac97_set_rate()</function>. 
4195
4196        <informalexample>
4197          <programlisting>
4198<![CDATA[
4199  snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4200]]>
4201          </programlisting>
4202        </informalexample>
4203      </para>
4204
4205      <para>
4206        The following registers are available to set the rate:
4207      <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4208      <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4209      <constant>AC97_PCM_LR_ADC_RATE</constant>,
4210      <constant>AC97_SPDIF</constant>. When
4211      <constant>AC97_SPDIF</constant> is specified, the register is
4212      not really changed but the corresponding IEC958 status bits will
4213      be updated. 
4214      </para>
4215    </section>
4216
4217    <section id="api-ac97-clock-adjustment">
4218      <title>Clock Adjustment</title>
4219      <para>
4220        In some chips, the clock of the codec isn't 48000 but using a
4221      PCI clock (to save a quartz!). In this case, change the field
4222      bus-&gt;clock to the corresponding
4223      value. For example, intel8x0 
4224      and es1968 drivers have their own function to read from the clock.
4225      </para>
4226    </section>
4227
4228    <section id="api-ac97-proc-files">
4229      <title>Proc Files</title>
4230      <para>
4231        The ALSA AC97 interface will create a proc file such as
4232      <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4233      <filename>ac97#0-0+regs</filename>. You can refer to these files to
4234      see the current status and registers of the codec. 
4235      </para>
4236    </section>
4237
4238    <section id="api-ac97-multiple-codecs">
4239      <title>Multiple Codecs</title>
4240      <para>
4241        When there are several codecs on the same card, you need to
4242      call <function>snd_ac97_mixer()</function> multiple times with
4243      ac97.num=1 or greater. The <structfield>num</structfield> field
4244      specifies the codec number. 
4245      </para>
4246
4247      <para>
4248        If you set up multiple codecs, you either need to write
4249      different callbacks for each codec or check
4250      ac97-&gt;num in the callback routines. 
4251      </para>
4252    </section>
4253
4254  </chapter>
4255
4256
4257<!-- ****************************************************** -->
4258<!-- MIDI (MPU401-UART) Interface  -->
4259<!-- ****************************************************** -->
4260  <chapter id="midi-interface">
4261    <title>MIDI (MPU401-UART) Interface</title>
4262
4263    <section id="midi-interface-general">
4264      <title>General</title>
4265      <para>
4266        Many soundcards have built-in MIDI (MPU401-UART)
4267      interfaces. When the soundcard supports the standard MPU401-UART
4268      interface, most likely you can use the ALSA MPU401-UART API. The
4269      MPU401-UART API is defined in
4270      <filename>&lt;sound/mpu401.h&gt;</filename>. 
4271      </para>
4272
4273      <para>
4274        Some soundchips have a similar but slightly different
4275      implementation of mpu401 stuff. For example, emu10k1 has its own
4276      mpu401 routines. 
4277      </para>
4278    </section>
4279
4280    <section id="midi-interface-constructor">
4281      <title>Constructor</title>
4282      <para>
4283        To create a rawmidi object, call
4284      <function>snd_mpu401_uart_new()</function>. 
4285
4286        <informalexample>
4287          <programlisting>
4288<![CDATA[
4289  struct snd_rawmidi *rmidi;
4290  snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
4291                      irq, irq_flags, &rmidi);
4292]]>
4293          </programlisting>
4294        </informalexample>
4295      </para>
4296
4297      <para>
4298        The first argument is the card pointer, and the second is the
4299      index of this component. You can create up to 8 rawmidi
4300      devices. 
4301      </para>
4302
4303      <para>
4304        The third argument is the type of the hardware,
4305      <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4306      you can use <constant>MPU401_HW_MPU401</constant>. 
4307      </para>
4308
4309      <para>
4310        The 4th argument is the I/O port address. Many
4311      backward-compatible MPU401 have an I/O port such as 0x330. Or, it
4312      might be a part of its own PCI I/O region. It depends on the
4313      chip design. 
4314      </para>
4315
4316      <para>
4317	The 5th argument is a bitflag for additional information.
4318        When the I/O port address above is part of the PCI I/O
4319      region, the MPU401 I/O port might have been already allocated
4320      (reserved) by the driver itself. In such a case, pass a bit flag
4321      <constant>MPU401_INFO_INTEGRATED</constant>,
4322      and the mpu401-uart layer will allocate the I/O ports by itself. 
4323      </para>
4324
4325	<para>
4326	When the controller supports only the input or output MIDI stream,
4327	pass the <constant>MPU401_INFO_INPUT</constant> or
4328	<constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
4329	Then the rawmidi instance is created as a single stream.
4330	</para>
4331
4332	<para>
4333	<constant>MPU401_INFO_MMIO</constant> bitflag is used to change
4334	the access method to MMIO (via readb and writeb) instead of
4335	iob and outb. In this case, you have to pass the iomapped address
4336	to <function>snd_mpu401_uart_new()</function>.
4337	</para>
4338
4339	<para>
4340	When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
4341	stream isn't checked in the default interrupt handler.  The driver
4342	needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4343	by itself to start processing the output stream in the irq handler.
4344	</para>
4345
4346      <para>
4347        Usually, the port address corresponds to the command port and
4348        port + 1 corresponds to the data port. If not, you may change
4349        the <structfield>cport</structfield> field of
4350        struct <structname>snd_mpu401</structname> manually 
4351        afterward. However, <structname>snd_mpu401</structname> pointer is not
4352        returned explicitly by
4353        <function>snd_mpu401_uart_new()</function>. You need to cast
4354        rmidi-&gt;private_data to
4355        <structname>snd_mpu401</structname> explicitly, 
4356
4357        <informalexample>
4358          <programlisting>
4359<![CDATA[
4360  struct snd_mpu401 *mpu;
4361  mpu = rmidi->private_data;
4362]]>
4363          </programlisting>
4364        </informalexample>
4365
4366        and reset the cport as you like:
4367
4368        <informalexample>
4369          <programlisting>
4370<![CDATA[
4371  mpu->cport = my_own_control_port;
4372]]>
4373          </programlisting>
4374        </informalexample>
4375      </para>
4376
4377      <para>
4378        The 6th argument specifies the irq number for UART. If the irq
4379      is already allocated, pass 0 to the 7th argument
4380      (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4381      for irq allocation 
4382      (<constant>SA_XXX</constant> bits) to it, and the irq will be
4383      reserved by the mpu401-uart layer. If the card doesn't generate
4384      UART interrupts, pass -1 as the irq number. Then a timer
4385      interrupt will be invoked for polling. 
4386      </para>
4387    </section>
4388
4389    <section id="midi-interface-interrupt-handler">
4390      <title>Interrupt Handler</title>
4391      <para>
4392        When the interrupt is allocated in
4393      <function>snd_mpu401_uart_new()</function>, the private
4394      interrupt handler is used, hence you don't have anything else to do
4395      than creating the mpu401 stuff. Otherwise, you have to call
4396      <function>snd_mpu401_uart_interrupt()</function> explicitly when
4397      a UART interrupt is invoked and checked in your own interrupt
4398      handler.  
4399      </para>
4400
4401      <para>
4402        In this case, you need to pass the private_data of the
4403        returned rawmidi object from
4404        <function>snd_mpu401_uart_new()</function> as the second
4405        argument of <function>snd_mpu401_uart_interrupt()</function>. 
4406
4407        <informalexample>
4408          <programlisting>
4409<![CDATA[
4410  snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4411]]>
4412          </programlisting>
4413        </informalexample>
4414      </para>
4415    </section>
4416
4417  </chapter>
4418
4419
4420<!-- ****************************************************** -->
4421<!-- RawMIDI Interface  -->
4422<!-- ****************************************************** -->
4423  <chapter id="rawmidi-interface">
4424    <title>RawMIDI Interface</title>
4425
4426    <section id="rawmidi-interface-overview">
4427      <title>Overview</title>
4428
4429      <para>
4430      The raw MIDI interface is used for hardware MIDI ports that can
4431      be accessed as a byte stream.  It is not used for synthesizer
4432      chips that do not directly understand MIDI.
