1/*
2 * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#ifndef SWSCALE_SWSCALE_INTERNAL_H
22#define SWSCALE_SWSCALE_INTERNAL_H
23
24#include "config.h"
25
26#if HAVE_ALTIVEC_H
27#include <altivec.h>
28#endif
29
30#include "libavutil/avassert.h"
31#include "libavutil/avutil.h"
32#include "libavutil/common.h"
33#include "libavutil/intreadwrite.h"
34#include "libavutil/log.h"
35#include "libavutil/pixfmt.h"
36#include "libavutil/pixdesc.h"
37
38#define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
39
40#define YUVRGB_TABLE_HEADROOM 128
41
42#define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
43
44#define DITHER1XBPP
45
46#if HAVE_BIGENDIAN
47#define ALT32_CORR (-1)
48#else
49#define ALT32_CORR   1
50#endif
51
52#if ARCH_X86_64
53#   define APCK_PTR2  8
54#   define APCK_COEF 16
55#   define APCK_SIZE 24
56#else
57#   define APCK_PTR2  4
58#   define APCK_COEF  8
59#   define APCK_SIZE 16
60#endif
61
62struct SwsContext;
63
64typedef enum SwsDither {
65    SWS_DITHER_NONE = 0,
66    SWS_DITHER_AUTO,
67    SWS_DITHER_BAYER,
68    SWS_DITHER_ED,
69    SWS_DITHER_A_DITHER,
70    SWS_DITHER_X_DITHER,
71    NB_SWS_DITHER,
72} SwsDither;
73
74typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
75                       int srcStride[], int srcSliceY, int srcSliceH,
76                       uint8_t *dst[], int dstStride[]);
77
78/**
79 * Write one line of horizontally scaled data to planar output
80 * without any additional vertical scaling (or point-scaling).
81 *
82 * @param src     scaled source data, 15bit for 8-10bit output,
83 *                19-bit for 16bit output (in int32_t)
84 * @param dest    pointer to the output plane. For >8bit
85 *                output, this is in uint16_t
86 * @param dstW    width of destination in pixels
87 * @param dither  ordered dither array of type int16_t and size 8
88 * @param offset  Dither offset
89 */
90typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
91                               const uint8_t *dither, int offset);
92
93/**
94 * Write one line of horizontally scaled data to planar output
95 * with multi-point vertical scaling between input pixels.
96 *
97 * @param filter        vertical luma/alpha scaling coefficients, 12bit [0,4096]
98 * @param src           scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
99 *                      19-bit for 16bit output (in int32_t)
100 * @param filterSize    number of vertical input lines to scale
101 * @param dest          pointer to output plane. For >8bit
102 *                      output, this is in uint16_t
103 * @param dstW          width of destination pixels
104 * @param offset        Dither offset
105 */
106typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
107                               const int16_t **src, uint8_t *dest, int dstW,
108                               const uint8_t *dither, int offset);
109
110/**
111 * Write one line of horizontally scaled chroma to interleaved output
112 * with multi-point vertical scaling between input pixels.
113 *
114 * @param c             SWS scaling context
115 * @param chrFilter     vertical chroma scaling coefficients, 12bit [0,4096]
116 * @param chrUSrc       scaled chroma (U) source data, 15bit for 8-10bit output,
117 *                      19-bit for 16bit output (in int32_t)
118 * @param chrVSrc       scaled chroma (V) source data, 15bit for 8-10bit output,
119 *                      19-bit for 16bit output (in int32_t)
120 * @param chrFilterSize number of vertical chroma input lines to scale
121 * @param dest          pointer to the output plane. For >8bit
122 *                      output, this is in uint16_t
123 * @param dstW          width of chroma planes
124 */
125typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
126                                    const int16_t *chrFilter,
127                                    int chrFilterSize,
128                                    const int16_t **chrUSrc,
129                                    const int16_t **chrVSrc,
130                                    uint8_t *dest, int dstW);
131
132/**
133 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
134 * output without any additional vertical scaling (or point-scaling). Note
135 * that this function may do chroma scaling, see the "uvalpha" argument.
