1/*
2 * Copyright (c) 2012 Pavel Koshevoy <pkoshevoy at gmail dot com>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * tempo scaling audio filter -- an implementation of WSOLA algorithm
24 *
25 * Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h
26 * from Apprentice Video player by Pavel Koshevoy.
27 * https://sourceforge.net/projects/apprenticevideo/
28 *
29 * An explanation of SOLA algorithm is available at
30 * http://www.surina.net/article/time-and-pitch-scaling.html
31 *
32 * WSOLA is very similar to SOLA, only one major difference exists between
33 * these algorithms.  SOLA shifts audio fragments along the output stream,
34 * where as WSOLA shifts audio fragments along the input stream.
35 *
36 * The advantage of WSOLA algorithm is that the overlap region size is
37 * always the same, therefore the blending function is constant and
38 * can be precomputed.
39 */
40
41#include <float.h>
42#include "libavcodec/avfft.h"
43#include "libavutil/avassert.h"
44#include "libavutil/avstring.h"
45#include "libavutil/channel_layout.h"
46#include "libavutil/eval.h"
47#include "libavutil/opt.h"
48#include "libavutil/samplefmt.h"
49#include "avfilter.h"
50#include "audio.h"
51#include "internal.h"
52
53/**
54 * A fragment of audio waveform
55 */
56typedef struct {
57    // index of the first sample of this fragment in the overall waveform;
58    // 0: input sample position
59    // 1: output sample position
60    int64_t position[2];
61
62    // original packed multi-channel samples:
63    uint8_t *data;
64
65    // number of samples in this fragment:
66    int nsamples;
67
68    // rDFT transform of the down-mixed mono fragment, used for
69    // fast waveform alignment via correlation in frequency domain:
70    FFTSample *xdat;
71} AudioFragment;
72
73/**
74 * Filter state machine states
75 */
76typedef enum {
77    YAE_LOAD_FRAGMENT,
78    YAE_ADJUST_POSITION,
79    YAE_RELOAD_FRAGMENT,
80    YAE_OUTPUT_OVERLAP_ADD,
81    YAE_FLUSH_OUTPUT,
82} FilterState;
83
84/**
85 * Filter state machine
86 */
87typedef struct {
88    const AVClass *class;
89
90    // ring-buffer of input samples, necessary because some times
91    // input fragment position may be adjusted backwards:
92    uint8_t *buffer;
93
94    // ring-buffer maximum capacity, expressed in sample rate time base:
95    int ring;
96
97    // ring-buffer house keeping:
98    int size;
99    int head;
100    int tail;
101
102    // 0: input sample position corresponding to the ring buffer tail
103    // 1: output sample position
104    int64_t position[2];
105
106    // sample format:
107    enum AVSampleFormat format;
108
109    // number of channels:
110    int channels;
111
112    // row of bytes to skip from one sample to next, across multple channels;
113    // stride = (number-of-channels * bits-per-sample-per-channel) / 8
114    int stride;
115
116    // fragment window size, power-of-two integer:
117    int window;
118
119    // Hann window coefficients, for feathering
120    // (blending) the overlapping fragment region:
121    float *hann;
122
123    // tempo scaling factor:
124    double tempo;
125
126    // a snapshot of previous fragment input and output position values
127    // captured when the tempo scale factor was set most recently:
128    int64_t origin[2];
129
130    // current/previous fragment ring-buffer:
131    AudioFragment frag[2];
132
133    // current fragment index:
134    uint64_t nfrag;
135
136    // current state:
137    FilterState state;
138
139    // for fast correlation calculation in frequency domain:
140    RDFTContext *real_to_complex;
141    RDFTContext *complex_to_real;
142    FFTSample *correlation;
143
144    // for managing AVFilterPad.request_frame and AVFilterPad.filter_frame
145    AVFrame *dst_buffer;
146    uint8_t *dst;
147    uint8_t *dst_end;
148    uint64_t nsamples_in;
149    uint64_t nsamples_out;
150} ATempoContext;
151
152#define OFFSET(x) offsetof(ATempoContext, x)
153
154static const AVOption atempo_options[] = {
155    { "tempo", "set tempo scale factor",
156      OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 0.5, 2.0,
157      AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM },
158    { NULL }
159};
160
161AVFILTER_DEFINE_CLASS(atempo);
162
163inline static AudioFragment *yae_curr_frag(ATempoContext *atempo)
164{
165    return &atempo->frag[atempo->nfrag % 2];
166}
167
168inline static AudioFragment *yae_prev_frag(ATempoContext *atempo)
169{
170    return &atempo->frag[(atempo->nfrag + 1) % 2];
171}
172
173/**
174 * Reset filter to initial state, do not deallocate existing local buffers.