4433      </para>
4434
4435      <para>
4436      ALSA handles file and buffer management.  All you have to do is
4437      to write some code to move data between the buffer and the
4438      hardware.
4439      </para>
4440
4441      <para>
4442      The rawmidi API is defined in
4443      <filename>&lt;sound/rawmidi.h&gt;</filename>.
4444      </para>
4445    </section>
4446
4447    <section id="rawmidi-interface-constructor">
4448      <title>Constructor</title>
4449
4450      <para>
4451      To create a rawmidi device, call the
4452      <function>snd_rawmidi_new</function> function:
4453        <informalexample>
4454          <programlisting>
4455<![CDATA[
4456  struct snd_rawmidi *rmidi;
4457  err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4458  if (err < 0)
4459          return err;
4460  rmidi->private_data = chip;
4461  strcpy(rmidi->name, "My MIDI");
4462  rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4463                      SNDRV_RAWMIDI_INFO_INPUT |
4464                      SNDRV_RAWMIDI_INFO_DUPLEX;
4465]]>
4466          </programlisting>
4467        </informalexample>
4468      </para>
4469
4470      <para>
4471      The first argument is the card pointer, the second argument is
4472      the ID string.
4473      </para>
4474
4475      <para>
4476      The third argument is the index of this component.  You can
4477      create up to 8 rawmidi devices.
4478      </para>
4479
4480      <para>
4481      The fourth and fifth arguments are the number of output and
4482      input substreams, respectively, of this device (a substream is
4483      the equivalent of a MIDI port).
4484      </para>
4485
4486      <para>
4487      Set the <structfield>info_flags</structfield> field to specify
4488      the capabilities of the device.
4489      Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4490      at least one output port,
4491      <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4492      least one input port,
4493      and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4494      can handle output and input at the same time.
4495      </para>
4496
4497      <para>
4498      After the rawmidi device is created, you need to set the
4499      operators (callbacks) for each substream.  There are helper
4500      functions to set the operators for all the substreams of a device:
4501        <informalexample>
4502          <programlisting>
4503<![CDATA[
4504  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4505  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4506]]>
4507          </programlisting>
4508        </informalexample>
4509      </para>
4510
4511      <para>
4512      The operators are usually defined like this:
4513        <informalexample>
4514          <programlisting>
4515<![CDATA[
4516  static struct snd_rawmidi_ops snd_mymidi_output_ops = {
4517          .open =    snd_mymidi_output_open,
4518          .close =   snd_mymidi_output_close,
4519          .trigger = snd_mymidi_output_trigger,
4520  };
4521]]>
4522          </programlisting>
4523        </informalexample>
4524      These callbacks are explained in the <link
4525      linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4526      section.
4527      </para>
4528
4529      <para>
4530      If there are more than one substream, you should give a
4531      unique name to each of them:
4532        <informalexample>
4533          <programlisting>
4534<![CDATA[
4535  struct snd_rawmidi_substream *substream;
4536  list_for_each_entry(substream,
4537                      &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
4538                      list {
4539          sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4540  }
4541  /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4542]]>
4543          </programlisting>
4544        </informalexample>
4545      </para>
4546    </section>
4547
4548    <section id="rawmidi-interface-callbacks">
4549      <title>Callbacks</title>
4550
4551      <para>
4552      In all the callbacks, the private data that you've set for the
4553      rawmidi device can be accessed as
4554      substream-&gt;rmidi-&gt;private_data.
4555      <!-- <code> isn't available before DocBook 4.3 -->
4556      </para>
4557
4558      <para>
4559      If there is more than one port, your callbacks can determine the
4560      port index from the struct snd_rawmidi_substream data passed to each
4561      callback:
4562        <informalexample>
4563          <programlisting>
4564<![CDATA[
4565  struct snd_rawmidi_substream *substream;
4566  int index = substream->number;
4567]]>
4568          </programlisting>
4569        </informalexample>
4570      </para>
4571
4572      <section id="rawmidi-interface-op-open">
4573      <title><function>open</function> callback</title>
4574
4575        <informalexample>
4576          <programlisting>
4577<![CDATA[
4578  static int snd_xxx_open(struct snd_rawmidi_substream *substream);
4579]]>
4580          </programlisting>
4581        </informalexample>
4582
4583        <para>
4584        This is called when a substream is opened.
4585        You can initialize the hardware here, but you shouldn't
4586        start transmitting/receiving data yet.
4587        </para>
4588      </section>
4589
4590      <section id="rawmidi-interface-op-close">
4591      <title><function>close</function> callback</title>
4592
4593        <informalexample>
4594          <programlisting>
4595<![CDATA[
4596  static int snd_xxx_close(struct snd_rawmidi_substream *substream);
4597]]>
4598          </programlisting>
4599        </informalexample>
4600
4601        <para>
4602        Guess what.
4603        </para>
4604
4605        <para>
4606        The <function>open</function> and <function>close</function>
4607        callbacks of a rawmidi device are serialized with a mutex,
4608        and can sleep.
4609        </para>
4610      </section>
4611
4612      <section id="rawmidi-interface-op-trigger-out">
4613      <title><function>trigger</function> callback for output
4614      substreams</title>
4615
4616        <informalexample>
4617          <programlisting>
4618<![CDATA[
4619  static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
4620]]>
4621          </programlisting>
4622        </informalexample>
4623
4624        <para>
4625        This is called with a nonzero <parameter>up</parameter>
4626        parameter when there is some data in the substream buffer that
4627        must be transmitted.
4628        </para>
4629
4630        <para>
4631        To read data from the buffer, call
4632        <function>snd_rawmidi_transmit_peek</function>.  It will
4633        return the number of bytes that have been read; this will be
4634        less than the number of bytes requested when there are no more
4635        data in the buffer.
4636        After the data have been transmitted successfully, call
4637        <function>snd_rawmidi_transmit_ack</function> to remove the
4638        data from the substream buffer:
4639          <informalexample>
4640            <programlisting>
4641<![CDATA[
4642  unsigned char data;
4643  while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
4644          if (snd_mychip_try_to_transmit(data))
4645                  snd_rawmidi_transmit_ack(substream, 1);
4646          else
4647                  break; /* hardware FIFO full */
4648  }
4649]]>
4650            </programlisting>
4651          </informalexample>
4652        </para>
4653
4654        <para>
4655        If you know beforehand that the hardware will accept data, you
4656        can use the <function>snd_rawmidi_transmit</function> function
4657        which reads some data and removes them from the buffer at once:
4658          <informalexample>
4659            <programlisting>
4660<![CDATA[
4661  while (snd_mychip_transmit_possible()) {
4662          unsigned char data;
4663          if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4664                  break; /* no more data */
4665          snd_mychip_transmit(data);
4666  }
4667]]>
4668            </programlisting>
4669          </informalexample>
4670        </para>
4671
4672        <para>
4673        If you know beforehand how many bytes you can accept, you can
4674        use a buffer size greater than one with the
4675        <function>snd_rawmidi_transmit*</function> functions.
4676        </para>
4677
4678        <para>
4679        The <function>trigger</function> callback must not sleep.  If
4680        the hardware FIFO is full before the substream buffer has been
4681        emptied, you have to continue transmitting data later, either
4682        in an interrupt handler, or with a timer if the hardware
4683        doesn't have a MIDI transmit interrupt.
4684        </para>
4685
4686        <para>
4687        The <function>trigger</function> callback is called with a
4688        zero <parameter>up</parameter> parameter when the transmission
4689        of data should be aborted.
4690        </para>
4691      </section>
4692
4693      <section id="rawmidi-interface-op-trigger-in">
4694      <title><function>trigger</function> callback for input
4695      substreams</title>
4696
4697        <informalexample>
4698          <programlisting>
4699<![CDATA[
4700  static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
4701]]>
4702          </programlisting>
4703        </informalexample>
4704
4705        <para>
4706        This is called with a nonzero <parameter>up</parameter>
4707        parameter to enable receiving data, or with a zero
4708        <parameter>up</parameter> parameter do disable receiving data.
