1/* crypto/ec/ec_mult.c */
2/*
3 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4 */
5/* ====================================================================
6 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58/* ====================================================================
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61 * and contributed to the OpenSSL project.
62 */
63
64#include <string.h>
65
66#include <openssl/err.h>
67
68#include "ec_lcl.h"
69
70
71/*
72 * This file implements the wNAF-based interleaving multi-exponentation method
73 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74 * for multiplication with precomputation, we use wNAF splitting
75 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76 */
77
78
79
80
81/* structure for precomputed multiples of the generator */
82typedef struct ec_pre_comp_st {
83	const EC_GROUP *group; /* parent EC_GROUP object */
84	size_t blocksize;      /* block size for wNAF splitting */
85	size_t numblocks;      /* max. number of blocks for which we have precomputation */
86	size_t w;              /* window size */
87	EC_POINT **points;     /* array with pre-calculated multiples of generator:
88	                        * 'num' pointers to EC_POINT objects followed by a NULL */
89	size_t num;            /* numblocks * 2^(w-1) */
90	int references;
91} EC_PRE_COMP;
92
93/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
94static void *ec_pre_comp_dup(void *);
95static void ec_pre_comp_free(void *);
96static void ec_pre_comp_clear_free(void *);
97
98static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
99	{
100	EC_PRE_COMP *ret = NULL;
101
102	if (!group)
103		return NULL;
104
105	ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
106	if (!ret)
107		return ret;
108	ret->group = group;
109	ret->blocksize = 8; /* default */
110	ret->numblocks = 0;
111	ret->w = 4; /* default */
112	ret->points = NULL;
113	ret->num = 0;
114	ret->references = 1;
115	return ret;
116	}
117
118static void *ec_pre_comp_dup(void *src_)
119	{
120	EC_PRE_COMP *src = src_;
121
122	/* no need to actually copy, these objects never change! */
123
124	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
125
126	return src_;
127	}
128
129static void ec_pre_comp_free(void *pre_)
130	{
131	int i;
132	EC_PRE_COMP *pre = pre_;
133
134	if (!pre)
135		return;
136
137	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
138	if (i > 0)
139		return;
140
141	if (pre->points)
142		{
143		EC_POINT **p;
144
145		for (p = pre->points; *p != NULL; p++)
146			EC_POINT_free(*p);
147		OPENSSL_free(pre->points);
148		}
149	OPENSSL_free(pre);
150	}
151
152static void ec_pre_comp_clear_free(void *pre_)
153	{
154	int i;
155	EC_PRE_COMP *pre = pre_;
156
157	if (!pre)
158		return;
159
160	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
161	if (i > 0)
162		return;
163
164	if (pre->points)
165		{
166		EC_POINT **p;
167
168		for (p = pre->points; *p != NULL; p++)
169			EC_POINT_clear_free(*p);
170		OPENSSL_cleanse(pre->points, sizeof pre->points);
171		OPENSSL_free(pre->points);
172		}
173	OPENSSL_cleanse(pre, sizeof pre);
174	OPENSSL_free(pre);
175	}
176
177
178
179
180/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
181 * This is an array  r[]  of values that are either zero or odd with an
182 * absolute value less than  2^w  satisfying
183 *     scalar = \sum_j r[j]*2^j
184 * where at most one of any  w+1  consecutive digits is non-zero
185 * with the exception that the most significant digit may be only
186 * w-1 zeros away from that next non-zero digit.