175 */
176static void yae_clear(ATempoContext *atempo)
177{
178    atempo->size = 0;
179    atempo->head = 0;
180    atempo->tail = 0;
181
182    atempo->nfrag = 0;
183    atempo->state = YAE_LOAD_FRAGMENT;
184
185    atempo->position[0] = 0;
186    atempo->position[1] = 0;
187
188    atempo->origin[0] = 0;
189    atempo->origin[1] = 0;
190
191    atempo->frag[0].position[0] = 0;
192    atempo->frag[0].position[1] = 0;
193    atempo->frag[0].nsamples    = 0;
194
195    atempo->frag[1].position[0] = 0;
196    atempo->frag[1].position[1] = 0;
197    atempo->frag[1].nsamples    = 0;
198
199    // shift left position of 1st fragment by half a window
200    // so that no re-normalization would be required for
201    // the left half of the 1st fragment:
202    atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2);
203    atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2);
204
205    av_frame_free(&atempo->dst_buffer);
206    atempo->dst     = NULL;
207    atempo->dst_end = NULL;
208
209    atempo->nsamples_in       = 0;
210    atempo->nsamples_out      = 0;
211}
212
213/**
214 * Reset filter to initial state and deallocate all buffers.
215 */
216static void yae_release_buffers(ATempoContext *atempo)
217{
218    yae_clear(atempo);
219
220    av_freep(&atempo->frag[0].data);
221    av_freep(&atempo->frag[1].data);
222    av_freep(&atempo->frag[0].xdat);
223    av_freep(&atempo->frag[1].xdat);
224
225    av_freep(&atempo->buffer);
226    av_freep(&atempo->hann);
227    av_freep(&atempo->correlation);
228
229    av_rdft_end(atempo->real_to_complex);
230    atempo->real_to_complex = NULL;
231
232    av_rdft_end(atempo->complex_to_real);
233    atempo->complex_to_real = NULL;
234}
235
236/* av_realloc is not aligned enough; fortunately, the data does not need to
237 * be preserved */
238#define RE_MALLOC_OR_FAIL(field, field_size)                    \
239    do {                                                        \
240        av_freep(&field);                                       \
241        field = av_malloc(field_size);                          \
242        if (!field) {                                           \
243            yae_release_buffers(atempo);                        \
244            return AVERROR(ENOMEM);                             \
245        }                                                       \
246    } while (0)
247
248/**
249 * Prepare filter for processing audio data of given format,
250 * sample rate and number of channels.
251 */
252static int yae_reset(ATempoContext *atempo,
253                     enum AVSampleFormat format,
254                     int sample_rate,
255                     int channels)
256{
257    const int sample_size = av_get_bytes_per_sample(format);
258    uint32_t nlevels  = 0;
259    uint32_t pot;
260    int i;
261
262    atempo->format   = format;
263    atempo->channels = channels;
264    atempo->stride   = sample_size * channels;
265
266    // pick a segment window size:
267    atempo->window = sample_rate / 24;
268
269    // adjust window size to be a power-of-two integer:
270    nlevels = av_log2(atempo->window);
271    pot = 1 << nlevels;
272    av_assert0(pot <= atempo->window);
273
274    if (pot < atempo->window) {
275        atempo->window = pot * 2;
276        nlevels++;
277    }
278
279    // initialize audio fragment buffers:
280    RE_MALLOC_OR_FAIL(atempo->frag[0].data, atempo->window * atempo->stride);
281    RE_MALLOC_OR_FAIL(atempo->frag[1].data, atempo->window * atempo->stride);
282    RE_MALLOC_OR_FAIL(atempo->frag[0].xdat, atempo->window * sizeof(FFTComplex));
283    RE_MALLOC_OR_FAIL(atempo->frag[1].xdat, atempo->window * sizeof(FFTComplex));
284
285    // initialize rDFT contexts:
286    av_rdft_end(atempo->real_to_complex);
287    atempo->real_to_complex = NULL;
288
289    av_rdft_end(atempo->complex_to_real);
290    atempo->complex_to_real = NULL;
291
292    atempo->real_to_complex = av_rdft_init(nlevels + 1, DFT_R2C);
293    if (!atempo->real_to_complex) {
294        yae_release_buffers(atempo);
295        return AVERROR(ENOMEM);
296    }
297
298    atempo->complex_to_real = av_rdft_init(nlevels + 1, IDFT_C2R);
299    if (!atempo->complex_to_real) {
300        yae_release_buffers(atempo);
301        return AVERROR(ENOMEM);
302    }
303
304    RE_MALLOC_OR_FAIL(atempo->correlation, atempo->window * sizeof(FFTComplex));
305
306    atempo->ring = atempo->window * 3;
307    RE_MALLOC_OR_FAIL(atempo->buffer, atempo->ring * atempo->stride);
308
309    // initialize the Hann window function:
310    RE_MALLOC_OR_FAIL(atempo->hann, atempo->window * sizeof(float));
311
312    for (i = 0; i < atempo->window; i++) {
313        double t = (double)i / (double)(atempo->window - 1);
314        double h = 0.5 * (1.0 - cos(2.0 * M_PI * t));
315        atempo->hann[i] = (float)h;
316    }
317
318    yae_clear(atempo);
319    return 0;
320}
321
322static int yae_set_tempo(AVFilterContext *ctx, const char *arg_tempo)
323{
324    const AudioFragment *prev;
325    ATempoContext *atempo = ctx->priv;
326    char   *tail = NULL;
327    double tempo = av_strtod(arg_tempo, &tail);
328
329    if (tail && *tail) {
330        av_log(ctx, AV_LOG_ERROR, "Invalid tempo value '%s'\n", arg_tempo);
331        return AVERROR(EINVAL);
332    }
333
334    if (tempo < 0.5 || tempo > 2.0) {
335        av_log(ctx, AV_LOG_ERROR, "Tempo value %f exceeds [0.5, 2.0] range\n",
336               tempo);
337        return AVERROR(EINVAL);
338    }
339
340    prev = yae_prev_frag(atempo);
341    atempo->origin[0] = prev->position[0] + atempo->window / 2;
342    atempo->origin[1] = prev->position[1] + atempo->window / 2;
343    atempo->tempo = tempo;
344    return 0;
345}
346
347/**
348 * A helper macro for initializing complex data buffer with scalar data
349 * of a given type.