4709        </para>
4710
4711        <para>
4712        The <function>trigger</function> callback must not sleep; the
4713        actual reading of data from the device is usually done in an
4714        interrupt handler.
4715        </para>
4716
4717        <para>
4718        When data reception is enabled, your interrupt handler should
4719        call <function>snd_rawmidi_receive</function> for all received
4720        data:
4721          <informalexample>
4722            <programlisting>
4723<![CDATA[
4724  void snd_mychip_midi_interrupt(...)
4725  {
4726          while (mychip_midi_available()) {
4727                  unsigned char data;
4728                  data = mychip_midi_read();
4729                  snd_rawmidi_receive(substream, &data, 1);
4730          }
4731  }
4732]]>
4733            </programlisting>
4734          </informalexample>
4735        </para>
4736      </section>
4737
4738      <section id="rawmidi-interface-op-drain">
4739      <title><function>drain</function> callback</title>
4740
4741        <informalexample>
4742          <programlisting>
4743<![CDATA[
4744  static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
4745]]>
4746          </programlisting>
4747        </informalexample>
4748
4749        <para>
4750        This is only used with output substreams.  This function should wait
4751        until all data read from the substream buffer have been transmitted.
4752        This ensures that the device can be closed and the driver unloaded
4753        without losing data.
4754        </para>
4755
4756        <para>
4757        This callback is optional. If you do not set
4758        <structfield>drain</structfield> in the struct snd_rawmidi_ops
4759        structure, ALSA will simply wait for 50&nbsp;milliseconds
4760        instead.
4761        </para>
4762      </section>
4763    </section>
4764
4765  </chapter>
4766
4767
4768<!-- ****************************************************** -->
4769<!-- Miscellaneous Devices  -->
4770<!-- ****************************************************** -->
4771  <chapter id="misc-devices">
4772    <title>Miscellaneous Devices</title>
4773
4774    <section id="misc-devices-opl3">
4775      <title>FM OPL3</title>
4776      <para>
4777        The FM OPL3 is still used in many chips (mainly for backward
4778      compatibility). ALSA has a nice OPL3 FM control layer, too. The
4779      OPL3 API is defined in
4780      <filename>&lt;sound/opl3.h&gt;</filename>. 
4781      </para>
4782
4783      <para>
4784        FM registers can be directly accessed through the direct-FM API,
4785      defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4786      ALSA native mode, FM registers are accessed through
4787      the Hardware-Dependant Device direct-FM extension API, whereas in
4788      OSS compatible mode, FM registers can be accessed with the OSS
4789      direct-FM compatible API in <filename>/dev/dmfmX</filename> device. 
4790      </para>
4791
4792      <para>
4793        To create the OPL3 component, you have two functions to
4794        call. The first one is a constructor for the <type>opl3_t</type>
4795        instance. 
4796
4797        <informalexample>
4798          <programlisting>
4799<![CDATA[
4800  struct snd_opl3 *opl3;
4801  snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4802                  integrated, &opl3);
4803]]>
4804          </programlisting>
4805        </informalexample>
4806      </para>
4807
4808      <para>
4809        The first argument is the card pointer, the second one is the
4810      left port address, and the third is the right port address. In
4811      most cases, the right port is placed at the left port + 2. 
4812      </para>
4813
4814      <para>
4815        The fourth argument is the hardware type.
4816      </para>
4817
4818      <para>
4819        When the left and right ports have been already allocated by
4820      the card driver, pass non-zero to the fifth argument
4821      (<parameter>integrated</parameter>). Otherwise, the opl3 module will
4822      allocate the specified ports by itself. 
4823      </para>
4824
4825      <para>
4826        When the accessing the hardware requires special method
4827        instead of the standard I/O access, you can create opl3 instance
4828        separately with <function>snd_opl3_new()</function>.
4829
4830        <informalexample>
4831          <programlisting>
4832<![CDATA[
4833  struct snd_opl3 *opl3;
4834  snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4835]]>
4836          </programlisting>
4837        </informalexample>
4838      </para>
4839
4840      <para>
4841	Then set <structfield>command</structfield>,
4842	<structfield>private_data</structfield> and
4843	<structfield>private_free</structfield> for the private
4844	access function, the private data and the destructor.
4845	The l_port and r_port are not necessarily set.  Only the
4846	command must be set properly.  You can retrieve the data
4847	from the opl3-&gt;private_data field.
4848      </para>
4849
4850      <para>
4851	After creating the opl3 instance via <function>snd_opl3_new()</function>,
4852	call <function>snd_opl3_init()</function> to initialize the chip to the
4853	proper state. Note that <function>snd_opl3_create()</function> always
4854	calls it internally.
4855      </para>
4856
4857      <para>
4858        If the opl3 instance is created successfully, then create a
4859        hwdep device for this opl3. 
4860
4861        <informalexample>
4862          <programlisting>
4863<![CDATA[
4864  struct snd_hwdep *opl3hwdep;
4865  snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4866]]>
4867          </programlisting>
4868        </informalexample>
4869      </para>
4870
4871      <para>
4872        The first argument is the <type>opl3_t</type> instance you
4873      created, and the second is the index number, usually 0. 
4874      </para>
4875
4876      <para>
4877        The third argument is the index-offset for the sequencer
4878      client assigned to the OPL3 port. When there is an MPU401-UART,
4879      give 1 for here (UART always takes 0). 
4880      </para>
4881    </section>
4882
4883    <section id="misc-devices-hardware-dependent">
4884      <title>Hardware-Dependent Devices</title>
4885      <para>
4886        Some chips need user-space access for special
4887      controls or for loading the micro code. In such a case, you can
4888      create a hwdep (hardware-dependent) device. The hwdep API is
4889      defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4890      find examples in opl3 driver or
4891      <filename>isa/sb/sb16_csp.c</filename>. 
4892      </para>
4893
4894      <para>
4895        The creation of the <type>hwdep</type> instance is done via
4896        <function>snd_hwdep_new()</function>. 
4897
4898        <informalexample>
4899          <programlisting>
4900<![CDATA[
4901  struct snd_hwdep *hw;
4902  snd_hwdep_new(card, "My HWDEP", 0, &hw);
4903]]>
4904          </programlisting>
4905        </informalexample>
4906
4907        where the third argument is the index number.
4908      </para>
4909
4910      <para>
4911        You can then pass any pointer value to the
4912        <parameter>private_data</parameter>.
4913        If you assign a private data, you should define the
4914        destructor, too. The destructor function is set in
4915        the <structfield>private_free</structfield> field.  
4916
4917        <informalexample>
4918          <programlisting>
4919<![CDATA[
4920  struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
4921  hw->private_data = p;
4922  hw->private_free = mydata_free;
4923]]>
4924          </programlisting>
4925        </informalexample>
4926
4927        and the implementation of the destructor would be:
4928
4929        <informalexample>
4930          <programlisting>
4931<![CDATA[
4932  static void mydata_free(struct snd_hwdep *hw)
4933  {
4934          struct mydata *p = hw->private_data;
4935          kfree(p);
4936  }
4937]]>
4938          </programlisting>
4939        </informalexample>
4940      </para>
4941
4942      <para>
4943        The arbitrary file operations can be defined for this
4944        instance. The file operators are defined in
4945        the <parameter>ops</parameter> table. For example, assume that
4946        this chip needs an ioctl. 
4947
4948        <informalexample>
4949          <programlisting>
4950<![CDATA[
4951  hw->ops.open = mydata_open;
4952  hw->ops.ioctl = mydata_ioctl;
4953  hw->ops.release = mydata_release;
4954]]>
4955          </programlisting>
4956        </informalexample>
4957
4958        And implement the callback functions as you like.
4959      </para>
4960    </section>
4961
4962    <section id="misc-devices-IEC958">
4963      <title>IEC958 (S/PDIF)</title>
4964      <para>
4965        Usually the controls for IEC958 devices are implemented via
4966      the control interface. There is a macro to compose a name string for
4967      IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4968      defined in <filename>&lt;include/asound.h&gt;</filename>.  
