1/*
2 * Ut Video encoder
3 * Copyright (c) 2012 Jan Ekstr��m
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * Ut Video encoder
25 */
26
27#include "libavutil/imgutils.h"
28#include "libavutil/intreadwrite.h"
29#include "avcodec.h"
30#include "internal.h"
31#include "bswapdsp.h"
32#include "bytestream.h"
33#include "put_bits.h"
34#include "huffyuvencdsp.h"
35#include "mathops.h"
36#include "utvideo.h"
37#include "huffman.h"
38
39/* Compare huffentry symbols */
40static int huff_cmp_sym(const void *a, const void *b)
41{
42    const HuffEntry *aa = a, *bb = b;
43    return aa->sym - bb->sym;
44}
45
46static av_cold int utvideo_encode_close(AVCodecContext *avctx)
47{
48    UtvideoContext *c = avctx->priv_data;
49    int i;
50
51    av_freep(&avctx->coded_frame);
52    av_freep(&c->slice_bits);
53    for (i = 0; i < 4; i++)
54        av_freep(&c->slice_buffer[i]);
55
56    return 0;
57}
58
59static av_cold int utvideo_encode_init(AVCodecContext *avctx)
60{
61    UtvideoContext *c = avctx->priv_data;
62    int i, subsampled_height;
63    uint32_t original_format;
64
65    c->avctx           = avctx;
66    c->frame_info_size = 4;
67    c->slice_stride    = FFALIGN(avctx->width, 32);
68
69    switch (avctx->pix_fmt) {
70    case AV_PIX_FMT_RGB24:
71        c->planes        = 3;
72        avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
73        original_format  = UTVIDEO_RGB;
74        break;
75    case AV_PIX_FMT_RGBA:
76        c->planes        = 4;
77        avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
78        original_format  = UTVIDEO_RGBA;
79        break;
80    case AV_PIX_FMT_YUV420P:
81        if (avctx->width & 1 || avctx->height & 1) {
82            av_log(avctx, AV_LOG_ERROR,
83                   "4:2:0 video requires even width and height.\n");
84            return AVERROR_INVALIDDATA;
85        }
86        c->planes        = 3;
87        if (avctx->colorspace == AVCOL_SPC_BT709)
88            avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
89        else
90            avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
91        original_format  = UTVIDEO_420;
92        break;
93    case AV_PIX_FMT_YUV422P:
94        if (avctx->width & 1) {
95            av_log(avctx, AV_LOG_ERROR,
96                   "4:2:2 video requires even width.\n");
97            return AVERROR_INVALIDDATA;
98        }
99        c->planes        = 3;
100        if (avctx->colorspace == AVCOL_SPC_BT709)
101            avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
102        else
103            avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
104        original_format  = UTVIDEO_422;
105        break;
106    default:
107        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
108               avctx->pix_fmt);
109        return AVERROR_INVALIDDATA;
110    }
111
112    ff_bswapdsp_init(&c->bdsp);
113    ff_huffyuvencdsp_init(&c->hdsp);
114
115    /* Check the prediction method, and error out if unsupported */
116    if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
117        av_log(avctx, AV_LOG_WARNING,
118               "Prediction method %d is not supported in Ut Video.\n",
119               avctx->prediction_method);
120        return AVERROR_OPTION_NOT_FOUND;
121    }
122
123    if (avctx->prediction_method == FF_PRED_PLANE) {
124        av_log(avctx, AV_LOG_ERROR,
125               "Plane prediction is not supported in Ut Video.\n");
126        return AVERROR_OPTION_NOT_FOUND;
127    }
128
129    /* Convert from libavcodec prediction type to Ut Video's */
130    c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
131
132    if (c->frame_pred == PRED_GRADIENT) {
133        av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
134        return AVERROR_OPTION_NOT_FOUND;
135    }
136
137    /*
138     * Check the asked slice count for obviously invalid
139     * values (> 256 or negative).
140     */
141    if (avctx->slices > 256 || avctx->slices < 0) {
142        av_log(avctx, AV_LOG_ERROR,
143               "Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
144               avctx->slices);
145        return AVERROR(EINVAL);
146    }
147
148    /* Check that the slice count is not larger than the subsampled height */
149    subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
150    if (avctx->slices > subsampled_height) {
151        av_log(avctx, AV_LOG_ERROR,
152               "Slice count %d is larger than the subsampling-applied height %d.\n",
153               avctx->slices, subsampled_height);
154        return AVERROR(EINVAL);
155    }
156
157    avctx->coded_frame = av_frame_alloc();
158
159    if (!avctx->coded_frame) {
160        av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
161        utvideo_encode_close(avctx);
162        return AVERROR(ENOMEM);
163    }
164
165    /* extradata size is 4 * 32bit */
166    avctx->extradata_size = 16;
167
168    avctx->extradata = av_mallocz(avctx->extradata_size +
169                                  FF_INPUT_BUFFER_PADDING_SIZE);
170
171    if (!avctx->extradata) {
172        av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
173        utvideo_encode_close(avctx);
174        return AVERROR(ENOMEM);
175    }
176
177    for (i = 0; i < c->planes; i++) {
178        c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
179                                       FF_INPUT_BUFFER_PADDING_SIZE);
180        if (!c->slice_buffer[i]) {
181            av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
182            utvideo_encode_close(avctx);
183            return AVERROR(ENOMEM);
184        }
185    }
186
187    /*
188     * Set the version of the encoder.