187 */
188static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
189	{
190	int window_val;
191	int ok = 0;
192	signed char *r = NULL;
193	int sign = 1;
194	int bit, next_bit, mask;
195	size_t len = 0, j;
196
197	if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
198		{
199		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
200		goto err;
201		}
202	bit = 1 << w; /* at most 128 */
203	next_bit = bit << 1; /* at most 256 */
204	mask = next_bit - 1; /* at most 255 */
205
206	if (BN_is_negative(scalar))
207		{
208		sign = -1;
209		}
210
211	len = BN_num_bits(scalar);
212	r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
213	                              * (*ret_len will be set to the actual length, i.e. at most
214	                              * BN_num_bits(scalar) + 1) */
215	if (r == NULL) goto err;
216
217	if (scalar->d == NULL || scalar->top == 0)
218		{
219		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
220		goto err;
221		}
222	window_val = scalar->d[0] & mask;
223	j = 0;
224	while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
225		{
226		int digit = 0;
227
228		/* 0 <= window_val <= 2^(w+1) */
229
230		if (window_val & 1)
231			{
232			/* 0 < window_val < 2^(w+1) */
233
234			if (window_val & bit)
235				{
236				digit = window_val - next_bit; /* -2^w < digit < 0 */
237
238#if 1 /* modified wNAF */
239				if (j + w + 1 >= len)
240					{
241					/* special case for generating modified wNAFs:
242					 * no new bits will be added into window_val,
243					 * so using a positive digit here will decrease
244					 * the total length of the representation */
245
246					digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
247					}
248#endif
249				}
250			else
251				{
252				digit = window_val; /* 0 < digit < 2^w */
253				}
254
255			if (digit <= -bit || digit >= bit || !(digit & 1))
256				{
257				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
258				goto err;
259				}
260
261			window_val -= digit;
262
263			/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
264			 * for modified window NAFs, it may also be 2^w
265			 */
266			if (window_val != 0 && window_val != next_bit && window_val != bit)
267				{
268				ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
269				goto err;
270				}
271			}
272
273		r[j++] = sign * digit;
274
275		window_val >>= 1;
276		window_val += bit * BN_is_bit_set(scalar, j + w);
277
278		if (window_val > next_bit)
279			{
280			ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
281			goto err;
282			}
283		}
284
285	if (j > len + 1)
286		{
287		ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
288		goto err;
289		}
290	len = j;
291	ok = 1;
292
293 err:
294	if (!ok)
295		{
296		OPENSSL_free(r);
297		r = NULL;
298		}
299	if (ok)
300		*ret_len = len;
301	return r;
302	}
303
304
305/* TODO: table should be optimised for the wNAF-based implementation,
306 *       sometimes smaller windows will give better performance
307 *       (thus the boundaries should be increased)
308 */
309#define EC_window_bits_for_scalar_size(b) \
310		((size_t) \
311		 ((b) >= 2000 ? 6 : \
312		  (b) >=  800 ? 5 : \
313		  (b) >=  300 ? 4 : \
314		  (b) >=   70 ? 3 : \
315		  (b) >=   20 ? 2 : \
316		  1))
317
318/* Compute
319 *      \sum scalars[i]*points[i],
320 * also including
321 *      scalar*generator
322 * in the addition if scalar != NULL
323 */
324int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
325	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
326	{
327	BN_CTX *new_ctx = NULL;
328	const EC_POINT *generator = NULL;
329	EC_POINT *tmp = NULL;
330	size_t totalnum;
331	size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
332	size_t pre_points_per_block = 0;
333	size_t i, j;
334	int k;
335	int r_is_inverted = 0;
336	int r_is_at_infinity = 1;
337	size_t *wsize = NULL; /* individual window sizes */
338	signed char **wNAF = NULL; /* individual wNAFs */
339	size_t *wNAF_len = NULL;
340	size_t max_len = 0;
341	size_t num_val;
342	EC_POINT **val = NULL; /* precomputation */
343	EC_POINT **v;
344	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
345	const EC_PRE_COMP *pre_comp = NULL;
346	int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
347	                     * i.e. precomputation is not available */
348	int ret = 0;
349
350	if (group->meth != r->meth)
351		{
352		ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
353		return 0;
354		}
355
356	if ((scalar == NULL) && (num == 0))
357		{
358		return EC_POINT_set_to_infinity(group, r);
359		}
360
361	for (i = 0; i < num; i++)
362		{
363		if (group->meth != points[i]->meth)
364			{
365			ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
366			return 0;
367			}
368		}
369
370	if (ctx == NULL)
371		{
372		ctx = new_ctx = BN_CTX_new();
373		if (ctx == NULL)
374			goto err;
375		}
376
377	if (scalar != NULL)
378		{
379		generator = EC_GROUP_get0_generator(group);
380		if (generator == NULL)
381			{
382			ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
383			goto err;
384			}
385
386		/* look if we can use precomputed multiples of generator */