4969      </para>
4970
4971      <para>
4972        There are some standard controls for IEC958 status bits. These
4973      controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4974      and the size of element is fixed as 4 bytes array
4975      (value.iec958.status[x]). For the <structfield>info</structfield>
4976      callback, you don't specify 
4977      the value field for this type (the count field must be set,
4978      though). 
4979      </para>
4980
4981      <para>
4982        <quote>IEC958 Playback Con Mask</quote> is used to return the
4983      bit-mask for the IEC958 status bits of consumer mode. Similarly,
4984      <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4985      professional mode. They are read-only controls, and are defined
4986      as MIXER controls (iface =
4987      <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).  
4988      </para>
4989
4990      <para>
4991        Meanwhile, <quote>IEC958 Playback Default</quote> control is
4992      defined for getting and setting the current default IEC958
4993      bits. Note that this one is usually defined as a PCM control
4994      (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4995      although in some places it's defined as a MIXER control. 
4996      </para>
4997
4998      <para>
4999        In addition, you can define the control switches to
5000      enable/disable or to set the raw bit mode. The implementation
5001      will depend on the chip, but the control should be named as
5002      <quote>IEC958 xxx</quote>, preferably using
5003      the <function>SNDRV_CTL_NAME_IEC958()</function> macro. 
5004      </para>
5005
5006      <para>
5007        You can find several cases, for example,
5008      <filename>pci/emu10k1</filename>,
5009      <filename>pci/ice1712</filename>, or
5010      <filename>pci/cmipci.c</filename>.  
5011      </para>
5012    </section>
5013
5014  </chapter>
5015
5016
5017<!-- ****************************************************** -->
5018<!-- Buffer and Memory Management  -->
5019<!-- ****************************************************** -->
5020  <chapter id="buffer-and-memory">
5021    <title>Buffer and Memory Management</title>
5022
5023    <section id="buffer-and-memory-buffer-types">
5024      <title>Buffer Types</title>
5025      <para>
5026        ALSA provides several different buffer allocation functions
5027      depending on the bus and the architecture. All these have a
5028      consistent API. The allocation of physically-contiguous pages is
5029      done via 
5030      <function>snd_malloc_xxx_pages()</function> function, where xxx
5031      is the bus type. 
5032      </para>
5033
5034      <para>
5035        The allocation of pages with fallback is
5036      <function>snd_malloc_xxx_pages_fallback()</function>. This
5037      function tries to allocate the specified pages but if the pages
5038      are not available, it tries to reduce the page sizes until
5039      enough space is found.
5040      </para>
5041
5042      <para>
5043      The release the pages, call
5044      <function>snd_free_xxx_pages()</function> function. 
5045      </para>
5046
5047      <para>
5048      Usually, ALSA drivers try to allocate and reserve
5049       a large contiguous physical space
5050       at the time the module is loaded for the later use.
5051       This is called <quote>pre-allocation</quote>.
5052       As already written, you can call the following function at 
5053       pcm instance construction time (in the case of PCI bus). 
5054
5055        <informalexample>
5056          <programlisting>
5057<![CDATA[
5058  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
5059                                        snd_dma_pci_data(pci), size, max);
5060]]>
5061          </programlisting>
5062        </informalexample>
5063
5064        where <parameter>size</parameter> is the byte size to be
5065      pre-allocated and the <parameter>max</parameter> is the maximum
5066      size to be changed via the <filename>prealloc</filename> proc file.
5067      The allocator will try to get an area as large as possible
5068      within the given size. 
5069      </para>
5070
5071      <para>
5072      The second argument (type) and the third argument (device pointer)
5073      are dependent on the bus.
5074      In the case of the ISA bus, pass <function>snd_dma_isa_data()</function>
5075      as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
5076      For the continuous buffer unrelated to the bus can be pre-allocated
5077      with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
5078      <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
5079      where <constant>GFP_KERNEL</constant> is the kernel allocation flag to
5080      use.
5081      For the PCI scatter-gather buffers, use
5082      <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
5083      <function>snd_dma_pci_data(pci)</function>
5084      (see the 
5085          <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5086          </citetitle></link> section).
5087      </para>
5088
5089      <para>
5090        Once the buffer is pre-allocated, you can use the
5091        allocator in the <structfield>hw_params</structfield> callback: 
5092
5093        <informalexample>
5094          <programlisting>
5095<![CDATA[
5096  snd_pcm_lib_malloc_pages(substream, size);
5097]]>
5098          </programlisting>
5099        </informalexample>
5100
5101        Note that you have to pre-allocate to use this function.
5102      </para>
5103    </section>
5104
5105    <section id="buffer-and-memory-external-hardware">
5106      <title>External Hardware Buffers</title>
5107      <para>
5108        Some chips have their own hardware buffers and the DMA
5109      transfer from the host memory is not available. In such a case,
5110      you need to either 1) copy/set the audio data directly to the
5111      external hardware buffer, or 2) make an intermediate buffer and
5112      copy/set the data from it to the external hardware buffer in
5113      interrupts (or in tasklets, preferably).
5114      </para>
5115
5116      <para>
5117        The first case works fine if the external hardware buffer is large
5118      enough.  This method doesn't need any extra buffers and thus is
5119      more effective. You need to define the
5120      <structfield>copy</structfield> and
5121      <structfield>silence</structfield> callbacks for 
5122      the data transfer. However, there is a drawback: it cannot
5123      be mmapped. The examples are GUS's GF1 PCM or emu8000's
5124      wavetable PCM. 
5125      </para>
5126
5127      <para>
5128        The second case allows for mmap on the buffer, although you have
5129      to handle an interrupt or a tasklet to transfer the data
5130      from the intermediate buffer to the hardware buffer. You can find an
5131      example in the vxpocket driver. 
5132      </para>
5133
5134      <para>
5135        Another case is when the chip uses a PCI memory-map
5136      region for the buffer instead of the host memory. In this case,
5137      mmap is available only on certain architectures like the Intel one.
5138      In non-mmap mode, the data cannot be transferred as in the normal
5139      way. Thus you need to define the <structfield>copy</structfield> and
5140      <structfield>silence</structfield> callbacks as well, 
5141      as in the cases above. The examples are found in
5142      <filename>rme32.c</filename> and <filename>rme96.c</filename>. 
5143      </para>
5144
5145      <para>
5146        The implementation of the <structfield>copy</structfield> and
5147        <structfield>silence</structfield> callbacks depends upon 
5148        whether the hardware supports interleaved or non-interleaved
5149        samples. The <structfield>copy</structfield> callback is
5150        defined like below, a bit 
5151        differently depending whether the direction is playback or
5152        capture: 
5153
5154        <informalexample>
5155          <programlisting>
5156<![CDATA[
5157  static int playback_copy(struct snd_pcm_substream *substream, int channel,
5158               snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5159  static int capture_copy(struct snd_pcm_substream *substream, int channel,
5160               snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5161]]>
5162          </programlisting>
5163        </informalexample>
5164      </para>
5165
5166      <para>
5167        In the case of interleaved samples, the second argument
5168      (<parameter>channel</parameter>) is not used. The third argument
5169      (<parameter>pos</parameter>) points the 
5170      current position offset in frames. 
5171      </para>
5172
5173      <para>
5174        The meaning of the fourth argument is different between
5175      playback and capture. For playback, it holds the source data
5176      pointer, and for capture, it's the destination data pointer. 
5177      </para>
5178
5179      <para>
5180        The last argument is the number of frames to be copied.
5181      </para>
5182
5183      <para>
5184        What you have to do in this callback is again different
5185        between playback and capture directions. In the
5186        playback case, you copy the given amount of data
5187        (<parameter>count</parameter>) at the specified pointer
5188        (<parameter>src</parameter>) to the specified offset
5189        (<parameter>pos</parameter>) on the hardware buffer. When
5190        coded like memcpy-like way, the copy would be like: 
5191
5192        <informalexample>
5193          <programlisting>
5194<![CDATA[
5195  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5196            frames_to_bytes(runtime, count));
5197]]>
5198          </programlisting>
5199        </informalexample>
5200      </para>
5201
5202      <para>
5203        For the capture direction, you copy the given amount of
5204        data (<parameter>count</parameter>) at the specified offset
5205        (<parameter>pos</parameter>) on the hardware buffer to the
5206        specified pointer (<parameter>dst</parameter>). 