136 *
137 * @param c       SWS scaling context
138 * @param lumSrc  scaled luma (Y) source data, 15bit for 8-10bit output,
139 *                19-bit for 16bit output (in int32_t)
140 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
141 *                19-bit for 16bit output (in int32_t)
142 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
143 *                19-bit for 16bit output (in int32_t)
144 * @param alpSrc  scaled alpha (A) source data, 15bit for 8-10bit output,
145 *                19-bit for 16bit output (in int32_t)
146 * @param dest    pointer to the output plane. For 16bit output, this is
147 *                uint16_t
148 * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
149 *                to write into dest[]
150 * @param uvalpha chroma scaling coefficient for the second line of chroma
151 *                pixels, either 2048 or 0. If 0, one chroma input is used
152 *                for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
153 *                is set, it generates 1 output pixel). If 2048, two chroma
154 *                input pixels should be averaged for 2 output pixels (this
155 *                only happens if SWS_FLAG_FULL_CHR_INT is not set)
156 * @param y       vertical line number for this output. This does not need
157 *                to be used to calculate the offset in the destination,
158 *                but can be used to generate comfort noise using dithering
159 *                for some output formats.
160 */
161typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
162                               const int16_t *chrUSrc[2],
163                               const int16_t *chrVSrc[2],
164                               const int16_t *alpSrc, uint8_t *dest,
165                               int dstW, int uvalpha, int y);
166/**
167 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
168 * output by doing bilinear scaling between two input lines.
169 *
170 * @param c       SWS scaling context
171 * @param lumSrc  scaled luma (Y) source data, 15bit for 8-10bit output,
172 *                19-bit for 16bit output (in int32_t)
173 * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
174 *                19-bit for 16bit output (in int32_t)
175 * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
176 *                19-bit for 16bit output (in int32_t)
177 * @param alpSrc  scaled alpha (A) source data, 15bit for 8-10bit output,
178 *                19-bit for 16bit output (in int32_t)
179 * @param dest    pointer to the output plane. For 16bit output, this is
180 *                uint16_t
181 * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
182 *                to write into dest[]
183 * @param yalpha  luma/alpha scaling coefficients for the second input line.
184 *                The first line's coefficients can be calculated by using
185 *                4096 - yalpha
186 * @param uvalpha chroma scaling coefficient for the second input line. The
187 *                first line's coefficients can be calculated by using
188 *                4096 - uvalpha
189 * @param y       vertical line number for this output. This does not need
190 *                to be used to calculate the offset in the destination,
191 *                but can be used to generate comfort noise using dithering
192 *                for some output formats.
193 */
194typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
195                               const int16_t *chrUSrc[2],
196                               const int16_t *chrVSrc[2],
197                               const int16_t *alpSrc[2],
198                               uint8_t *dest,
199                               int dstW, int yalpha, int uvalpha, int y);
200/**
201 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
202 * output by doing multi-point vertical scaling between input pixels.
203 *
204 * @param c             SWS scaling context
205 * @param lumFilter     vertical luma/alpha scaling coefficients, 12bit [0,4096]
206 * @param lumSrc        scaled luma (Y) source data, 15bit for 8-10bit output,
207 *                      19-bit for 16bit output (in int32_t)
208 * @param lumFilterSize number of vertical luma/alpha input lines to scale
209 * @param chrFilter     vertical chroma scaling coefficients, 12bit [0,4096]
210 * @param chrUSrc       scaled chroma (U) source data, 15bit for 8-10bit output,
211 *                      19-bit for 16bit output (in int32_t)
212 * @param chrVSrc       scaled chroma (V) source data, 15bit for 8-10bit output,
213 *                      19-bit for 16bit output (in int32_t)
214 * @param chrFilterSize number of vertical chroma input lines to scale
215 * @param alpSrc        scaled alpha (A) source data, 15bit for 8-10bit output,
216 *                      19-bit for 16bit output (in int32_t)
217 * @param dest          pointer to the output plane. For 16bit output, this is
218 *                      uint16_t
219 * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
220 *                      to write into dest[]
221 * @param y             vertical line number for this output. This does not need
222 *                      to be used to calculate the offset in the destination,
223 *                      but can be used to generate comfort noise using dithering
224 *                      or some output formats.
225 */
226typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
227                               const int16_t **lumSrc, int lumFilterSize,
228                               const int16_t *chrFilter,
229                               const int16_t **chrUSrc,
230                               const int16_t **chrVSrc, int chrFilterSize,
231                               const int16_t **alpSrc, uint8_t *dest,
232                               int dstW, int y);
233
234/**
235 * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
236 * output by doing multi-point vertical scaling between input pixels.