350 */
351#define yae_init_xdat(scalar_type, scalar_max)                          \
352    do {                                                                \
353        const uint8_t *src_end = src +                                  \
354            frag->nsamples * atempo->channels * sizeof(scalar_type);    \
355                                                                        \
356        FFTSample *xdat = frag->xdat;                                   \
357        scalar_type tmp;                                                \
358                                                                        \
359        if (atempo->channels == 1) {                                    \
360            for (; src < src_end; xdat++) {                             \
361                tmp = *(const scalar_type *)src;                        \
362                src += sizeof(scalar_type);                             \
363                                                                        \
364                *xdat = (FFTSample)tmp;                                 \
365            }                                                           \
366        } else {                                                        \
367            FFTSample s, max, ti, si;                                   \
368            int i;                                                      \
369                                                                        \
370            for (; src < src_end; xdat++) {                             \
371                tmp = *(const scalar_type *)src;                        \
372                src += sizeof(scalar_type);                             \
373                                                                        \
374                max = (FFTSample)tmp;                                   \
375                s = FFMIN((FFTSample)scalar_max,                        \
376                          (FFTSample)fabsf(max));                       \
377                                                                        \
378                for (i = 1; i < atempo->channels; i++) {                \
379                    tmp = *(const scalar_type *)src;                    \
380                    src += sizeof(scalar_type);                         \
381                                                                        \
382                    ti = (FFTSample)tmp;                                \
383                    si = FFMIN((FFTSample)scalar_max,                   \
384                               (FFTSample)fabsf(ti));                   \
385                                                                        \
386                    if (s < si) {                                       \
387                        s   = si;                                       \
388                        max = ti;                                       \
389                    }                                                   \
390                }                                                       \
391                                                                        \
392                *xdat = max;                                            \
393            }                                                           \
394        }                                                               \
395    } while (0)
396
397/**
398 * Initialize complex data buffer of a given audio fragment
399 * with down-mixed mono data of appropriate scalar type.
400 */
401static void yae_downmix(ATempoContext *atempo, AudioFragment *frag)
402{
403    // shortcuts:
404    const uint8_t *src = frag->data;
405
406    // init complex data buffer used for FFT and Correlation:
407    memset(frag->xdat, 0, sizeof(FFTComplex) * atempo->window);
408
409    if (atempo->format == AV_SAMPLE_FMT_U8) {
410        yae_init_xdat(uint8_t, 127);
411    } else if (atempo->format == AV_SAMPLE_FMT_S16) {
412        yae_init_xdat(int16_t, 32767);
413    } else if (atempo->format == AV_SAMPLE_FMT_S32) {
414        yae_init_xdat(int, 2147483647);
415    } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
416        yae_init_xdat(float, 1);
417    } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
418        yae_init_xdat(double, 1);
419    }
420}
421
422/**
423 * Populate the internal data buffer on as-needed basis.
424 *
425 * @return
426 *   0 if requested data was already available or was successfully loaded,
427 *   AVERROR(EAGAIN) if more input data is required.