189     * Last byte is "implementation ID", which is
190     * obtained from the creator of the format.
191     * Libavcodec has been assigned with the ID 0xF0.
192     */
193    AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
194
195    /*
196     * Set the "original format"
197     * Not used for anything during decoding.
198     */
199    AV_WL32(avctx->extradata + 4, original_format);
200
201    /* Write 4 as the 'frame info size' */
202    AV_WL32(avctx->extradata + 8, c->frame_info_size);
203
204    /*
205     * Set how many slices are going to be used.
206     * By default uses multiple slices depending on the subsampled height.
207     * This enables multithreading in the official decoder.
208     */
209    if (!avctx->slices) {
210        c->slices = subsampled_height / 120;
211
212        if (!c->slices)
213            c->slices = 1;
214        else if (c->slices > 256)
215            c->slices = 256;
216    } else {
217        c->slices = avctx->slices;
218    }
219
220    /* Set compression mode */
221    c->compression = COMP_HUFF;
222
223    /*
224     * Set the encoding flags:
225     * - Slice count minus 1
226     * - Interlaced encoding mode flag, set to zero for now.
227     * - Compression mode (none/huff)
228     * And write the flags.
229     */
230    c->flags  = (c->slices - 1) << 24;
231    c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
232    c->flags |= c->compression;
233
234    AV_WL32(avctx->extradata + 12, c->flags);
235
236    return 0;
237}
238
239static void mangle_rgb_planes(uint8_t *dst[4], int dst_stride, uint8_t *src,
240                              int step, int stride, int width, int height)
241{
242    int i, j;
243    int k = 2 * dst_stride;
244    unsigned int g;
245
246    for (j = 0; j < height; j++) {
247        if (step == 3) {
248            for (i = 0; i < width * step; i += step) {
249                g         = src[i + 1];
250                dst[0][k] = g;
251                g        += 0x80;
252                dst[1][k] = src[i + 2] - g;
253                dst[2][k] = src[i + 0] - g;
254                k++;
255            }
256        } else {
257            for (i = 0; i < width * step; i += step) {
258                g         = src[i + 1];
259                dst[0][k] = g;
260                g        += 0x80;
261                dst[1][k] = src[i + 2] - g;
262                dst[2][k] = src[i + 0] - g;
263                dst[3][k] = src[i + 3];
264                k++;
265            }
266        }
267        k += dst_stride - width;
268        src += stride;
269    }
270}
271
272/* Write data to a plane with left prediction */
273static void left_predict(uint8_t *src, uint8_t *dst, int stride,
274                         int width, int height)
275{
276    int i, j;
277    uint8_t prev;
278
279    prev = 0x80; /* Set the initial value */
280    for (j = 0; j < height; j++) {
281        for (i = 0; i < width; i++) {
282            *dst++ = src[i] - prev;
283            prev   = src[i];
284        }
285        src += stride;
286    }
287}
288
289/* Write data to a plane with median prediction */
290static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst, int stride,
291                           int width, int height)
292{
293    int i, j;
294    int A, B;
295    uint8_t prev;
296
297    /* First line uses left neighbour prediction */
298    prev = 0x80; /* Set the initial value */
299    for (i = 0; i < width; i++) {
300        *dst++ = src[i] - prev;
301        prev   = src[i];
302    }
303
304    if (height == 1)
305        return;
306
307    src += stride;
308
309    /*
310     * Second line uses top prediction for the first sample,
311     * and median for the rest.