237 *
238 * @param c             SWS scaling context
239 * @param lumFilter     vertical luma/alpha scaling coefficients, 12bit [0,4096]
240 * @param lumSrc        scaled luma (Y) source data, 15bit for 8-10bit output,
241 *                      19-bit for 16bit output (in int32_t)
242 * @param lumFilterSize number of vertical luma/alpha input lines to scale
243 * @param chrFilter     vertical chroma scaling coefficients, 12bit [0,4096]
244 * @param chrUSrc       scaled chroma (U) source data, 15bit for 8-10bit output,
245 *                      19-bit for 16bit output (in int32_t)
246 * @param chrVSrc       scaled chroma (V) source data, 15bit for 8-10bit output,
247 *                      19-bit for 16bit output (in int32_t)
248 * @param chrFilterSize number of vertical chroma input lines to scale
249 * @param alpSrc        scaled alpha (A) source data, 15bit for 8-10bit output,
250 *                      19-bit for 16bit output (in int32_t)
251 * @param dest          pointer to the output planes. For 16bit output, this is
252 *                      uint16_t
253 * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
254 *                      to write into dest[]
255 * @param y             vertical line number for this output. This does not need
256 *                      to be used to calculate the offset in the destination,
257 *                      but can be used to generate comfort noise using dithering
258 *                      or some output formats.
259 */
260typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
261                            const int16_t **lumSrc, int lumFilterSize,
262                            const int16_t *chrFilter,
263                            const int16_t **chrUSrc,
264                            const int16_t **chrVSrc, int chrFilterSize,
265                            const int16_t **alpSrc, uint8_t **dest,
266                            int dstW, int y);
267
268/* This struct should be aligned on at least a 32-byte boundary. */
269typedef struct SwsContext {
270    /**
271     * info on struct for av_log
272     */
273    const AVClass *av_class;
274
275    /**
276     * Note that src, dst, srcStride, dstStride will be copied in the
277     * sws_scale() wrapper so they can be freely modified here.
278     */
279    SwsFunc swscale;
280    int srcW;                     ///< Width  of source      luma/alpha planes.
281    int srcH;                     ///< Height of source      luma/alpha planes.
282    int dstH;                     ///< Height of destination luma/alpha planes.
283    int chrSrcW;                  ///< Width  of source      chroma     planes.
284    int chrSrcH;                  ///< Height of source      chroma     planes.
285    int chrDstW;                  ///< Width  of destination chroma     planes.
286    int chrDstH;                  ///< Height of destination chroma     planes.
287    int lumXInc, chrXInc;
288    int lumYInc, chrYInc;
289    enum AVPixelFormat dstFormat; ///< Destination pixel format.
290    enum AVPixelFormat srcFormat; ///< Source      pixel format.
291    int dstFormatBpp;             ///< Number of bits per pixel of the destination pixel format.
292    int srcFormatBpp;             ///< Number of bits per pixel of the source      pixel format.
293    int dstBpc, srcBpc;
294    int chrSrcHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source      image.
295    int chrSrcVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in source      image.
296    int chrDstHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
297    int chrDstVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in destination image.
298    int vChrDrop;                 ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
299    int sliceDir;                 ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
300    double param[2];              ///< Input parameters for scaling algorithms that need them.
301
302    uint32_t pal_yuv[256];
303    uint32_t pal_rgb[256];
304
305    /**
306     * @name Scaled horizontal lines ring buffer.
307     * The horizontal scaler keeps just enough scaled lines in a ring buffer
308     * so they may be passed to the vertical scaler. The pointers to the
309     * allocated buffers for each line are duplicated in sequence in the ring
310     * buffer to simplify indexing and avoid wrapping around between lines
311     * inside the vertical scaler code. The wrapping is done before the
312     * vertical scaler is called.
313     */
314    //@{
315    int16_t **lumPixBuf;          ///< Ring buffer for scaled horizontal luma   plane lines to be fed to the vertical scaler.
316    int16_t **chrUPixBuf;         ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
317    int16_t **chrVPixBuf;         ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
318    int16_t **alpPixBuf;          ///< Ring buffer for scaled horizontal alpha  plane lines to be fed to the vertical scaler.
319    int vLumBufSize;              ///< Number of vertical luma/alpha lines allocated in the ring buffer.
320    int vChrBufSize;              ///< Number of vertical chroma     lines allocated in the ring buffer.
321    int lastInLumBuf;             ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
322    int lastInChrBuf;             ///< Last scaled horizontal chroma     line from source in the ring buffer.