5207
5208        <informalexample>
5209          <programlisting>
5210<![CDATA[
5211  my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5212            frames_to_bytes(runtime, count));
5213]]>
5214          </programlisting>
5215        </informalexample>
5216
5217        Note that both the position and the amount of data are given
5218      in frames. 
5219      </para>
5220
5221      <para>
5222        In the case of non-interleaved samples, the implementation
5223      will be a bit more complicated. 
5224      </para>
5225
5226      <para>
5227        You need to check the channel argument, and if it's -1, copy
5228      the whole channels. Otherwise, you have to copy only the
5229      specified channel. Please check
5230      <filename>isa/gus/gus_pcm.c</filename> as an example. 
5231      </para>
5232
5233      <para>
5234        The <structfield>silence</structfield> callback is also
5235        implemented in a similar way. 
5236
5237        <informalexample>
5238          <programlisting>
5239<![CDATA[
5240  static int silence(struct snd_pcm_substream *substream, int channel,
5241                     snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5242]]>
5243          </programlisting>
5244        </informalexample>
5245      </para>
5246
5247      <para>
5248        The meanings of arguments are the same as in the
5249      <structfield>copy</structfield> 
5250      callback, although there is no <parameter>src/dst</parameter>
5251      argument. In the case of interleaved samples, the channel
5252      argument has no meaning, as well as on
5253      <structfield>copy</structfield> callback.  
5254      </para>
5255
5256      <para>
5257        The role of <structfield>silence</structfield> callback is to
5258        set the given amount 
5259        (<parameter>count</parameter>) of silence data at the
5260        specified offset (<parameter>pos</parameter>) on the hardware
5261        buffer. Suppose that the data format is signed (that is, the
5262        silent-data is 0), and the implementation using a memset-like
5263        function would be like: 
5264
5265        <informalexample>
5266          <programlisting>
5267<![CDATA[
5268  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5269            frames_to_bytes(runtime, count));
5270]]>
5271          </programlisting>
5272        </informalexample>
5273      </para>
5274
5275      <para>
5276        In the case of non-interleaved samples, again, the
5277      implementation becomes a bit more complicated. See, for example,
5278      <filename>isa/gus/gus_pcm.c</filename>. 
5279      </para>
5280    </section>
5281
5282    <section id="buffer-and-memory-non-contiguous">
5283      <title>Non-Contiguous Buffers</title>
5284      <para>
5285        If your hardware supports the page table as in emu10k1 or the
5286      buffer descriptors as in via82xx, you can use the scatter-gather
5287      (SG) DMA. ALSA provides an interface for handling SG-buffers.
5288      The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>. 
5289      </para>
5290
5291      <para>
5292        For creating the SG-buffer handler, call
5293        <function>snd_pcm_lib_preallocate_pages()</function> or
5294        <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5295        with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5296	in the PCM constructor like other PCI pre-allocator.
5297        You need to pass <function>snd_dma_pci_data(pci)</function>,
5298        where pci is the struct <structname>pci_dev</structname> pointer
5299        of the chip as well.
5300        The <type>struct snd_sg_buf</type> instance is created as
5301        substream-&gt;dma_private. You can cast
5302        the pointer like: 
5303
5304        <informalexample>
5305          <programlisting>
5306<![CDATA[
5307  struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
5308]]>
5309          </programlisting>
5310        </informalexample>
5311      </para>
5312
5313      <para>
5314        Then call <function>snd_pcm_lib_malloc_pages()</function>
5315      in the <structfield>hw_params</structfield> callback
5316      as well as in the case of normal PCI buffer.
5317      The SG-buffer handler will allocate the non-contiguous kernel
5318      pages of the given size and map them onto the virtually contiguous
5319      memory.  The virtual pointer is addressed in runtime-&gt;dma_area.
5320      The physical address (runtime-&gt;dma_addr) is set to zero,
5321      because the buffer is physically non-contiguous.
5322      The physical address table is set up in sgbuf-&gt;table.
5323      You can get the physical address at a certain offset via
5324      <function>snd_pcm_sgbuf_get_addr()</function>. 
5325      </para>
5326
5327      <para>
5328        When a SG-handler is used, you need to set
5329      <function>snd_pcm_sgbuf_ops_page</function> as
5330      the <structfield>page</structfield> callback.
5331      (See <link linkend="pcm-interface-operators-page-callback">
5332      <citetitle>page callback section</citetitle></link>.)
5333      </para>
5334
5335      <para>
5336        To release the data, call
5337      <function>snd_pcm_lib_free_pages()</function> in the
5338      <structfield>hw_free</structfield> callback as usual.
5339      </para>
5340    </section>
5341
5342    <section id="buffer-and-memory-vmalloced">
5343      <title>Vmalloc'ed Buffers</title>
5344      <para>
5345        It's possible to use a buffer allocated via
5346      <function>vmalloc</function>, for example, for an intermediate
5347      buffer. Since the allocated pages are not contiguous, you need
5348      to set the <structfield>page</structfield> callback to obtain
5349      the physical address at every offset. 
5350      </para>
5351
5352      <para>
5353        The implementation of <structfield>page</structfield> callback
5354        would be like this: 
5355
5356        <informalexample>
5357          <programlisting>
5358<![CDATA[
5359  #include <linux/vmalloc.h>
5360
5361  /* get the physical page pointer on the given offset */
5362  static struct page *mychip_page(struct snd_pcm_substream *substream,
5363                                  unsigned long offset)
5364  {
5365          void *pageptr = substream->runtime->dma_area + offset;
5366          return vmalloc_to_page(pageptr);
5367  }
5368]]>
5369          </programlisting>
5370        </informalexample>
5371      </para>
5372    </section>
5373
5374  </chapter>
5375
5376
5377<!-- ****************************************************** -->
5378<!-- Proc Interface  -->
5379<!-- ****************************************************** -->
5380  <chapter id="proc-interface">
5381    <title>Proc Interface</title>
5382    <para>
5383      ALSA provides an easy interface for procfs. The proc files are
5384      very useful for debugging. I recommend you set up proc files if
5385      you write a driver and want to get a running status or register
5386      dumps. The API is found in
5387      <filename>&lt;sound/info.h&gt;</filename>. 
5388    </para>
5389
5390    <para>
5391      To create a proc file, call
5392      <function>snd_card_proc_new()</function>. 
5393
5394      <informalexample>
5395        <programlisting>
5396<![CDATA[
5397  struct snd_info_entry *entry;
5398  int err = snd_card_proc_new(card, "my-file", &entry);
5399]]>
5400        </programlisting>
5401      </informalexample>
5402
5403      where the second argument specifies the name of the proc file to be
5404    created. The above example will create a file
5405    <filename>my-file</filename> under the card directory,
5406    e.g. <filename>/proc/asound/card0/my-file</filename>. 
5407    </para>
5408
5409    <para>
5410    Like other components, the proc entry created via
5411    <function>snd_card_proc_new()</function> will be registered and
5412    released automatically in the card registration and release
5413    functions.
5414    </para>
5415
5416    <para>
5417      When the creation is successful, the function stores a new
5418    instance in the pointer given in the third argument.
5419    It is initialized as a text proc file for read only.  To use
5420    this proc file as a read-only text file as it is, set the read
5421    callback with a private data via 
5422     <function>snd_info_set_text_ops()</function>.