312     */
313    A = B = 0;
314
315    /* Rest of the coded part uses median prediction */
316    for (j = 1; j < height; j++) {
317        c->hdsp.sub_hfyu_median_pred(dst, src - stride, src, width, &A, &B);
318        dst += width;
319        src += stride;
320    }
321}
322
323/* Count the usage of values in a plane */
324static void count_usage(uint8_t *src, int width,
325                        int height, uint64_t *counts)
326{
327    int i, j;
328
329    for (j = 0; j < height; j++) {
330        for (i = 0; i < width; i++) {
331            counts[src[i]]++;
332        }
333        src += width;
334    }
335}
336
337/* Calculate the actual huffman codes from the code lengths */
338static void calculate_codes(HuffEntry *he)
339{
340    int last, i;
341    uint32_t code;
342
343    qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
344
345    last = 255;
346    while (he[last].len == 255 && last)
347        last--;
348
349    code = 1;
350    for (i = last; i >= 0; i--) {
351        he[i].code  = code >> (32 - he[i].len);
352        code       += 0x80000000u >> (he[i].len - 1);
353    }
354
355    qsort(he, 256, sizeof(*he), huff_cmp_sym);
356}
357
358/* Write huffman bit codes to a memory block */
359static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
360                            int width, int height, HuffEntry *he)
361{
362    PutBitContext pb;
363    int i, j;
364    int count;
365
366    init_put_bits(&pb, dst, dst_size);
367
368    /* Write the codes */
369    for (j = 0; j < height; j++) {
370        for (i = 0; i < width; i++)
371            put_bits(&pb, he[src[i]].len, he[src[i]].code);
372
373        src += width;
374    }
375
376    /* Pad output to a 32bit boundary */
377    count = put_bits_count(&pb) & 0x1F;
378
379    if (count)
380        put_bits(&pb, 32 - count, 0);
381
382    /* Get the amount of bits written */
383    count = put_bits_count(&pb);
384
385    /* Flush the rest with zeroes */
386    flush_put_bits(&pb);
387
388    return count;
389}
390
391static int encode_plane(AVCodecContext *avctx, uint8_t *src,
392                        uint8_t *dst, int stride,
393                        int width, int height, PutByteContext *pb)
394{
395    UtvideoContext *c        = avctx->priv_data;
396    uint8_t  lengths[256];
397    uint64_t counts[256]     = { 0 };
398
399    HuffEntry he[256];
400
401    uint32_t offset = 0, slice_len = 0;
402    int      i, sstart, send = 0;
403    int      symbol;
404    int      ret;
405
406    /* Do prediction / make planes */
407    switch (c->frame_pred) {
408    case PRED_NONE:
409        for (i = 0; i < c->slices; i++) {
410            sstart = send;
411            send   = height * (i + 1) / c->slices;
412            av_image_copy_plane(dst + sstart * width, width,
413                                src + sstart * stride, stride,
414                                width, send - sstart);
415        }
416        break;
417    case PRED_LEFT:
418        for (i = 0; i < c->slices; i++) {
419            sstart = send;
420            send   = height * (i + 1) / c->slices;
421            left_predict(src + sstart * stride, dst + sstart * width,
422                         stride, width, send - sstart);
423        }
424        break;
425    case PRED_MEDIAN:
426        for (i = 0; i < c->slices; i++) {
427            sstart = send;
428            send   = height * (i + 1) / c->slices;
429            median_predict(c, src + sstart * stride, dst + sstart * width,
430                           stride, width, send - sstart);
431        }
432        break;
433    default:
434        av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
435               c->frame_pred);
436        return AVERROR_OPTION_NOT_FOUND;
437    }
438
439    /* Count the usage of values */
440    count_usage(dst, width, height, counts);
441
442    /* Check for a special case where only one symbol was used */
443    for (symbol = 0; symbol < 256; symbol++) {
444        /* If non-zero count is found, see if it matches width * height */
445        if (counts[symbol]) {
446            /* Special case if only one symbol was used */
447            if (counts[symbol] == width * (int64_t)height) {
448                /*
449                 * Write a zero for the single symbol
450                 * used in the plane, else 0xFF.
451                 */
452                for (i = 0; i < 256; i++) {
453                    if (i == symbol)
454                        bytestream2_put_byte(pb, 0);
455                    else
456                        bytestream2_put_byte(pb, 0xFF);
457                }
458
459                /* Write zeroes for lengths */
460                for (i = 0; i < c->slices; i++)
461                    bytestream2_put_le32(pb, 0);
462
463                /* And that's all for that plane folks */
464                return 0;
465            }
466            break;
467        }
468    }
469
470    /* Calculate huffman lengths */
471    if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
472        return ret;
473
474    /*
475     * Write the plane's header into the output packet:
476     * - huffman code lengths (256 bytes)
477     * - slice end offsets (gotten from the slice lengths)
478     */
479    for (i = 0; i < 256; i++) {
480        bytestream2_put_byte(pb, lengths[i]);
481
482        he[i].len = lengths[i];
483        he[i].sym = i;
484    }
485
486    /* Calculate the huffman codes themselves */
487    calculate_codes(he);
488
489    send = 0;
490    for (i = 0; i < c->slices; i++) {
491        sstart  = send;
492        send    = height * (i + 1) / c->slices;
493
494        /*
495         * Write the huffman codes to a buffer,
496         * get the offset in bits and convert to bytes.