323    int lumBufIndex;              ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
324    int chrBufIndex;              ///< Index in ring buffer of the last scaled horizontal chroma     line from source.
325    //@}
326
327    uint8_t *formatConvBuffer;
328
329    /**
330     * @name Horizontal and vertical filters.
331     * To better understand the following fields, here is a pseudo-code of
332     * their usage in filtering a horizontal line:
333     * @code
334     * for (i = 0; i < width; i++) {
335     *     dst[i] = 0;
336     *     for (j = 0; j < filterSize; j++)
337     *         dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
338     *     dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
339     * }
340     * @endcode
341     */
342    //@{
343    int16_t *hLumFilter;          ///< Array of horizontal filter coefficients for luma/alpha planes.
344    int16_t *hChrFilter;          ///< Array of horizontal filter coefficients for chroma     planes.
345    int16_t *vLumFilter;          ///< Array of vertical   filter coefficients for luma/alpha planes.
346    int16_t *vChrFilter;          ///< Array of vertical   filter coefficients for chroma     planes.
347    int32_t *hLumFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
348    int32_t *hChrFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for chroma     planes.
349    int32_t *vLumFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for luma/alpha planes.
350    int32_t *vChrFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for chroma     planes.
351    int hLumFilterSize;           ///< Horizontal filter size for luma/alpha pixels.
352    int hChrFilterSize;           ///< Horizontal filter size for chroma     pixels.
353    int vLumFilterSize;           ///< Vertical   filter size for luma/alpha pixels.
354    int vChrFilterSize;           ///< Vertical   filter size for chroma     pixels.
355    //@}
356
357    int lumMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
358    int chrMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
359    uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
360    uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
361
362    int canMMXEXTBeUsed;
363
364    int dstY;                     ///< Last destination vertical line output from last slice.
365    int flags;                    ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
366    void *yuvTable;             // pointer to the yuv->rgb table start so it can be freed()
367    // alignment ensures the offset can be added in a single
368    // instruction on e.g. ARM
369    DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];
370    uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
371    uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
372    uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
373    DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
374#define RY_IDX 0
375#define GY_IDX 1
376#define BY_IDX 2
377#define RU_IDX 3
378#define GU_IDX 4
379#define BU_IDX 5
380#define RV_IDX 6
381#define GV_IDX 7
382#define BV_IDX 8
383#define RGB2YUV_SHIFT 15
384
385    int *dither_error[4];
386
387    //Colorspace stuff
388    int contrast, brightness, saturation;    // for sws_getColorspaceDetails
389    int srcColorspaceTable[4];
390    int dstColorspaceTable[4];
391    int srcRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (source      image).
392    int dstRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
393    int src0Alpha;
394    int dst0Alpha;
395    int srcXYZ;
396    int dstXYZ;
397    int src_h_chr_pos;
398    int dst_h_chr_pos;
399    int src_v_chr_pos;
400    int dst_v_chr_pos;
401    int yuv2rgb_y_offset;
402    int yuv2rgb_y_coeff;
403    int yuv2rgb_v2r_coeff;
404    int yuv2rgb_v2g_coeff;
405    int yuv2rgb_u2g_coeff;
406    int yuv2rgb_u2b_coeff;
407
408#define RED_DITHER            "0*8"
409#define GREEN_DITHER          "1*8"
410#define BLUE_DITHER           "2*8"
411#define Y_COEFF               "3*8"
412#define VR_COEFF              "4*8"
413#define UB_COEFF              "5*8"
414#define VG_COEFF              "6*8"
415#define UG_COEFF              "7*8"
416#define Y_OFFSET              "8*8"
417#define U_OFFSET              "9*8"
418#define V_OFFSET              "10*8"
419#define LUM_MMX_FILTER_OFFSET "11*8"
420#define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
421#define DSTW_OFFSET           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
422#define ESP_OFFSET            "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
423#define VROUNDER_OFFSET       "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
424#define U_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
425#define V_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
426#define Y_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
427#define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
428#define UV_OFF_PX             "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
429#define UV_OFF_BYTE           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
430#define DITHER16              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
431#define DITHER32              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
432#define DITHER32_INT          (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
433
434    DECLARE_ALIGNED(8, uint64_t, redDither);
435    DECLARE_ALIGNED(8, uint64_t, greenDither);
436    DECLARE_ALIGNED(8, uint64_t, blueDither);
437
438    DECLARE_ALIGNED(8, uint64_t, yCoeff);
439    DECLARE_ALIGNED(8, uint64_t, vrCoeff);
440    DECLARE_ALIGNED(8, uint64_t, ubCoeff);
441    DECLARE_ALIGNED(8, uint64_t, vgCoeff);
442    DECLARE_ALIGNED(8, uint64_t, ugCoeff);
443    DECLARE_ALIGNED(8, uint64_t, yOffset);
444    DECLARE_ALIGNED(8, uint64_t, uOffset);
445    DECLARE_ALIGNED(8, uint64_t, vOffset);
446    int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
447    int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
448    int dstW;                     ///< Width  of destination luma/alpha planes.
