1/* crypto/bn/bn_lcl.h */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#ifndef HEADER_BN_LCL_H
113# define HEADER_BN_LCL_H
114
115# include <openssl/bn.h>
116
117#ifdef  __cplusplus
118extern "C" {
119#endif
120
121/*-
122 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
123 *
124 *
125 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
126 * the number of multiplications is a constant plus on average
127 *
128 *    2^(w-1) + (b-w)/(w+1);
129 *
130 * here  2^(w-1)  is for precomputing the table (we actually need
131 * entries only for windows that have the lowest bit set), and
132 * (b-w)/(w+1)  is an approximation for the expected number of
133 * w-bit windows, not counting the first one.
134 *
135 * Thus we should use
136 *
137 *    w >= 6  if        b > 671
138 *     w = 5  if  671 > b > 239
139 *     w = 4  if  239 > b >  79
140 *     w = 3  if   79 > b >  23
141 *    w <= 2  if   23 > b
142 *
143 * (with draws in between).  Very small exponents are often selected
144 * with low Hamming weight, so we use  w = 1  for b <= 23.
145 */
146# if 1
147#  define BN_window_bits_for_exponent_size(b) \
148                ((b) > 671 ? 6 : \
149                 (b) > 239 ? 5 : \
150                 (b) >  79 ? 4 : \
151                 (b) >  23 ? 3 : 1)
152# else
153/*
154 * Old SSLeay/OpenSSL table. Maximum window size was 5, so this table differs
155 * for b==1024; but it coincides for other interesting values (b==160,
156 * b==512).
157 */
158#  define BN_window_bits_for_exponent_size(b) \
159                ((b) > 255 ? 5 : \
160                 (b) > 127 ? 4 : \
161                 (b) >  17 ? 3 : 1)
162# endif
163
164/*
165 * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
166 * line width of the target processor is at least the following value.
167 */
168# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
169# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
170
171/*
172 * Window sizes optimized for fixed window size modular exponentiation
173 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
174 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
175 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
176 * defined for cache line sizes of 32 and 64, cache line sizes where
177 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
178 * used on processors that have a 128 byte or greater cache line size.
179 */
180# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
181
182#  define BN_window_bits_for_ctime_exponent_size(b) \
183                ((b) > 937 ? 6 : \
184                 (b) > 306 ? 5 : \
185                 (b) >  89 ? 4 : \
186                 (b) >  22 ? 3 : 1)
187#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
188
189# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
190
191#  define BN_window_bits_for_ctime_exponent_size(b) \
192                ((b) > 306 ? 5 : \
193                 (b) >  89 ? 4 : \
194                 (b) >  22 ? 3 : 1)
195#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
196
197# endif
198
199/* Pentium pro 16,16,16,32,64 */
200/* Alpha       16,16,16,16.64 */
201# define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
202# define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
203# define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
204# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
205# define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
206
207/*
208 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
209 * size_t was used to perform integer-only operations on pointers.  This
210 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
211 * is still only 32 bits.  What's needed in these cases is an integer type
212 * with the same size as a pointer, which size_t is not certain to be. The
213 * only fix here is VMS-specific.
214 */
215# if defined(OPENSSL_SYS_VMS)
216#  if __INITIAL_POINTER_SIZE == 64
217#   define PTR_SIZE_INT long long
218#  else                         /* __INITIAL_POINTER_SIZE == 64 */
219#   define PTR_SIZE_INT int
220#  endif                        /* __INITIAL_POINTER_SIZE == 64 [else] */
221# elif !defined(PTR_SIZE_INT)   /* defined(OPENSSL_SYS_VMS) */
222#  define PTR_SIZE_INT size_t
223# endif                         /* defined(OPENSSL_SYS_VMS) [else] */
224
225# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
226/*
227 * BN_UMULT_HIGH section.