387
388		pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
389
390		if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
391			{
392			blocksize = pre_comp->blocksize;
393
394			/* determine maximum number of blocks that wNAF splitting may yield
395			 * (NB: maximum wNAF length is bit length plus one) */
396			numblocks = (BN_num_bits(scalar) / blocksize) + 1;
397
398			/* we cannot use more blocks than we have precomputation for */
399			if (numblocks > pre_comp->numblocks)
400				numblocks = pre_comp->numblocks;
401
402			pre_points_per_block = 1u << (pre_comp->w - 1);
403
404			/* check that pre_comp looks sane */
405			if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
406				{
407				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
408				goto err;
409				}
410			}
411		else
412			{
413			/* can't use precomputation */
414			pre_comp = NULL;
415			numblocks = 1;
416			num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
417			}
418		}
419
420	totalnum = num + numblocks;
421
422	wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
423	wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
424	wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
425	val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
426
427	if (!wsize || !wNAF_len || !wNAF || !val_sub)
428		goto err;
429
430	wNAF[0] = NULL;	/* preliminary pivot */
431
432	/* num_val will be the total number of temporarily precomputed points */
433	num_val = 0;
434
435	for (i = 0; i < num + num_scalar; i++)
436		{
437		size_t bits;
438
439		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
440		wsize[i] = EC_window_bits_for_scalar_size(bits);
441		num_val += 1u << (wsize[i] - 1);
442		wNAF[i + 1] = NULL; /* make sure we always have a pivot */
443		wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
444		if (wNAF[i] == NULL)
445			goto err;
446		if (wNAF_len[i] > max_len)
447			max_len = wNAF_len[i];
448		}
449
450	if (numblocks)
451		{
452		/* we go here iff scalar != NULL */
453
454		if (pre_comp == NULL)
455			{
456			if (num_scalar != 1)
457				{
458				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
459				goto err;
460				}
461			/* we have already generated a wNAF for 'scalar' */
462			}
463		else
464			{
465			signed char *tmp_wNAF = NULL;
466			size_t tmp_len = 0;
467
468			if (num_scalar != 0)
469				{
470				ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
471				goto err;
472				}
473
474			/* use the window size for which we have precomputation */
475			wsize[num] = pre_comp->w;
476			tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
477			if (!tmp_wNAF)
478				goto err;
479
480			if (tmp_len <= max_len)
481				{
482				/* One of the other wNAFs is at least as long
483				 * as the wNAF belonging to the generator,
484				 * so wNAF splitting will not buy us anything. */
485
486				numblocks = 1;
487				totalnum = num + 1; /* don't use wNAF splitting */
488				wNAF[num] = tmp_wNAF;
489				wNAF[num + 1] = NULL;
490				wNAF_len[num] = tmp_len;
491				if (tmp_len > max_len)
492					max_len = tmp_len;
493				/* pre_comp->points starts with the points that we need here: */
494				val_sub[num] = pre_comp->points;
495				}
496			else
497				{
498				/* don't include tmp_wNAF directly into wNAF array
499				 * - use wNAF splitting and include the blocks */
500
501				signed char *pp;
502				EC_POINT **tmp_points;
503
504				if (tmp_len < numblocks * blocksize)
505					{
506					/* possibly we can do with fewer blocks than estimated */
507					numblocks = (tmp_len + blocksize - 1) / blocksize;
508					if (numblocks > pre_comp->numblocks)
509						{
510						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
511						goto err;
512						}
513					totalnum = num + numblocks;
514					}
515
516				/* split wNAF in 'numblocks' parts */
517				pp = tmp_wNAF;
518				tmp_points = pre_comp->points;
519
520				for (i = num; i < totalnum; i++)
521					{
522					if (i < totalnum - 1)
523						{
524						wNAF_len[i] = blocksize;
525						if (tmp_len < blocksize)
526							{
527							ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
528							goto err;
529							}
530						tmp_len -= blocksize;
531						}
532					else
533						/* last block gets whatever is left
534						 * (this could be more or less than 'blocksize'!) */
535						wNAF_len[i] = tmp_len;
536
537					wNAF[i + 1] = NULL;
538					wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
539					if (wNAF[i] == NULL)
540						{
541						OPENSSL_free(tmp_wNAF);
542						goto err;
543						}
544					memcpy(wNAF[i], pp, wNAF_len[i]);
545					if (wNAF_len[i] > max_len)
546						max_len = wNAF_len[i];
547
548					if (*tmp_points == NULL)
549						{
550						ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
551						OPENSSL_free(tmp_wNAF);
552						goto err;
553						}
554					val_sub[i] = tmp_points;
555					tmp_points += pre_points_per_block;
556					pp += blocksize;
557					}
558				OPENSSL_free(tmp_wNAF);
559				}
560			}
561		}
562
563	/* All points we precompute now go into a single array 'val'.