449    DECLARE_ALIGNED(8, uint64_t, esp);
450    DECLARE_ALIGNED(8, uint64_t, vRounder);
451    DECLARE_ALIGNED(8, uint64_t, u_temp);
452    DECLARE_ALIGNED(8, uint64_t, v_temp);
453    DECLARE_ALIGNED(8, uint64_t, y_temp);
454    int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
455    // alignment of these values is not necessary, but merely here
456    // to maintain the same offset across x8632 and x86-64. Once we
457    // use proper offset macros in the asm, they can be removed.
458    DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
459    DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
460    DECLARE_ALIGNED(8, uint16_t, dither16)[8];
461    DECLARE_ALIGNED(8, uint32_t, dither32)[8];
462
463    const uint8_t *chrDither8, *lumDither8;
464
465#if HAVE_ALTIVEC
466    vector signed short   CY;
467    vector signed short   CRV;
468    vector signed short   CBU;
469    vector signed short   CGU;
470    vector signed short   CGV;
471    vector signed short   OY;
472    vector unsigned short CSHIFT;
473    vector signed short  *vYCoeffsBank, *vCCoeffsBank;
474#endif
475
476    int use_mmx_vfilter;
477
478/* pre defined color-spaces gamma */
479#define XYZ_GAMMA (2.6f)
480#define RGB_GAMMA (2.2f)
481    int16_t *xyzgamma;
482    int16_t *rgbgamma;
483    int16_t *xyzgammainv;
484    int16_t *rgbgammainv;
485    int16_t xyz2rgb_matrix[3][4];
486    int16_t rgb2xyz_matrix[3][4];
487
488    /* function pointers for swscale() */
489    yuv2planar1_fn yuv2plane1;
490    yuv2planarX_fn yuv2planeX;
491    yuv2interleavedX_fn yuv2nv12cX;
492    yuv2packed1_fn yuv2packed1;
493    yuv2packed2_fn yuv2packed2;
494    yuv2packedX_fn yuv2packedX;
495    yuv2anyX_fn yuv2anyX;
496
497    /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
498    void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
499                      int width, uint32_t *pal);
500    /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
501    void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
502                      int width, uint32_t *pal);
503    /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
504    void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
505                      const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
506                      int width, uint32_t *pal);
507
508    /**
509     * Functions to read planar input, such as planar RGB, and convert
510     * internally to Y/UV/A.
511     */
512    /** @{ */
513    void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
514    void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
515                          int width, int32_t *rgb2yuv);
516    void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
517    /** @} */
518
519    /**
520     * Scale one horizontal line of input data using a bilinear filter
521     * to produce one line of output data. Compared to SwsContext->hScale(),
522     * please take note of the following caveats when using these:
523     * - Scaling is done using only 7bit instead of 14bit coefficients.
524     * - You can use no more than 5 input pixels to produce 4 output
525     *   pixels. Therefore, this filter should not be used for downscaling
526     *   by more than ~20% in width (because that equals more than 5/4th
527     *   downscaling and thus more than 5 pixels input per 4 pixels output).
528     * - In general, bilinear filters create artifacts during downscaling
529     *   (even when <20%), because one output pixel will span more than one
530     *   input pixel, and thus some pixels will need edges of both neighbor
531     *   pixels to interpolate the output pixel. Since you can use at most
532     *   two input pixels per output pixel in bilinear scaling, this is
533     *   impossible and thus downscaling by any size will create artifacts.
534     * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
535     * in SwsContext->flags.