5423
5424      <informalexample>
5425        <programlisting>
5426<![CDATA[
5427  snd_info_set_text_ops(entry, chip, my_proc_read);
5428]]>
5429        </programlisting>
5430      </informalexample>
5431    
5432    where the second argument (<parameter>chip</parameter>) is the
5433    private data to be used in the callbacks. The third parameter
5434    specifies the read buffer size and the fourth
5435    (<parameter>my_proc_read</parameter>) is the callback function, which
5436    is defined like
5437
5438      <informalexample>
5439        <programlisting>
5440<![CDATA[
5441  static void my_proc_read(struct snd_info_entry *entry,
5442                           struct snd_info_buffer *buffer);
5443]]>
5444        </programlisting>
5445      </informalexample>
5446    
5447    </para>
5448
5449    <para>
5450    In the read callback, use <function>snd_iprintf()</function> for
5451    output strings, which works just like normal
5452    <function>printf()</function>.  For example,
5453
5454      <informalexample>
5455        <programlisting>
5456<![CDATA[
5457  static void my_proc_read(struct snd_info_entry *entry,
5458                           struct snd_info_buffer *buffer)
5459  {
5460          struct my_chip *chip = entry->private_data;
5461
5462          snd_iprintf(buffer, "This is my chip!\n");
5463          snd_iprintf(buffer, "Port = %ld\n", chip->port);
5464  }
5465]]>
5466        </programlisting>
5467      </informalexample>
5468    </para>
5469
5470    <para>
5471    The file permissions can be changed afterwards.  As default, it's
5472    set as read only for all users.  If you want to add write
5473    permission for the user (root as default), do as follows:
5474
5475      <informalexample>
5476        <programlisting>
5477<![CDATA[
5478 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5479]]>
5480        </programlisting>
5481      </informalexample>
5482
5483    and set the write buffer size and the callback
5484
5485      <informalexample>
5486        <programlisting>
5487<![CDATA[
5488  entry->c.text.write = my_proc_write;
5489]]>
5490        </programlisting>
5491      </informalexample>
5492    </para>
5493
5494    <para>
5495      For the write callback, you can use
5496    <function>snd_info_get_line()</function> to get a text line, and
5497    <function>snd_info_get_str()</function> to retrieve a string from
5498    the line. Some examples are found in
5499    <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5500    <filename>pcm_oss.c</filename>. 
5501    </para>
5502
5503    <para>
5504      For a raw-data proc-file, set the attributes as follows:
5505
5506      <informalexample>
5507        <programlisting>
5508<![CDATA[
5509  static struct snd_info_entry_ops my_file_io_ops = {
5510          .read = my_file_io_read,
5511  };
5512
5513  entry->content = SNDRV_INFO_CONTENT_DATA;
5514  entry->private_data = chip;
5515  entry->c.ops = &my_file_io_ops;
5516  entry->size = 4096;
5517  entry->mode = S_IFREG | S_IRUGO;
5518]]>
5519        </programlisting>
5520      </informalexample>
5521
5522      For the raw data, <structfield>size</structfield> field must be
5523      set properly.  This specifies the maximum size of the proc file access.
5524    </para>
5525
5526    <para>
5527      The read/write callbacks of raw mode are more direct than the text mode.
5528      You need to use a low-level I/O functions such as
5529      <function>copy_from/to_user()</function> to transfer the
5530      data.
5531
5532      <informalexample>
5533        <programlisting>
5534<![CDATA[
5535  static ssize_t my_file_io_read(struct snd_info_entry *entry,
5536                              void *file_private_data,
5537                              struct file *file,
5538                              char *buf,
5539                              size_t count,
5540                              loff_t pos)
5541  {
5542          if (copy_to_user(buf, local_data + pos, count))
5543                  return -EFAULT;
5544          return count;
5545  }
5546]]>
5547        </programlisting>
5548      </informalexample>
5549
5550      If the size of the info entry has been set up properly,
5551      <structfield>count</structfield> and <structfield>pos</structfield> are
5552      guaranteed to fit within 0 and the given size.
5553      You don't have to check the range in the callbacks unless any
5554      other condition is required.
5555
5556    </para>
5557
5558  </chapter>
5559
5560
5561<!-- ****************************************************** -->
5562<!-- Power Management  -->
5563<!-- ****************************************************** -->
5564  <chapter id="power-management">
5565    <title>Power Management</title>
5566    <para>
5567      If the chip is supposed to work with suspend/resume
5568      functions, you need to add power-management code to the
5569      driver. The additional code for power-management should be
5570      <function>ifdef</function>'ed with
5571      <constant>CONFIG_PM</constant>. 
5572    </para>
5573
5574	<para>
5575	If the driver <emphasis>fully</emphasis> supports suspend/resume
5576	that is, the device can be
5577	properly resumed to its state when suspend was called,
5578	you can set the <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5579	in the pcm info field.  Usually, this is possible when the
5580	registers of the chip can be safely saved and restored to
5581	RAM. If this is set, the trigger callback is called with
5582	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> after the resume
5583	callback completes. 
5584	</para>
5585
5586	<para>
5587	Even if the driver doesn't support PM fully but 
5588	partial suspend/resume is still possible, it's still worthy to
5589	implement suspend/resume callbacks. In such a case, applications
5590	would reset the status by calling
5591	<function>snd_pcm_prepare()</function> and restart the stream
5592	appropriately.  Hence, you can define suspend/resume callbacks
5593	below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5594	info flag to the PCM.
5595	</para>
5596	
5597	<para>
5598	Note that the trigger with SUSPEND can always be called when
5599	<function>snd_pcm_suspend_all</function> is called,
5600	regardless of the <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5601	The <constant>RESUME</constant> flag affects only the behavior
5602	of <function>snd_pcm_resume()</function>.
5603	(Thus, in theory,
5604	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5605	to be handled in the trigger callback when no
5606	<constant>SNDRV_PCM_INFO_RESUME</constant> flag is set.  But,
5607	it's better to keep it for compatibility reasons.)
5608	</para>
5609    <para>
5610      In the earlier version of ALSA drivers, a common
5611      power-management layer was provided, but it has been removed.
5612      The driver needs to define the suspend/resume hooks according to
5613      the bus the device is connected to.  In the case of PCI drivers, the
5614      callbacks look like below:
5615
5616      <informalexample>
5617        <programlisting>
5618<![CDATA[
5619  #ifdef CONFIG_PM
5620  static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
5621  {
5622          .... /* do things for suspend */
5623          return 0;
5624  }
5625  static int snd_my_resume(struct pci_dev *pci)
5626  {
5627          .... /* do things for suspend */
5628          return 0;
5629  }
5630  #endif
5631]]>
5632        </programlisting>
5633      </informalexample>
5634    </para>
5635
5636    <para>
5637      The scheme of the real suspend job is as follows.
5638
5639      <orderedlist>
5640        <listitem><para>Retrieve the card and the chip data.</para></listitem>
5641        <listitem><para>Call <function>snd_power_change_state()</function> with
5642	  <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5643	  power status.</para></listitem>
5644        <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5645	<listitem><para>If AC97 codecs are used, call
5646	<function>snd_ac97_suspend()</function> for each codec.</para></listitem>
5647        <listitem><para>Save the register values if necessary.</para></listitem>
5648        <listitem><para>Stop the hardware if necessary.</para></listitem>
5649        <listitem><para>Disable the PCI device by calling
5650	  <function>pci_disable_device()</function>.  Then, call
5651          <function>pci_save_state()</function> at last.</para></listitem>
5652      </orderedlist>
5653    </para>
5654
5655    <para>
5656      A typical code would be like:
5657
5658      <informalexample>
5659        <programlisting>
5660<![CDATA[
5661  static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
5662  {
5663          /* (1) */
5664          struct snd_card *card = pci_get_drvdata(pci);
5665          struct mychip *chip = card->private_data;
5666          /* (2) */
5667          snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
5668          /* (3) */
5669          snd_pcm_suspend_all(chip->pcm);
5670          /* (4) */
5671          snd_ac97_suspend(chip->ac97);
5672          /* (5) */
5673          snd_mychip_save_registers(chip);
5674          /* (6) */
5675          snd_mychip_stop_hardware(chip);
5676          /* (7) */
5677          pci_disable_device(pci);
5678          pci_save_state(pci);
5679          return 0;
5680  }
5681]]>
5682        </programlisting>
5683      </informalexample>
5684    </para>
5685
5686    <para>
5687    The scheme of the real resume job is as follows.
5688
5689    <orderedlist>
5690    <listitem><para>Retrieve the card and the chip data.</para></listitem>
5691    <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5692    	Then enable the pci device again by calling <function>pci_enable_device()</function>.