228 *
229 * No, I'm not trying to overwhelm you when stating that the
230 * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
231 * you to be impressed when I say that if the compiler doesn't
232 * support 2*N integer type, then you have to replace every N*N
233 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
234 * and additions which unavoidably results in severe performance
235 * penalties. Of course provided that the hardware is capable of
236 * producing 2*N result... That's when you normally start
237 * considering assembler implementation. However! It should be
238 * pointed out that some CPUs (most notably Alpha, PowerPC and
239 * upcoming IA-64 family:-) provide *separate* instruction
240 * calculating the upper half of the product placing the result
241 * into a general purpose register. Now *if* the compiler supports
242 * inline assembler, then it's not impossible to implement the
243 * "bignum" routines (and have the compiler optimize 'em)
244 * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
245 * macro is about:-)
246 *
247 *                                      <appro@fy.chalmers.se>
248 */
249#  if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
250#   if defined(__DECC)
251#    include <c_asm.h>
252#    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
253#   elif defined(__GNUC__) && __GNUC__>=2
254#    define BN_UMULT_HIGH(a,b)   ({      \
255        register BN_ULONG ret;          \
256        asm ("umulh     %1,%2,%0"       \
257             : "=r"(ret)                \
258             : "r"(a), "r"(b));         \
259        ret;                    })
260#   endif                       /* compiler */
261#  elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
262#   if defined(__GNUC__) && __GNUC__>=2
263#    define BN_UMULT_HIGH(a,b)   ({      \
264        register BN_ULONG ret;          \
265        asm ("mulhdu    %0,%1,%2"       \
266             : "=r"(ret)                \
267             : "r"(a), "r"(b));         \
268        ret;                    })
269#   endif                       /* compiler */
270#  elif (defined(__x86_64) || defined(__x86_64__)) && \
271       (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
272#   if defined(__GNUC__) && __GNUC__>=2
273#    define BN_UMULT_HIGH(a,b)   ({      \
274        register BN_ULONG ret,discard;  \
275        asm ("mulq      %3"             \
276             : "=a"(discard),"=d"(ret)  \
277             : "a"(a), "g"(b)           \
278             : "cc");                   \
279        ret;                    })
280#    define BN_UMULT_LOHI(low,high,a,b)  \
281        asm ("mulq      %3"             \
282                : "=a"(low),"=d"(high)  \
283                : "a"(a),"g"(b)         \
284                : "cc");
285#   endif
286#  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
287#   if defined(_MSC_VER) && _MSC_VER>=1400
288unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
289unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
290                          unsigned __int64 *h);
291#    pragma intrinsic(__umulh,_umul128)
292#    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
293#    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
294#   endif
295#  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
296#   if defined(__GNUC__) && __GNUC__>=2
297#    if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4)
298                                     /* "h" constraint is no more since 4.4 */
299#     define BN_UMULT_HIGH(a,b)          (((__uint128_t)(a)*(b))>>64)
300#     define BN_UMULT_LOHI(low,high,a,b) ({     \
301        __uint128_t ret=(__uint128_t)(a)*(b);   \
302        (high)=ret>>64; (low)=ret;       })
303#    else
304#     define BN_UMULT_HIGH(a,b) ({      \
305        register BN_ULONG ret;          \
306        asm ("dmultu    %1,%2"          \
307             : "=h"(ret)                \
308             : "r"(a), "r"(b) : "l");   \
309        ret;                    })
310#     define BN_UMULT_LOHI(low,high,a,b)\
311        asm ("dmultu    %2,%3"          \
312             : "=l"(low),"=h"(high)     \
313             : "r"(a), "r"(b));
314#    endif
315#   endif
316#  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
317#   if defined(__GNUC__) && __GNUC__>=2
318#    define BN_UMULT_HIGH(a,b)   ({      \
319        register BN_ULONG ret;          \
320        asm ("umulh     %0,%1,%2"       \
321             : "=r"(ret)                \
322             : "r"(a), "r"(b));         \
323        ret;                    })
324#   endif
325#  endif                        /* cpu */
326# endif                         /* OPENSSL_NO_ASM */
327
328/*************************************************************
329 * Using the long long type
330 */
331# define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
332# define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
333
334# ifdef BN_DEBUG_RAND
335#  define bn_clear_top2max(a) \
336        { \
337        int      ind = (a)->dmax - (a)->top; \
338        BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
339        for (; ind != 0; ind--) \
340                *(++ftl) = 0x0; \
341        }
342# else
343#  define bn_clear_top2max(a)
344# endif
345
346# ifdef BN_LLONG
347#  define mul_add(r,a,w,c) { \
348        BN_ULLONG t; \
349        t=(BN_ULLONG)w * (a) + (r) + (c); \
350        (r)= Lw(t); \
351        (c)= Hw(t); \
352        }
353
354#  define mul(r,a,w,c) { \
355        BN_ULLONG t; \
356        t=(BN_ULLONG)w * (a) + (c); \
357        (r)= Lw(t); \
358        (c)= Hw(t); \
359        }
360
361#  define sqr(r0,r1,a) { \
362        BN_ULLONG t; \
363        t=(BN_ULLONG)(a)*(a); \
364        (r0)=Lw(t); \
365        (r1)=Hw(t); \
366        }
367
368# elif defined(BN_UMULT_LOHI)
369#  define mul_add(r,a,w,c) {              \