536     */
537    /** @{ */
538    void (*hyscale_fast)(struct SwsContext *c,
539                         int16_t *dst, int dstWidth,
540                         const uint8_t *src, int srcW, int xInc);
541    void (*hcscale_fast)(struct SwsContext *c,
542                         int16_t *dst1, int16_t *dst2, int dstWidth,
543                         const uint8_t *src1, const uint8_t *src2,
544                         int srcW, int xInc);
545    /** @} */
546
547    /**
548     * Scale one horizontal line of input data using a filter over the input
549     * lines, to produce one (differently sized) line of output data.
550     *
551     * @param dst        pointer to destination buffer for horizontally scaled
552     *                   data. If the number of bits per component of one
553     *                   destination pixel (SwsContext->dstBpc) is <= 10, data
554     *                   will be 15bpc in 16bits (int16_t) width. Else (i.e.
555     *                   SwsContext->dstBpc == 16), data will be 19bpc in
556     *                   32bits (int32_t) width.
557     * @param dstW       width of destination image
558     * @param src        pointer to source data to be scaled. If the number of
559     *                   bits per component of a source pixel (SwsContext->srcBpc)
560     *                   is 8, this is 8bpc in 8bits (uint8_t) width. Else
561     *                   (i.e. SwsContext->dstBpc > 8), this is native depth
562     *                   in 16bits (uint16_t) width. In other words, for 9-bit
563     *                   YUV input, this is 9bpc, for 10-bit YUV input, this is
564     *                   10bpc, and for 16-bit RGB or YUV, this is 16bpc.
565     * @param filter     filter coefficients to be used per output pixel for
566     *                   scaling. This contains 14bpp filtering coefficients.
567     *                   Guaranteed to contain dstW * filterSize entries.
568     * @param filterPos  position of the first input pixel to be used for
569     *                   each output pixel during scaling. Guaranteed to
570     *                   contain dstW entries.
571     * @param filterSize the number of input coefficients to be used (and
572     *                   thus the number of input pixels to be used) for
573     *                   creating a single output pixel. Is aligned to 4
574     *                   (and input coefficients thus padded with zeroes)
575     *                   to simplify creating SIMD code.
576     */
577    /** @{ */
578    void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
579                    const uint8_t *src, const int16_t *filter,
580                    const int32_t *filterPos, int filterSize);
581    void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
582                    const uint8_t *src, const int16_t *filter,
583                    const int32_t *filterPos, int filterSize);
584    /** @} */
585
586    /// Color range conversion function for luma plane if needed.
587    void (*lumConvertRange)(int16_t *dst, int width);
588    /// Color range conversion function for chroma planes if needed.
589    void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
590
591    int needs_hcscale; ///< Set if there are chroma planes to be converted.
592
593    SwsDither dither;
594} SwsContext;
595//FIXME check init (where 0)
596
597SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
598int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
599                             int fullRange, int brightness,
600                             int contrast, int saturation);
601void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
602                                int brightness, int contrast, int saturation);
603
604void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
605                           int lastInLumBuf, int lastInChrBuf);
606
607av_cold void ff_sws_init_range_convert(SwsContext *c);
608
609SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
610SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
611
612#if FF_API_SWS_FORMAT_NAME
613/**
614 * @deprecated Use av_get_pix_fmt_name() instead.