428 */
429static int yae_load_data(ATempoContext *atempo,
430                         const uint8_t **src_ref,
431                         const uint8_t *src_end,
432                         int64_t stop_here)
433{
434    // shortcut:
435    const uint8_t *src = *src_ref;
436    const int read_size = stop_here - atempo->position[0];
437
438    if (stop_here <= atempo->position[0]) {
439        return 0;
440    }
441
442    // samples are not expected to be skipped:
443    av_assert0(read_size <= atempo->ring);
444
445    while (atempo->position[0] < stop_here && src < src_end) {
446        int src_samples = (src_end - src) / atempo->stride;
447
448        // load data piece-wise, in order to avoid complicating the logic:
449        int nsamples = FFMIN(read_size, src_samples);
450        int na;
451        int nb;
452
453        nsamples = FFMIN(nsamples, atempo->ring);
454        na = FFMIN(nsamples, atempo->ring - atempo->tail);
455        nb = FFMIN(nsamples - na, atempo->ring);
456
457        if (na) {
458            uint8_t *a = atempo->buffer + atempo->tail * atempo->stride;
459            memcpy(a, src, na * atempo->stride);
460
461            src += na * atempo->stride;
462            atempo->position[0] += na;
463
464            atempo->size = FFMIN(atempo->size + na, atempo->ring);
465            atempo->tail = (atempo->tail + na) % atempo->ring;
466            atempo->head =
467                atempo->size < atempo->ring ?
468                atempo->tail - atempo->size :
469                atempo->tail;
470        }
471
472        if (nb) {
473            uint8_t *b = atempo->buffer;
474            memcpy(b, src, nb * atempo->stride);
475
476            src += nb * atempo->stride;
477            atempo->position[0] += nb;
478
479            atempo->size = FFMIN(atempo->size + nb, atempo->ring);
480            atempo->tail = (atempo->tail + nb) % atempo->ring;
481            atempo->head =
482                atempo->size < atempo->ring ?
483                atempo->tail - atempo->size :
484                atempo->tail;
485        }
486    }
487
488    // pass back the updated source buffer pointer:
489    *src_ref = src;
490
491    // sanity check:
492    av_assert0(atempo->position[0] <= stop_here);
493
494    return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN);
495}
496
497/**
498 * Populate current audio fragment data buffer.
499 *
500 * @return
501 *   0 when the fragment is ready,
502 *   AVERROR(EAGAIN) if more input data is required.
503 */
504static int yae_load_frag(ATempoContext *atempo,
505                         const uint8_t **src_ref,
506                         const uint8_t *src_end)
507{
508    // shortcuts:
509    AudioFragment *frag = yae_curr_frag(atempo);
510    uint8_t *dst;
511    int64_t missing, start, zeros;
512    uint32_t nsamples;
513    const uint8_t *a, *b;
514    int i0, i1, n0, n1, na, nb;
515
516    int64_t stop_here = frag->position[0] + atempo->window;
517    if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) {
518        return AVERROR(EAGAIN);
519    }
520
521    // calculate the number of samples we don't have:
522    missing =
523        stop_here > atempo->position[0] ?
524        stop_here - atempo->position[0] : 0;
525
526    nsamples =
527        missing < (int64_t)atempo->window ?
528        (uint32_t)(atempo->window - missing) : 0;
529
530    // setup the output buffer:
531    frag->nsamples = nsamples;
532    dst = frag->data;
533
534    start = atempo->position[0] - atempo->size;
535    zeros = 0;
536
537    if (frag->position[0] < start) {
538        // what we don't have we substitute with zeros:
539        zeros = FFMIN(start - frag->position[0], (int64_t)nsamples);
540        av_assert0(zeros != nsamples);
541
542        memset(dst, 0, zeros * atempo->stride);
543        dst += zeros * atempo->stride;
544    }
545
546    if (zeros == nsamples) {
547        return 0;
548    }
549
550    // get the remaining data from the ring buffer:
551    na = (atempo->head < atempo->tail ?
552          atempo->tail - atempo->head :
553          atempo->ring - atempo->head);
554
555    nb = atempo->head < atempo->tail ? 0 : atempo->tail;
556
557    // sanity check:
558    av_assert0(nsamples <= zeros + na + nb);
559
560    a = atempo->buffer + atempo->head * atempo->stride;
561    b = atempo->buffer;
562
563    i0 = frag->position[0] + zeros - start;
564    i1 = i0 < na ? 0 : i0 - na;
565
566    n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0;
567    n1 = nsamples - zeros - n0;
568
569    if (n0) {
570        memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride);
571        dst += n0 * atempo->stride;
572    }
573
574    if (n1) {
575        memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride);
576    }
577
578    return 0;
579}
580
581/**
582 * Prepare for loading next audio fragment.
583 */
584static void yae_advance_to_next_frag(ATempoContext *atempo)
585{
586    const double fragment_step = atempo->tempo * (double)(atempo->window / 2);
587
588    const AudioFragment *prev;
589    AudioFragment       *frag;
590
591    atempo->nfrag++;
592    prev = yae_prev_frag(atempo);
593    frag = yae_curr_frag(atempo);
594
595    frag->position[0] = prev->position[0] + (int64_t)fragment_step;
596    frag->position[1] = prev->position[1] + atempo->window / 2;
597    frag->nsamples    = 0;
598}
599
600/**
601 * Calculate cross-correlation via rDFT.
602 *
603 * Multiply two vectors of complex numbers (result of real_to_complex rDFT)
604 * and transform back via complex_to_real rDFT.