564	 * 'val_sub[i]' is a pointer to the subarray for the i-th point,
565	 * or to a subarray of 'pre_comp->points' if we already have precomputation. */
566	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
567	if (val == NULL) goto err;
568	val[num_val] = NULL; /* pivot element */
569
570	/* allocate points for precomputation */
571	v = val;
572	for (i = 0; i < num + num_scalar; i++)
573		{
574		val_sub[i] = v;
575		for (j = 0; j < (1u << (wsize[i] - 1)); j++)
576			{
577			*v = EC_POINT_new(group);
578			if (*v == NULL) goto err;
579			v++;
580			}
581		}
582	if (!(v == val + num_val))
583		{
584		ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
585		goto err;
586		}
587
588	if (!(tmp = EC_POINT_new(group)))
589		goto err;
590
591	/* prepare precomputed values:
592	 *    val_sub[i][0] :=     points[i]
593	 *    val_sub[i][1] := 3 * points[i]
594	 *    val_sub[i][2] := 5 * points[i]
595	 *    ...
596	 */
597	for (i = 0; i < num + num_scalar; i++)
598		{
599		if (i < num)
600			{
601			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
602			}
603		else
604			{
605			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
606			}
607
608		if (wsize[i] > 1)
609			{
610			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
611			for (j = 1; j < (1u << (wsize[i] - 1)); j++)
612				{
613				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
614				}
615			}
616		}
617
618#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
619	if (!EC_POINTs_make_affine(group, num_val, val, ctx))
620		goto err;
621#endif
622
623	r_is_at_infinity = 1;
624
625	for (k = max_len - 1; k >= 0; k--)
626		{
627		if (!r_is_at_infinity)
628			{
629			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
630			}
631
632		for (i = 0; i < totalnum; i++)
633			{
634			if (wNAF_len[i] > (size_t)k)
635				{
636				int digit = wNAF[i][k];
637				int is_neg;
638
639				if (digit)
640					{
641					is_neg = digit < 0;
642
643					if (is_neg)
644						digit = -digit;
645
646					if (is_neg != r_is_inverted)
647						{
648						if (!r_is_at_infinity)
649							{
650							if (!EC_POINT_invert(group, r, ctx)) goto err;
651							}
652						r_is_inverted = !r_is_inverted;
653						}
654
655					/* digit > 0 */
656
657					if (r_is_at_infinity)
658						{
659						if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
660						r_is_at_infinity = 0;
661						}
662					else
663						{
664						if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
665						}
666					}
667				}
668			}
669		}
670
671	if (r_is_at_infinity)
672		{
673		if (!EC_POINT_set_to_infinity(group, r)) goto err;
674		}
675	else
676		{
677		if (r_is_inverted)
678			if (!EC_POINT_invert(group, r, ctx)) goto err;
679		}
680
681	ret = 1;
682
683 err:
684	if (new_ctx != NULL)
685		BN_CTX_free(new_ctx);
686	if (tmp != NULL)
687		EC_POINT_free(tmp);
688	if (wsize != NULL)
689		OPENSSL_free(wsize);
690	if (wNAF_len != NULL)
691		OPENSSL_free(wNAF_len);
692	if (wNAF != NULL)
693		{
694		signed char **w;
695
696		for (w = wNAF; *w != NULL; w++)
697			OPENSSL_free(*w);
698
699		OPENSSL_free(wNAF);
700		}
701	if (val != NULL)
702		{
703		for (v = val; *v != NULL; v++)
704			EC_POINT_clear_free(*v);
705
706		OPENSSL_free(val);
707		}
708	if (val_sub != NULL)
709		{
710		OPENSSL_free(val_sub);
711		}
712	return ret;
713	}
714
715
716/* ec_wNAF_precompute_mult()
717 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
718 * for use with wNAF splitting as implemented in ec_wNAF_mul().
719 *
720 * 'pre_comp->points' is an array of multiples of the generator
721 * of the following form:
722 * points[0] =     generator;
723 * points[1] = 3 * generator;
724 * ...
725 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
726 * points[2^(w-1)]   =     2^blocksize * generator;
727 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
728 * ...
729 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
730 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
731 * ...