615 */
616attribute_deprecated
617const char *sws_format_name(enum AVPixelFormat format);
618#endif
619
620static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
621{
622    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
623    av_assert0(desc);
624    return desc->comp[0].depth_minus1 == 15;
625}
626
627static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
628{
629    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
630    av_assert0(desc);
631    return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
632}
633
634#define isNBPS(x) is9_OR_10BPS(x)
635
636static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
637{
638    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
639    av_assert0(desc);
640    return desc->flags & AV_PIX_FMT_FLAG_BE;
641}
642
643static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
644{
645    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
646    av_assert0(desc);
647    return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
648}
649
650static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
651{
652    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
653    av_assert0(desc);
654    return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
655}
656
657static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
658{
659    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
660    av_assert0(desc);
661    return (desc->flags & AV_PIX_FMT_FLAG_RGB);
662}
663
664#if 0 // FIXME
665#define isGray(x) \
666    (!(av_pix_fmt_desc_get(x)->flags & AV_PIX_FMT_FLAG_PAL) && \
667     av_pix_fmt_desc_get(x)->nb_components <= 2)
668#else
669#define isGray(x)                      \
670    ((x) == AV_PIX_FMT_GRAY8       ||  \
671     (x) == AV_PIX_FMT_Y400A       ||  \
672     (x) == AV_PIX_FMT_GRAY16BE    ||  \
673     (x) == AV_PIX_FMT_GRAY16LE)
674#endif
675
676#define isRGBinInt(x) \
677    (           \
678     (x) == AV_PIX_FMT_RGB48BE     ||  \
679     (x) == AV_PIX_FMT_RGB48LE     ||  \
680     (x) == AV_PIX_FMT_RGB32       ||  \
681     (x) == AV_PIX_FMT_RGB32_1     ||  \
682     (x) == AV_PIX_FMT_RGB24       ||  \
683     (x) == AV_PIX_FMT_RGB565BE    ||  \
684     (x) == AV_PIX_FMT_RGB565LE    ||  \
685     (x) == AV_PIX_FMT_RGB555BE    ||  \
686     (x) == AV_PIX_FMT_RGB555LE    ||  \
687     (x) == AV_PIX_FMT_RGB444BE    ||  \
688     (x) == AV_PIX_FMT_RGB444LE    ||  \
689     (x) == AV_PIX_FMT_RGB8        ||  \
690     (x) == AV_PIX_FMT_RGB4        ||  \
691     (x) == AV_PIX_FMT_RGB4_BYTE   ||  \
692     (x) == AV_PIX_FMT_RGBA64BE    ||  \
693     (x) == AV_PIX_FMT_RGBA64LE    ||  \
694     (x) == AV_PIX_FMT_MONOBLACK   ||  \
695     (x) == AV_PIX_FMT_MONOWHITE   \
696    )
697#define isBGRinInt(x) \
698    (           \
699     (x) == AV_PIX_FMT_BGR48BE     ||  \
700     (x) == AV_PIX_FMT_BGR48LE     ||  \
701     (x) == AV_PIX_FMT_BGR32       ||  \
702     (x) == AV_PIX_FMT_BGR32_1     ||  \
703     (x) == AV_PIX_FMT_BGR24       ||  \
704     (x) == AV_PIX_FMT_BGR565BE    ||  \
705     (x) == AV_PIX_FMT_BGR565LE    ||  \
706     (x) == AV_PIX_FMT_BGR555BE    ||  \
707     (x) == AV_PIX_FMT_BGR555LE    ||  \
708     (x) == AV_PIX_FMT_BGR444BE    ||  \
709     (x) == AV_PIX_FMT_BGR444LE    ||  \
710     (x) == AV_PIX_FMT_BGR8        ||  \
711     (x) == AV_PIX_FMT_BGR4        ||  \
712     (x) == AV_PIX_FMT_BGR4_BYTE   ||  \
713     (x) == AV_PIX_FMT_BGRA64BE    ||  \
714     (x) == AV_PIX_FMT_BGRA64LE    ||  \
715     (x) == AV_PIX_FMT_MONOBLACK   ||  \
716     (x) == AV_PIX_FMT_MONOWHITE   \
717    )
718
719#define isRGBinBytes(x) (           \
720           (x) == AV_PIX_FMT_RGB48BE     \
721        || (x) == AV_PIX_FMT_RGB48LE     \
722        || (x) == AV_PIX_FMT_RGBA64BE    \
723        || (x) == AV_PIX_FMT_RGBA64LE    \
724        || (x) == AV_PIX_FMT_RGBA        \
725        || (x) == AV_PIX_FMT_ARGB        \
726        || (x) == AV_PIX_FMT_RGB24       \
727    )
728#define isBGRinBytes(x) (           \
729           (x) == AV_PIX_FMT_BGR48BE     \
730        || (x) == AV_PIX_FMT_BGR48LE     \
731        || (x) == AV_PIX_FMT_BGRA64BE    \
732        || (x) == AV_PIX_FMT_BGRA64LE    \
733        || (x) == AV_PIX_FMT_BGRA        \
734        || (x) == AV_PIX_FMT_ABGR        \
735        || (x) == AV_PIX_FMT_BGR24       \
736    )
737
738#define isBayer(x) ( \
739           (x)==AV_PIX_FMT_BAYER_BGGR8    \
740        || (x)==AV_PIX_FMT_BAYER_BGGR16LE \
741        || (x)==AV_PIX_FMT_BAYER_BGGR16BE \
742        || (x)==AV_PIX_FMT_BAYER_RGGB8    \
743        || (x)==AV_PIX_FMT_BAYER_RGGB16LE \
744        || (x)==AV_PIX_FMT_BAYER_RGGB16BE \
745        || (x)==AV_PIX_FMT_BAYER_GBRG8    \