370        BN_ULONG high,low,ret,tmp=(a);  \
371        ret =  (r);                     \
372        BN_UMULT_LOHI(low,high,w,tmp);  \
373        ret += (c);                     \
374        (c) =  (ret<(c))?1:0;           \
375        (c) += high;                    \
376        ret += low;                     \
377        (c) += (ret<low)?1:0;           \
378        (r) =  ret;                     \
379        }
380
381#  define mul(r,a,w,c)    {               \
382        BN_ULONG high,low,ret,ta=(a);   \
383        BN_UMULT_LOHI(low,high,w,ta);   \
384        ret =  low + (c);               \
385        (c) =  high;                    \
386        (c) += (ret<low)?1:0;           \
387        (r) =  ret;                     \
388        }
389
390#  define sqr(r0,r1,a)    {               \
391        BN_ULONG tmp=(a);               \
392        BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
393        }
394
395# elif defined(BN_UMULT_HIGH)
396#  define mul_add(r,a,w,c) {              \
397        BN_ULONG high,low,ret,tmp=(a);  \
398        ret =  (r);                     \
399        high=  BN_UMULT_HIGH(w,tmp);    \
400        ret += (c);                     \
401        low =  (w) * tmp;               \
402        (c) =  (ret<(c))?1:0;           \
403        (c) += high;                    \
404        ret += low;                     \
405        (c) += (ret<low)?1:0;           \
406        (r) =  ret;                     \
407        }
408
409#  define mul(r,a,w,c)    {               \
410        BN_ULONG high,low,ret,ta=(a);   \
411        low =  (w) * ta;                \
412        high=  BN_UMULT_HIGH(w,ta);     \
413        ret =  low + (c);               \
414        (c) =  high;                    \
415        (c) += (ret<low)?1:0;           \
416        (r) =  ret;                     \
417        }
418
419#  define sqr(r0,r1,a)    {               \
420        BN_ULONG tmp=(a);               \
421        (r0) = tmp * tmp;               \
422        (r1) = BN_UMULT_HIGH(tmp,tmp);  \
423        }
424
425# else
426/*************************************************************
427 * No long long type
428 */
429
430#  define LBITS(a)        ((a)&BN_MASK2l)
431#  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
432#  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
433
434#  define LLBITS(a)       ((a)&BN_MASKl)
435#  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
436#  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
437
438#  define mul64(l,h,bl,bh) \
439        { \
440        BN_ULONG m,m1,lt,ht; \
441 \
442        lt=l; \
443        ht=h; \
444        m =(bh)*(lt); \
445        lt=(bl)*(lt); \
446        m1=(bl)*(ht); \
447        ht =(bh)*(ht); \
448        m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
449        ht+=HBITS(m); \
450        m1=L2HBITS(m); \
451        lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
452        (l)=lt; \
453        (h)=ht; \
454        }
455
456#  define sqr64(lo,ho,in) \
457        { \
458        BN_ULONG l,h,m; \
459 \
460        h=(in); \
461        l=LBITS(h); \
462        h=HBITS(h); \
463        m =(l)*(h); \
464        l*=l; \
465        h*=h; \
466        h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
467        m =(m&BN_MASK2l)<<(BN_BITS4+1); \
468        l=(l+m)&BN_MASK2; if (l < m) h++; \
469        (lo)=l; \
470        (ho)=h; \
471        }
472
473#  define mul_add(r,a,bl,bh,c) { \
474        BN_ULONG l,h; \
475 \
476        h= (a); \
477        l=LBITS(h); \
478        h=HBITS(h); \
479        mul64(l,h,(bl),(bh)); \
480 \
481        /* non-multiply part */ \
482        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
483        (c)=(r); \
484        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
485        (c)=h&BN_MASK2; \
486        (r)=l; \
487        }
488
489#  define mul(r,a,bl,bh,c) { \
490        BN_ULONG l,h; \
491 \
492        h= (a); \
493        l=LBITS(h); \
494        h=HBITS(h); \
495        mul64(l,h,(bl),(bh)); \
496 \
497        /* non-multiply part */ \
498        l+=(c); if ((l&BN_MASK2) < (c)) h++; \
499        (c)=h&BN_MASK2; \
500        (r)=l&BN_MASK2; \
501        }
502# endif                         /* !BN_LLONG */
503
504# if defined(OPENSSL_DOING_MAKEDEPEND) && defined(OPENSSL_FIPS)
505#  undef bn_div_words
506# endif
507
508void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
509void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
510void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
511void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
512void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
513void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
514int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
515int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
516void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
517                      int dna, int dnb, BN_ULONG *t);
518void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
519                           int n, int tna, int tnb, BN_ULONG *t);
520void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
521void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
522void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
523                          BN_ULONG *t);
524void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
525                 BN_ULONG *t);
526BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
527                           int cl, int dl);
528BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
529                           int cl, int dl);
530int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
531                const BN_ULONG *np, const BN_ULONG *n0, int num);
532
533#ifdef  __cplusplus
534}
535#endif
536
537#endif
538