497         */
498        offset += write_huff_codes(dst + sstart * width, c->slice_bits,
499                                   width * height + 4, width,
500                                   send - sstart, he) >> 3;
501
502        slice_len = offset - slice_len;
503
504        /* Byteswap the written huffman codes */
505        c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
506                          (uint32_t *) c->slice_bits,
507                          slice_len >> 2);
508
509        /* Write the offset to the stream */
510        bytestream2_put_le32(pb, offset);
511
512        /* Seek to the data part of the packet */
513        bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
514                           offset - slice_len, SEEK_CUR);
515
516        /* Write the slices' data into the output packet */
517        bytestream2_put_buffer(pb, c->slice_bits, slice_len);
518
519        /* Seek back to the slice offsets */
520        bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
521                           SEEK_CUR);
522
523        slice_len = offset;
524    }
525
526    /* And at the end seek to the end of written slice(s) */
527    bytestream2_seek_p(pb, offset, SEEK_CUR);
528
529    return 0;
530}
531
532static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
533                                const AVFrame *pic, int *got_packet)
534{
535    UtvideoContext *c = avctx->priv_data;
536    PutByteContext pb;
537
538    uint32_t frame_info;
539
540    uint8_t *dst;
541
542    int width = avctx->width, height = avctx->height;
543    int i, ret = 0;
544
545    /* Allocate a new packet if needed, and set it to the pointer dst */
546    ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
547                           c->planes + 4);
548
549    if (ret < 0)
550        return ret;
551
552    dst = pkt->data;
553
554    bytestream2_init_writer(&pb, dst, pkt->size);
555
556    av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
557
558    if (!c->slice_bits) {
559        av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
560        return AVERROR(ENOMEM);
561    }
562
563    /* In case of RGB, mangle the planes to Ut Video's format */
564    if (avctx->pix_fmt == AV_PIX_FMT_RGBA || avctx->pix_fmt == AV_PIX_FMT_RGB24)
565        mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data[0],
566                          c->planes, pic->linesize[0], width, height);
567
568    /* Deal with the planes */
569    switch (avctx->pix_fmt) {
570    case AV_PIX_FMT_RGB24:
571    case AV_PIX_FMT_RGBA:
572        for (i = 0; i < c->planes; i++) {
573            ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
574                               c->slice_buffer[i], c->slice_stride,
575                               width, height, &pb);
576
577            if (ret) {
578                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
579                return ret;
580            }
581        }
582        break;
583    case AV_PIX_FMT_YUV422P:
584        for (i = 0; i < c->planes; i++) {
585            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
586                               pic->linesize[i], width >> !!i, height, &pb);
587
588            if (ret) {
589                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
590                return ret;
591            }
592        }
593        break;
594    case AV_PIX_FMT_YUV420P:
595        for (i = 0; i < c->planes; i++) {
596            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
597                               pic->linesize[i], width >> !!i, height >> !!i,
598                               &pb);
599
600            if (ret) {
601                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
602                return ret;
603            }
604        }
605        break;
606    default:
607        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
608               avctx->pix_fmt);
609        return AVERROR_INVALIDDATA;
610    }
611
612    /*
613     * Write frame information (LE 32bit unsigned)
614     * into the output packet.
615     * Contains the prediction method.
616     */
617    frame_info = c->frame_pred << 8;
618    bytestream2_put_le32(&pb, frame_info);
619
620    /*
621     * At least currently Ut Video is IDR only.
622     * Set flags accordingly.
623     */
624    avctx->coded_frame->key_frame = 1;
625    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
626
627    pkt->size   = bytestream2_tell_p(&pb);
628    pkt->flags |= AV_PKT_FLAG_KEY;
629
630    /* Packet should be done */
631    *got_packet = 1;
632
633    return 0;
634}
635
636AVCodec ff_utvideo_encoder = {
637    .name           = "utvideo",
638    .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
639    .type           = AVMEDIA_TYPE_VIDEO,
640    .id             = AV_CODEC_ID_UTVIDEO,
641    .priv_data_size = sizeof(UtvideoContext),
642    .init           = utvideo_encode_init,
643    .encode2        = utvideo_encode_frame,
644    .close          = utvideo_encode_close,
645    .capabilities   = CODEC_CAP_FRAME_THREADS | CODEC_CAP_INTRA_ONLY,
646    .pix_fmts       = (const enum AVPixelFormat[]) {
647                          AV_PIX_FMT_RGB24, AV_PIX_FMT_RGBA, AV_PIX_FMT_YUV422P,
648                          AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE
649                      },
650};
651