746        || (x)==AV_PIX_FMT_BAYER_GBRG16LE \
747        || (x)==AV_PIX_FMT_BAYER_GBRG16BE \
748        || (x)==AV_PIX_FMT_BAYER_GRBG8    \
749        || (x)==AV_PIX_FMT_BAYER_GRBG16LE \
750        || (x)==AV_PIX_FMT_BAYER_GRBG16BE \
751    )
752
753#define isAnyRGB(x) \
754    (           \
755          isBayer(x)          ||    \
756          isRGBinInt(x)       ||    \
757          isBGRinInt(x)       ||    \
758          isRGB(x)      \
759    )
760
761static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
762{
763    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
764    av_assert0(desc);
765    if (pix_fmt == AV_PIX_FMT_PAL8)
766        return 1;
767    return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
768}
769
770#if 1
771#define isPacked(x)         (       \
772           (x)==AV_PIX_FMT_PAL8        \
773        || (x)==AV_PIX_FMT_YUYV422     \
774        || (x)==AV_PIX_FMT_YVYU422     \
775        || (x)==AV_PIX_FMT_UYVY422     \
776        || (x)==AV_PIX_FMT_Y400A       \
777        ||  isRGBinInt(x)           \
778        ||  isBGRinInt(x)           \
779    )
780#else
781static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
782{
783    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
784    av_assert0(desc);
785    return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
786            pix_fmt == AV_PIX_FMT_PAL8);
787}
788
789#endif
790static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
791{
792    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
793    av_assert0(desc);
794    return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
795}
796
797static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
798{
799    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
800    av_assert0(desc);
801    return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
802}
803
804static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
805{
806    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
807    av_assert0(desc);
808    return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
809            (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
810}
811
812static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
813{
814    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
815    av_assert0(desc);
816    return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);
817}
818
819extern const uint64_t ff_dither4[2];
820extern const uint64_t ff_dither8[2];
821
822extern const uint8_t ff_dither_2x2_4[3][8];
823extern const uint8_t ff_dither_2x2_8[3][8];
824extern const uint8_t ff_dither_4x4_16[5][8];
825extern const uint8_t ff_dither_8x8_32[9][8];
826extern const uint8_t ff_dither_8x8_73[9][8];
827extern const uint8_t ff_dither_8x8_128[9][8];
828extern const uint8_t ff_dither_8x8_220[9][8];
829
830extern const int32_t ff_yuv2rgb_coeffs[8][4];
831
832extern const AVClass sws_context_class;
833
834/**
835 * Set c->swscale to an unscaled converter if one exists for the specific
836 * source and destination formats, bit depths, flags, etc.
837 */
838void ff_get_unscaled_swscale(SwsContext *c);
839void ff_get_unscaled_swscale_ppc(SwsContext *c);
840void ff_get_unscaled_swscale_arm(SwsContext *c);
841
842/**
843 * Return function pointer to fastest main scaler path function depending
844 * on architecture and available optimizations.
845 */
846SwsFunc ff_getSwsFunc(SwsContext *c);
847
848void ff_sws_init_input_funcs(SwsContext *c);
849void ff_sws_init_output_funcs(SwsContext *c,
850                              yuv2planar1_fn *yuv2plane1,
851                              yuv2planarX_fn *yuv2planeX,
852                              yuv2interleavedX_fn *yuv2nv12cX,
853                              yuv2packed1_fn *yuv2packed1,
854                              yuv2packed2_fn *yuv2packed2,
855                              yuv2packedX_fn *yuv2packedX,
856                              yuv2anyX_fn *yuv2anyX);
857void ff_sws_init_swscale_ppc(SwsContext *c);
858void ff_sws_init_swscale_x86(SwsContext *c);
859
860static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
861                               int alpha, int bits, const int big_endian)
862{
863    int i, j;
864    uint8_t *ptr = plane + stride * y;
865    int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
866    for (i = 0; i < height; i++) {
867#define FILL(wfunc) \
868        for (j = 0; j < width; j++) {\
869            wfunc(ptr+2*j, v);\
870        }
871        if (big_endian) {
872            FILL(AV_WB16);
873        } else {
874            FILL(AV_WL16);
875        }
876        ptr += stride;
877    }
878}
879
880#endif /* SWSCALE_SWSCALE_INTERNAL_H */
881