605 */
606static void yae_xcorr_via_rdft(FFTSample *xcorr,
607                               RDFTContext *complex_to_real,
608                               const FFTComplex *xa,
609                               const FFTComplex *xb,
610                               const int window)
611{
612    FFTComplex *xc = (FFTComplex *)xcorr;
613    int i;
614
615    // NOTE: first element requires special care -- Given Y = rDFT(X),
616    // Im(Y[0]) and Im(Y[N/2]) are always zero, therefore av_rdft_calc
617    // stores Re(Y[N/2]) in place of Im(Y[0]).
618
619    xc->re = xa->re * xb->re;
620    xc->im = xa->im * xb->im;
621    xa++;
622    xb++;
623    xc++;
624
625    for (i = 1; i < window; i++, xa++, xb++, xc++) {
626        xc->re = (xa->re * xb->re + xa->im * xb->im);
627        xc->im = (xa->im * xb->re - xa->re * xb->im);
628    }
629
630    // apply inverse rDFT:
631    av_rdft_calc(complex_to_real, xcorr);
632}
633
634/**
635 * Calculate alignment offset for given fragment
636 * relative to the previous fragment.
637 *
638 * @return alignment offset of current fragment relative to previous.
639 */
640static int yae_align(AudioFragment *frag,
641                     const AudioFragment *prev,
642                     const int window,
643                     const int delta_max,
644                     const int drift,
645                     FFTSample *correlation,
646                     RDFTContext *complex_to_real)
647{
648    int       best_offset = -drift;
649    FFTSample best_metric = -FLT_MAX;
650    FFTSample *xcorr;
651
652    int i0;
653    int i1;
654    int i;
655
656    yae_xcorr_via_rdft(correlation,
657                       complex_to_real,
658                       (const FFTComplex *)prev->xdat,
659                       (const FFTComplex *)frag->xdat,
660                       window);
661
662    // identify search window boundaries:
663    i0 = FFMAX(window / 2 - delta_max - drift, 0);
664    i0 = FFMIN(i0, window);
665
666    i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16);
667    i1 = FFMAX(i1, 0);
668
669    // identify cross-correlation peaks within search window:
670    xcorr = correlation + i0;
671
672    for (i = i0; i < i1; i++, xcorr++) {
673        FFTSample metric = *xcorr;
674
675        // normalize:
676        FFTSample drifti = (FFTSample)(drift + i);
677        metric *= drifti * (FFTSample)(i - i0) * (FFTSample)(i1 - i);
678
679        if (metric > best_metric) {
680            best_metric = metric;
681            best_offset = i - window / 2;
682        }
683    }
684
685    return best_offset;
686}
687
688/**
689 * Adjust current fragment position for better alignment
690 * with previous fragment.
691 *
692 * @return alignment correction.
693 */
694static int yae_adjust_position(ATempoContext *atempo)
695{
696    const AudioFragment *prev = yae_prev_frag(atempo);
697    AudioFragment       *frag = yae_curr_frag(atempo);
698
699    const double prev_output_position =
700        (double)(prev->position[1] - atempo->origin[1] + atempo->window / 2);
701
702    const double ideal_output_position =
703        (double)(prev->position[0] - atempo->origin[0] + atempo->window / 2) /
704        atempo->tempo;
705
706    const int drift = (int)(prev_output_position - ideal_output_position);
707
708    const int delta_max  = atempo->window / 2;
709    const int correction = yae_align(frag,
710                                     prev,
711                                     atempo->window,
712                                     delta_max,
713                                     drift,
714                                     atempo->correlation,
715                                     atempo->complex_to_real);
716
717    if (correction) {
718        // adjust fragment position:
719        frag->position[0] -= correction;
720
721        // clear so that the fragment can be reloaded:
722        frag->nsamples = 0;
723    }
724
725    return correction;
726}
727
728/**
729 * A helper macro for blending the overlap region of previous
730 * and current audio fragment.
731 */
732#define yae_blend(scalar_type)                                          \
733    do {                                                                \
734        const scalar_type *aaa = (const scalar_type *)a;                \
735        const scalar_type *bbb = (const scalar_type *)b;                \
736                                                                        \
737        scalar_type *out     = (scalar_type *)dst;                      \
738        scalar_type *out_end = (scalar_type *)dst_end;                  \
739        int64_t i;                                                      \
740                                                                        \
741        for (i = 0; i < overlap && out < out_end;                       \
742             i++, atempo->position[1]++, wa++, wb++) {                  \
743            float w0 = *wa;                                             \
744            float w1 = *wb;                                             \
745            int j;                                                      \
746                                                                        \
747            for (j = 0; j < atempo->channels;                           \
748                 j++, aaa++, bbb++, out++) {                            \
749                float t0 = (float)*aaa;                                 \
750                float t1 = (float)*bbb;                                 \
751                                                                        \
752                *out =                                                  \
753                    frag->position[0] + i < 0 ?                         \
754                    *aaa :                                              \
755                    (scalar_type)(t0 * w0 + t1 * w1);                   \
756            }                                                           \
757        }                                                               \
758        dst = (uint8_t *)out;                                           \
759    } while (0)
760
761/**
762 * Blend the overlap region of previous and current audio fragment
763 * and output the results to the given destination buffer.