5693	Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
5694    <listitem><para>Re-initialize the chip.</para></listitem>
5695    <listitem><para>Restore the saved registers if necessary.</para></listitem>
5696    <listitem><para>Resume the mixer, e.g. calling
5697    <function>snd_ac97_resume()</function>.</para></listitem>
5698    <listitem><para>Restart the hardware (if any).</para></listitem>
5699    <listitem><para>Call <function>snd_power_change_state()</function> with
5700	<constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
5701    </orderedlist>
5702    </para>
5703
5704    <para>
5705    A typical code would be like:
5706
5707      <informalexample>
5708        <programlisting>
5709<![CDATA[
5710  static int mychip_resume(struct pci_dev *pci)
5711  {
5712          /* (1) */
5713          struct snd_card *card = pci_get_drvdata(pci);
5714          struct mychip *chip = card->private_data;
5715          /* (2) */
5716          pci_restore_state(pci);
5717          pci_enable_device(pci);
5718          pci_set_master(pci);
5719          /* (3) */
5720          snd_mychip_reinit_chip(chip);
5721          /* (4) */
5722          snd_mychip_restore_registers(chip);
5723          /* (5) */
5724          snd_ac97_resume(chip->ac97);
5725          /* (6) */
5726          snd_mychip_restart_chip(chip);
5727          /* (7) */
5728          snd_power_change_state(card, SNDRV_CTL_POWER_D0);
5729          return 0;
5730  }
5731]]>
5732        </programlisting>
5733      </informalexample>
5734    </para>
5735
5736    <para>
5737	As shown in the above, it's better to save registers after
5738	suspending the PCM operations via
5739	<function>snd_pcm_suspend_all()</function> or
5740	<function>snd_pcm_suspend()</function>.  It means that the PCM
5741	streams are already stoppped when the register snapshot is
5742	taken.  But, remember that you don't have to restart the PCM
5743	stream in the resume callback. It'll be restarted via 
5744	trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5745	when necessary.
5746    </para>
5747
5748    <para>
5749      OK, we have all callbacks now. Let's set them up. In the
5750      initialization of the card, make sure that you can get the chip
5751      data from the card instance, typically via
5752      <structfield>private_data</structfield> field, in case you
5753      created the chip data individually.
5754
5755      <informalexample>
5756        <programlisting>
5757<![CDATA[
5758  static int __devinit snd_mychip_probe(struct pci_dev *pci,
5759                               const struct pci_device_id *pci_id)
5760  {
5761          ....
5762          struct snd_card *card;
5763          struct mychip *chip;
5764          int err;
5765          ....
5766          err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
5767          ....
5768          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5769          ....
5770          card->private_data = chip;
5771          ....
5772  }
5773]]>
5774        </programlisting>
5775      </informalexample>
5776
5777	When you created the chip data with
5778	<function>snd_card_create()</function>, it's anyway accessible
5779	via <structfield>private_data</structfield> field.
5780
5781      <informalexample>
5782        <programlisting>
5783<![CDATA[
5784  static int __devinit snd_mychip_probe(struct pci_dev *pci,
5785                               const struct pci_device_id *pci_id)
5786  {
5787          ....
5788          struct snd_card *card;
5789          struct mychip *chip;
5790          int err;
5791          ....
5792          err = snd_card_create(index[dev], id[dev], THIS_MODULE,
5793                                sizeof(struct mychip), &card);
5794          ....
5795          chip = card->private_data;
5796          ....
5797  }
5798]]>
5799        </programlisting>
5800      </informalexample>
5801
5802    </para>
5803
5804    <para>
5805      If you need a space to save the registers, allocate the
5806	buffer for it here, too, since it would be fatal
5807    if you cannot allocate a memory in the suspend phase.
5808    The allocated buffer should be released in the corresponding
5809    destructor.
5810    </para>
5811
5812    <para>
5813      And next, set suspend/resume callbacks to the pci_driver.
5814
5815      <informalexample>
5816        <programlisting>
5817<![CDATA[
5818  static struct pci_driver driver = {
5819          .name = "My Chip",
5820          .id_table = snd_my_ids,
5821          .probe = snd_my_probe,
5822          .remove = __devexit_p(snd_my_remove),
5823  #ifdef CONFIG_PM
5824          .suspend = snd_my_suspend,
5825          .resume = snd_my_resume,
5826  #endif
5827  };
5828]]>
5829        </programlisting>
5830      </informalexample>
5831    </para>
5832
5833  </chapter>
5834
5835
5836<!-- ****************************************************** -->
5837<!-- Module Parameters  -->
5838<!-- ****************************************************** -->
5839  <chapter id="module-parameters">
5840    <title>Module Parameters</title>
5841    <para>
5842      There are standard module options for ALSA. At least, each
5843      module should have the <parameter>index</parameter>,
5844      <parameter>id</parameter> and <parameter>enable</parameter>
5845      options. 
5846    </para>
5847
5848    <para>
5849      If the module supports multiple cards (usually up to
5850      8 = <constant>SNDRV_CARDS</constant> cards), they should be
5851      arrays. The default initial values are defined already as
5852      constants for easier programming:
5853
5854      <informalexample>
5855        <programlisting>
5856<![CDATA[
5857  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5858  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5859  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5860]]>
5861        </programlisting>
5862      </informalexample>
5863    </para>
5864
5865    <para>
5866      If the module supports only a single card, they could be single
5867    variables, instead.  <parameter>enable</parameter> option is not
5868    always necessary in this case, but it would be better to have a
5869    dummy option for compatibility.
5870    </para>
5871
5872    <para>
5873      The module parameters must be declared with the standard
5874    <function>module_param()()</function>,
5875    <function>module_param_array()()</function> and
5876    <function>MODULE_PARM_DESC()</function> macros.
5877    </para>
5878
5879    <para>
5880      The typical coding would be like below:
5881
5882      <informalexample>
5883        <programlisting>
5884<![CDATA[
5885  #define CARD_NAME "My Chip"
5886
5887  module_param_array(index, int, NULL, 0444);
5888  MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5889  module_param_array(id, charp, NULL, 0444);
5890  MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5891  module_param_array(enable, bool, NULL, 0444);
5892  MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5893]]>
5894        </programlisting>
5895      </informalexample>
5896    </para>
5897
5898    <para>
5899      Also, don't forget to define the module description, classes,
5900      license and devices. Especially, the recent modprobe requires to
5901      define the module license as GPL, etc., otherwise the system is
5902      shown as <quote>tainted</quote>. 
5903
5904      <informalexample>
5905        <programlisting>
5906<![CDATA[
5907  MODULE_DESCRIPTION("My Chip");
5908  MODULE_LICENSE("GPL");
5909  MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5910]]>
5911        </programlisting>
5912      </informalexample>
5913    </para>
5914
5915  </chapter>
5916
5917
5918<!-- ****************************************************** -->
5919<!-- How To Put Your Driver  -->
5920<!-- ****************************************************** -->
5921  <chapter id="how-to-put-your-driver">
5922    <title>How To Put Your Driver Into ALSA Tree</title>
5923	<section>
5924	<title>General</title>
5925	<para>
5926	So far, you've learned how to write the driver codes.
5927	And you might have a question now: how to put my own
5928	driver into the ALSA driver tree?
5929	Here (finally :) the standard procedure is described briefly.
5930	</para>
5931
5932	<para>
5933	Suppose that you create a new PCI driver for the card
5934	<quote>xyz</quote>.  The card module name would be
5935	snd-xyz.  The new driver is usually put into the alsa-driver
5936	tree, <filename>alsa-driver/pci</filename> directory in
5937	the case of PCI cards.
5938	Then the driver is evaluated, audited and tested
5939	by developers and users.  After a certain time, the driver
5940	will go to the alsa-kernel tree (to the corresponding directory,
5941	such as <filename>alsa-kernel/pci</filename>) and eventually
5942 	will be integrated into the Linux 2.6 tree (the directory would be
5943	<filename>linux/sound/pci</filename>).