732 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
733 * points[2^(w-1)*numblocks]       = NULL
734 */
735int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
736	{
737	const EC_POINT *generator;
738	EC_POINT *tmp_point = NULL, *base = NULL, **var;
739	BN_CTX *new_ctx = NULL;
740	BIGNUM *order;
741	size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
742	EC_POINT **points = NULL;
743	EC_PRE_COMP *pre_comp;
744	int ret = 0;
745
746	/* if there is an old EC_PRE_COMP object, throw it away */
747	EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
748
749	if ((pre_comp = ec_pre_comp_new(group)) == NULL)
750		return 0;
751
752	generator = EC_GROUP_get0_generator(group);
753	if (generator == NULL)
754		{
755		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
756		goto err;
757		}
758
759	if (ctx == NULL)
760		{
761		ctx = new_ctx = BN_CTX_new();
762		if (ctx == NULL)
763			goto err;
764		}
765
766	BN_CTX_start(ctx);
767	order = BN_CTX_get(ctx);
768	if (order == NULL) goto err;
769
770	if (!EC_GROUP_get_order(group, order, ctx)) goto err;
771	if (BN_is_zero(order))
772		{
773		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
774		goto err;
775		}
776
777	bits = BN_num_bits(order);
778	/* The following parameters mean we precompute (approximately)
779	 * one point per bit.
780	 *
781	 * TBD: The combination  8, 4  is perfect for 160 bits; for other
782	 * bit lengths, other parameter combinations might provide better
783	 * efficiency.
784	 */
785	blocksize = 8;
786	w = 4;
787	if (EC_window_bits_for_scalar_size(bits) > w)
788		{
789		/* let's not make the window too small ... */
790		w = EC_window_bits_for_scalar_size(bits);
791		}
792
793	numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
794
795	pre_points_per_block = 1u << (w - 1);
796	num = pre_points_per_block * numblocks; /* number of points to compute and store */
797
798	points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
799	if (!points)
800		{
801		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
802		goto err;
803		}
804
805	var = points;
806	var[num] = NULL; /* pivot */
807	for (i = 0; i < num; i++)
808		{
809		if ((var[i] = EC_POINT_new(group)) == NULL)
810			{
811			ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
812			goto err;
813			}
814		}
815
816	if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
817		{
818		ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
819		goto err;
820		}
821
822	if (!EC_POINT_copy(base, generator))
823		goto err;
824
825	/* do the precomputation */
826	for (i = 0; i < numblocks; i++)
827		{
828		size_t j;
829
830		if (!EC_POINT_dbl(group, tmp_point, base, ctx))
831			goto err;
832
833		if (!EC_POINT_copy(*var++, base))
834			goto err;
835
836		for (j = 1; j < pre_points_per_block; j++, var++)
837			{
838			/* calculate odd multiples of the current base point */
839			if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
840				goto err;
841			}
842
843		if (i < numblocks - 1)
844			{
845			/* get the next base (multiply current one by 2^blocksize) */
846			size_t k;
847
848			if (blocksize <= 2)
849				{
850				ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
851				goto err;
852				}
853
854			if (!EC_POINT_dbl(group, base, tmp_point, ctx))
855				goto err;
856			for (k = 2; k < blocksize; k++)
857				{
858				if (!EC_POINT_dbl(group,base,base,ctx))
859					goto err;
860				}
861			}
862 		}
863
864	if (!EC_POINTs_make_affine(group, num, points, ctx))
865		goto err;
866
867	pre_comp->group = group;
868	pre_comp->blocksize = blocksize;
869	pre_comp->numblocks = numblocks;
870	pre_comp->w = w;
871	pre_comp->points = points;
872	points = NULL;
873	pre_comp->num = num;
874
875	if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
876		ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
877		goto err;
878	pre_comp = NULL;
879
880	ret = 1;
881 err:
882	if (ctx != NULL)
883		BN_CTX_end(ctx);
884	if (new_ctx != NULL)
885		BN_CTX_free(new_ctx);
886	if (pre_comp)
887		ec_pre_comp_free(pre_comp);
888	if (points)
889		{
890		EC_POINT **p;
891
892		for (p = points; *p != NULL; p++)
893			EC_POINT_free(*p);
894		OPENSSL_free(points);
895		}
896	if (tmp_point)
897		EC_POINT_free(tmp_point);
898	if (base)
899		EC_POINT_free(base);
900	return ret;
901	}
902
903
904int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
905	{
906	if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
907		return 1;
908	else
909		return 0;
910	}
911