764 *
765 * @return
766 *   0 if the overlap region was completely stored in the dst buffer,
767 *   AVERROR(EAGAIN) if more destination buffer space is required.
768 */
769static int yae_overlap_add(ATempoContext *atempo,
770                           uint8_t **dst_ref,
771                           uint8_t *dst_end)
772{
773    // shortcuts:
774    const AudioFragment *prev = yae_prev_frag(atempo);
775    const AudioFragment *frag = yae_curr_frag(atempo);
776
777    const int64_t start_here = FFMAX(atempo->position[1],
778                                     frag->position[1]);
779
780    const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples,
781                                    frag->position[1] + frag->nsamples);
782
783    const int64_t overlap = stop_here - start_here;
784
785    const int64_t ia = start_here - prev->position[1];
786    const int64_t ib = start_here - frag->position[1];
787
788    const float *wa = atempo->hann + ia;
789    const float *wb = atempo->hann + ib;
790
791    const uint8_t *a = prev->data + ia * atempo->stride;
792    const uint8_t *b = frag->data + ib * atempo->stride;
793
794    uint8_t *dst = *dst_ref;
795
796    av_assert0(start_here <= stop_here &&
797               frag->position[1] <= start_here &&
798               overlap <= frag->nsamples);
799
800    if (atempo->format == AV_SAMPLE_FMT_U8) {
801        yae_blend(uint8_t);
802    } else if (atempo->format == AV_SAMPLE_FMT_S16) {
803        yae_blend(int16_t);
804    } else if (atempo->format == AV_SAMPLE_FMT_S32) {
805        yae_blend(int);
806    } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
807        yae_blend(float);
808    } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
809        yae_blend(double);
810    }
811
812    // pass-back the updated destination buffer pointer:
813    *dst_ref = dst;
814
815    return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
816}
817
818/**
819 * Feed as much data to the filter as it is able to consume
820 * and receive as much processed data in the destination buffer
821 * as it is able to produce or store.
822 */
823static void
824yae_apply(ATempoContext *atempo,
825          const uint8_t **src_ref,
826          const uint8_t *src_end,
827          uint8_t **dst_ref,
828          uint8_t *dst_end)
829{
830    while (1) {
831        if (atempo->state == YAE_LOAD_FRAGMENT) {
832            // load additional data for the current fragment:
833            if (yae_load_frag(atempo, src_ref, src_end) != 0) {
834                break;
835            }
836
837            // down-mix to mono:
838            yae_downmix(atempo, yae_curr_frag(atempo));
839
840            // apply rDFT:
841            av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
842
843            // must load the second fragment before alignment can start:
844            if (!atempo->nfrag) {
845                yae_advance_to_next_frag(atempo);
846                continue;
847            }
848
849            atempo->state = YAE_ADJUST_POSITION;
850        }
851
852        if (atempo->state == YAE_ADJUST_POSITION) {
853            // adjust position for better alignment:
854            if (yae_adjust_position(atempo)) {
855                // reload the fragment at the corrected position, so that the
856                // Hann window blending would not require normalization:
857                atempo->state = YAE_RELOAD_FRAGMENT;
858            } else {
859                atempo->state = YAE_OUTPUT_OVERLAP_ADD;
860            }
861        }
862
863        if (atempo->state == YAE_RELOAD_FRAGMENT) {
864            // load additional data if necessary due to position adjustment:
865            if (yae_load_frag(atempo, src_ref, src_end) != 0) {
866                break;
867            }
868
869            // down-mix to mono:
870            yae_downmix(atempo, yae_curr_frag(atempo));
871
872            // apply rDFT:
873            av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
874
875            atempo->state = YAE_OUTPUT_OVERLAP_ADD;
876        }
877
878        if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) {
879            // overlap-add and output the result:
880            if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
881                break;
882            }
883
884            // advance to the next fragment, repeat:
885            yae_advance_to_next_frag(atempo);
886            atempo->state = YAE_LOAD_FRAGMENT;
887        }
888    }
889}
890
891/**
892 * Flush any buffered data from the filter.
893 *
894 * @return
895 *   0 if all data was completely stored in the dst buffer,
896 *   AVERROR(EAGAIN) if more destination buffer space is required.