5944	</para>
5945
5946	<para>
5947	In the following sections, the driver code is supposed
5948	to be put into alsa-driver tree. The two cases are covered:
5949	a driver consisting of a single source file and one consisting
5950	of several source files.
5951	</para>
5952	</section>
5953
5954	<section>
5955	<title>Driver with A Single Source File</title>
5956	<para>
5957	<orderedlist>
5958	<listitem>
5959	<para>
5960	Modify alsa-driver/pci/Makefile
5961	</para>
5962
5963	<para>
5964	Suppose you have a file xyz.c.  Add the following
5965	two lines
5966      <informalexample>
5967        <programlisting>
5968<![CDATA[
5969  snd-xyz-objs := xyz.o
5970  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5971]]>
5972        </programlisting>
5973      </informalexample>
5974	</para>
5975	</listitem>
5976
5977	<listitem>
5978	<para>
5979	Create the Kconfig entry
5980	</para>
5981
5982	<para>
5983	Add the new entry of Kconfig for your xyz driver.
5984      <informalexample>
5985        <programlisting>
5986<![CDATA[
5987  config SND_XYZ
5988          tristate "Foobar XYZ"
5989          depends on SND
5990          select SND_PCM
5991          help
5992            Say Y here to include support for Foobar XYZ soundcard.
5993
5994            To compile this driver as a module, choose M here: the module
5995            will be called snd-xyz.
5996]]>
5997        </programlisting>
5998      </informalexample>
5999
6000	the line, select SND_PCM, specifies that the driver xyz supports
6001	PCM.  In addition to SND_PCM, the following components are
6002	supported for select command:
6003	SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
6004	SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
6005	Add the select command for each supported component.
6006	</para>
6007
6008	<para>
6009	Note that some selections imply the lowlevel selections.
6010	For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
6011	AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
6012	You don't need to give the lowlevel selections again.
6013	</para>
6014
6015	<para>
6016	For the details of Kconfig script, refer to the kbuild
6017	documentation.
6018	</para>
6019
6020	</listitem>
6021
6022	<listitem>
6023	<para>
6024	Run cvscompile script to re-generate the configure script and
6025	build the whole stuff again.
6026	</para>
6027	</listitem>
6028	</orderedlist>
6029	</para>
6030	</section>
6031
6032	<section>
6033	<title>Drivers with Several Source Files</title>
6034	<para>
6035	Suppose that the driver snd-xyz have several source files.
6036	They are located in the new subdirectory,
6037	pci/xyz.
6038
6039	<orderedlist>
6040	<listitem>
6041	<para>
6042	Add a new directory (<filename>xyz</filename>) in
6043	<filename>alsa-driver/pci/Makefile</filename> as below
6044
6045      <informalexample>
6046        <programlisting>
6047<![CDATA[
6048  obj-$(CONFIG_SND) += xyz/
6049]]>
6050        </programlisting>
6051      </informalexample>
6052	</para>
6053	</listitem>
6054
6055	<listitem>
6056	<para>
6057	Under the directory <filename>xyz</filename>, create a Makefile
6058
6059      <example>
6060	<title>Sample Makefile for a driver xyz</title>
6061        <programlisting>
6062<![CDATA[
6063  ifndef SND_TOPDIR
6064  SND_TOPDIR=../..
6065  endif
6066
6067  include $(SND_TOPDIR)/toplevel.config
6068  include $(SND_TOPDIR)/Makefile.conf
6069
6070  snd-xyz-objs := xyz.o abc.o def.o
6071
6072  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
6073
6074  include $(SND_TOPDIR)/Rules.make
6075]]>
6076        </programlisting>
6077      </example>
6078	</para>
6079	</listitem>
6080
6081	<listitem>
6082	<para>
6083	Create the Kconfig entry
6084	</para>
6085
6086	<para>
6087	This procedure is as same as in the last section.
6088	</para>
6089	</listitem>
6090
6091	<listitem>
6092	<para>
6093	Run cvscompile script to re-generate the configure script and
6094	build the whole stuff again.
6095	</para>
6096	</listitem>
6097	</orderedlist>
6098	</para>
6099	</section>
6100
6101  </chapter>
6102
6103<!-- ****************************************************** -->
6104<!-- Useful Functions  -->
6105<!-- ****************************************************** -->
6106  <chapter id="useful-functions">
6107    <title>Useful Functions</title>
6108
6109    <section id="useful-functions-snd-printk">
6110      <title><function>snd_printk()</function> and friends</title>
6111      <para>
6112        ALSA provides a verbose version of the
6113      <function>printk()</function> function. If a kernel config
6114      <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6115      function prints the given message together with the file name
6116      and the line of the caller. The <constant>KERN_XXX</constant>
6117      prefix is processed as 
6118      well as the original <function>printk()</function> does, so it's
6119      recommended to add this prefix, e.g. 
6120
6121        <informalexample>
6122          <programlisting>
6123<![CDATA[
6124  snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6125]]>
6126          </programlisting>
6127        </informalexample>
6128      </para>
6129
6130      <para>
6131        There are also <function>printk()</function>'s for
6132      debugging. <function>snd_printd()</function> can be used for
6133      general debugging purposes. If
6134      <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6135      compiled, and works just like
6136      <function>snd_printk()</function>. If the ALSA is compiled
6137      without the debugging flag, it's ignored. 
6138      </para>
6139
6140      <para>
6141        <function>snd_printdd()</function> is compiled in only when
6142      <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note
6143      that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default
6144      even if you configure the alsa-driver with
6145      <option>--with-debug=full</option> option. You need to give
6146      explicitly <option>--with-debug=detect</option> option instead. 
6147      </para>
6148    </section>
6149
6150    <section id="useful-functions-snd-bug">
6151      <title><function>snd_BUG()</function></title>
6152      <para>
6153        It shows the <computeroutput>BUG?</computeroutput> message and
6154      stack trace as well as <function>snd_BUG_ON</function> at the point.
6155      It's useful to show that a fatal error happens there. 
6156      </para>
6157      <para>
6158	 When no debug flag is set, this macro is ignored. 
6159      </para>
6160    </section>
6161
6162    <section id="useful-functions-snd-bug-on">
6163      <title><function>snd_BUG_ON()</function></title>
6164      <para>
6165        <function>snd_BUG_ON()</function> macro is similar with
6166	<function>WARN_ON()</function> macro. For example,  
6167
6168        <informalexample>
6169          <programlisting>
6170<![CDATA[
6171  snd_BUG_ON(!pointer);
6172]]>
6173          </programlisting>
6174        </informalexample>
6175
6176	or it can be used as the condition,
6177        <informalexample>
6178          <programlisting>
6179<![CDATA[
6180  if (snd_BUG_ON(non_zero_is_bug))
6181          return -EINVAL;
6182]]>
6183          </programlisting>
6184        </informalexample>
6185
6186      </para>
6187
6188      <para>
6189        The macro takes an conditional expression to evaluate.
6190	When <constant>CONFIG_SND_DEBUG</constant>, is set, the
6191	expression is actually evaluated. If it's non-zero, it shows
6192	the warning message such as
6193	<computeroutput>BUG? (xxx)</computeroutput>
6194	normally followed by stack trace.  It returns the evaluated
6195	value.
6196	When no <constant>CONFIG_SND_DEBUG</constant> is set, this
6197	macro always returns zero.
6198      </para>
6199
6200    </section>
6201
6202  </chapter>
6203
6204
6205<!-- ****************************************************** -->
6206<!-- Acknowledgments  -->
6207<!-- ****************************************************** -->
6208  <chapter id="acknowledgments">
6209    <title>Acknowledgments</title>
6210    <para>
6211      I would like to thank Phil Kerr for his help for improvement and
6212      corrections of this document. 
6213    </para>
6214    <para>
6215    Kevin Conder reformatted the original plain-text to the
6216    DocBook format.
6217    </para>
6218    <para>
6219    Giuliano Pochini corrected typos and contributed the example codes
6220    in the hardware constraints section.
6221    </para>
6222  </chapter>
6223</book>
6224