897 */
898static int yae_flush(ATempoContext *atempo,
899                     uint8_t **dst_ref,
900                     uint8_t *dst_end)
901{
902    AudioFragment *frag = yae_curr_frag(atempo);
903    int64_t overlap_end;
904    int64_t start_here;
905    int64_t stop_here;
906    int64_t offset;
907
908    const uint8_t *src;
909    uint8_t *dst;
910
911    int src_size;
912    int dst_size;
913    int nbytes;
914
915    atempo->state = YAE_FLUSH_OUTPUT;
916
917    if (atempo->position[0] == frag->position[0] + frag->nsamples &&
918        atempo->position[1] == frag->position[1] + frag->nsamples) {
919        // the current fragment is already flushed:
920        return 0;
921    }
922
923    if (frag->position[0] + frag->nsamples < atempo->position[0]) {
924        // finish loading the current (possibly partial) fragment:
925        yae_load_frag(atempo, NULL, NULL);
926
927        if (atempo->nfrag) {
928            // down-mix to mono:
929            yae_downmix(atempo, frag);
930
931            // apply rDFT:
932            av_rdft_calc(atempo->real_to_complex, frag->xdat);
933
934            // align current fragment to previous fragment:
935            if (yae_adjust_position(atempo)) {
936                // reload the current fragment due to adjusted position:
937                yae_load_frag(atempo, NULL, NULL);
938            }
939        }
940    }
941
942    // flush the overlap region:
943    overlap_end = frag->position[1] + FFMIN(atempo->window / 2,
944                                            frag->nsamples);
945
946    while (atempo->position[1] < overlap_end) {
947        if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
948            return AVERROR(EAGAIN);
949        }
950    }
951
952    // flush the remaininder of the current fragment:
953    start_here = FFMAX(atempo->position[1], overlap_end);
954    stop_here  = frag->position[1] + frag->nsamples;
955    offset     = start_here - frag->position[1];
956    av_assert0(start_here <= stop_here && frag->position[1] <= start_here);
957
958    src = frag->data + offset * atempo->stride;
959    dst = (uint8_t *)*dst_ref;
960
961    src_size = (int)(stop_here - start_here) * atempo->stride;
962    dst_size = dst_end - dst;
963    nbytes = FFMIN(src_size, dst_size);
964
965    memcpy(dst, src, nbytes);
966    dst += nbytes;
967
968    atempo->position[1] += (nbytes / atempo->stride);
969
970    // pass-back the updated destination buffer pointer:
971    *dst_ref = (uint8_t *)dst;
972
973    return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
974}
975
976static av_cold int init(AVFilterContext *ctx)
977{
978    ATempoContext *atempo = ctx->priv;
979    atempo->format = AV_SAMPLE_FMT_NONE;
980    atempo->state  = YAE_LOAD_FRAGMENT;
981    return 0;
982}
983
984static av_cold void uninit(AVFilterContext *ctx)
985{
986    ATempoContext *atempo = ctx->priv;
987    yae_release_buffers(atempo);
988}
989
990static int query_formats(AVFilterContext *ctx)
991{
992    AVFilterChannelLayouts *layouts = NULL;
993    AVFilterFormats        *formats = NULL;
994
995    // WSOLA necessitates an internal sliding window ring buffer
996    // for incoming audio stream.
997    //
998    // Planar sample formats are too cumbersome to store in a ring buffer,
999    // therefore planar sample formats are not supported.
1000    //
1001    static const enum AVSampleFormat sample_fmts[] = {
1002        AV_SAMPLE_FMT_U8,
1003        AV_SAMPLE_FMT_S16,
1004        AV_SAMPLE_FMT_S32,
1005        AV_SAMPLE_FMT_FLT,
1006        AV_SAMPLE_FMT_DBL,
1007        AV_SAMPLE_FMT_NONE
1008    };
1009
1010    layouts = ff_all_channel_layouts();
1011    if (!layouts) {
1012        return AVERROR(ENOMEM);
1013    }
1014    ff_set_common_channel_layouts(ctx, layouts);
1015
1016    formats = ff_make_format_list(sample_fmts);
1017    if (!formats) {
1018        return AVERROR(ENOMEM);
1019    }
1020    ff_set_common_formats(ctx, formats);
1021
1022    formats = ff_all_samplerates();
1023    if (!formats) {
1024        return AVERROR(ENOMEM);
1025    }
1026    ff_set_common_samplerates(ctx, formats);
1027
1028    return 0;
1029}
1030
1031static int config_props(AVFilterLink *inlink)
1032{
1033    AVFilterContext  *ctx = inlink->dst;
1034    ATempoContext *atempo = ctx->priv;
1035
1036    enum AVSampleFormat format = inlink->format;
1037    int sample_rate = (int)inlink->sample_rate;
1038    int channels = av_get_channel_layout_nb_channels(inlink->channel_layout);
1039
1040    ctx->outputs[0]->flags |= FF_LINK_FLAG_REQUEST_LOOP;
1041
1042    return yae_reset(atempo, format, sample_rate, channels);
1043}
1044
1045static int push_samples(ATempoContext *atempo,
1046                        AVFilterLink *outlink,
1047                        int n_out)
1048{
1049    int ret;
1050
1051    atempo->dst_buffer->sample_rate = outlink->sample_rate;
1052    atempo->dst_buffer->nb_samples  = n_out;
1053
1054    // adjust the PTS:
1055    atempo->dst_buffer->pts =
1056        av_rescale_q(atempo->nsamples_out,
1057                     (AVRational){ 1, outlink->sample_rate },
1058                     outlink->time_base);
1059
1060    ret = ff_filter_frame(outlink, atempo->dst_buffer);
1061    atempo->dst_buffer = NULL;
1062    atempo->dst        = NULL;
1063    atempo->dst_end    = NULL;
1064    if (ret < 0)
1065        return ret;
1066
1067    atempo->nsamples_out += n_out;
1068    return 0;
1069}
1070
1071static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer)
1072{
1073    AVFilterContext  *ctx = inlink->dst;
1074    ATempoContext *atempo = ctx->priv;
1075    AVFilterLink *outlink = ctx->outputs[0];
1076
1077    int ret = 0;
1078    int n_in = src_buffer->nb_samples;
1079    int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo);
1080
1081    const uint8_t *src = src_buffer->data[0];
1082    const uint8_t *src_end = src + n_in * atempo->stride;
1083
1084    while (src < src_end) {
1085        if (!atempo->dst_buffer) {
1086            atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out);
1087            if (!atempo->dst_buffer)
1088                return AVERROR(ENOMEM);
1089            av_frame_copy_props(atempo->dst_buffer, src_buffer);
1090
1091            atempo->dst = atempo->dst_buffer->data[0];
1092            atempo->dst_end = atempo->dst + n_out * atempo->stride;
1093        }
1094
1095        yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end);
1096
1097        if (atempo->dst == atempo->dst_end) {
1098            int n_samples = ((atempo->dst - atempo->dst_buffer->data[0]) /
1099                             atempo->stride);
1100            ret = push_samples(atempo, outlink, n_samples);
1101            if (ret < 0)
1102                goto end;
1103        }
1104    }
1105
1106    atempo->nsamples_in += n_in;
1107end:
1108    av_frame_free(&src_buffer);
1109    return ret;
1110}
1111
1112static int request_frame(AVFilterLink *outlink)
1113{
1114    AVFilterContext  *ctx = outlink->src;
1115    ATempoContext *atempo = ctx->priv;
1116    int ret;
1117
1118    ret = ff_request_frame(ctx->inputs[0]);
1119
1120    if (ret == AVERROR_EOF) {
1121        // flush the filter:
1122        int n_max = atempo->ring;
1123        int n_out;
1124        int err = AVERROR(EAGAIN);
1125
1126        while (err == AVERROR(EAGAIN)) {
1127            if (!atempo->dst_buffer) {
1128                atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max);
1129                if (!atempo->dst_buffer)
1130                    return AVERROR(ENOMEM);
1131
1132                atempo->dst = atempo->dst_buffer->data[0];
1133                atempo->dst_end = atempo->dst + n_max * atempo->stride;
1134            }
1135
1136            err = yae_flush(atempo, &atempo->dst, atempo->dst_end);
1137
1138            n_out = ((atempo->dst - atempo->dst_buffer->data[0]) /
1139                     atempo->stride);
1140
1141            if (n_out) {
1142                ret = push_samples(atempo, outlink, n_out);
1143            }
1144        }
1145
1146        av_frame_free(&atempo->dst_buffer);
1147        atempo->dst     = NULL;
1148        atempo->dst_end = NULL;
1149
1150        return AVERROR_EOF;
1151    }
1152
1153    return ret;
1154}
1155
1156static int process_command(AVFilterContext *ctx,
1157                           const char *cmd,
1158                           const char *arg,
1159                           char *res,
1160                           int res_len,
1161                           int flags)
1162{
1163    return !strcmp(cmd, "tempo") ? yae_set_tempo(ctx, arg) : AVERROR(ENOSYS);
1164}
1165
1166static const AVFilterPad atempo_inputs[] = {
1167    {
1168        .name         = "default",
1169        .type         = AVMEDIA_TYPE_AUDIO,
1170        .filter_frame = filter_frame,
1171        .config_props = config_props,
1172    },
1173    { NULL }
1174};
1175
1176static const AVFilterPad atempo_outputs[] = {
1177    {
1178        .name          = "default",
1179        .request_frame = request_frame,
1180        .type          = AVMEDIA_TYPE_AUDIO,
1181    },
1182    { NULL }
1183};
1184
1185AVFilter ff_af_atempo = {
1186    .name            = "atempo",
1187    .description     = NULL_IF_CONFIG_SMALL("Adjust audio tempo."),
1188    .init            = init,
1189    .uninit          = uninit,
1190    .query_formats   = query_formats,
1191    .process_command = process_command,
1192    .priv_size       = sizeof(ATempoContext),
1193    .priv_class      = &atempo_class,
1194    .inputs          = atempo_inputs,
1195    .outputs         = atempo_outputs,
1196};
1197