1/*
2 * SIPR / ACELP.NET decoder
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 * Copyright (c) 2009 Vitor Sessak
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include <math.h>
25#include <stdint.h>
26#include <string.h>
27
28#include "libavutil/channel_layout.h"
29#include "libavutil/float_dsp.h"
30#include "libavutil/mathematics.h"
31#include "avcodec.h"
32#define BITSTREAM_READER_LE
33#include "get_bits.h"
34#include "internal.h"
35
36#include "lsp.h"
37#include "acelp_vectors.h"
38#include "acelp_pitch_delay.h"
39#include "acelp_filters.h"
40#include "celp_filters.h"
41
42#define MAX_SUBFRAME_COUNT   5
43
44#include "sipr.h"
45#include "siprdata.h"
46
47typedef struct {
48    const char *mode_name;
49    uint16_t bits_per_frame;
50    uint8_t subframe_count;
51    uint8_t frames_per_packet;
52    float pitch_sharp_factor;
53
54    /* bitstream parameters */
55    uint8_t number_of_fc_indexes;
56    uint8_t ma_predictor_bits;  ///< size in bits of the switched MA predictor
57
58    /** size in bits of the i-th stage vector of quantizer */
59    uint8_t vq_indexes_bits[5];
60
61    /** size in bits of the adaptive-codebook index for every subframe */
62    uint8_t pitch_delay_bits[5];
63
64    uint8_t gp_index_bits;
65    uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
66    uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
67} SiprModeParam;
68
69static const SiprModeParam modes[MODE_COUNT] = {
70    [MODE_16k] = {
71        .mode_name          = "16k",
72        .bits_per_frame     = 160,
73        .subframe_count     = SUBFRAME_COUNT_16k,
74        .frames_per_packet  = 1,
75        .pitch_sharp_factor = 0.00,
76
77        .number_of_fc_indexes = 10,
78        .ma_predictor_bits    = 1,
79        .vq_indexes_bits      = {7, 8, 7, 7, 7},
80        .pitch_delay_bits     = {9, 6},
81        .gp_index_bits        = 4,
82        .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
83        .gc_index_bits        = 5
84    },
85
86    [MODE_8k5] = {
87        .mode_name          = "8k5",
88        .bits_per_frame     = 152,
89        .subframe_count     = 3,
90        .frames_per_packet  = 1,
91        .pitch_sharp_factor = 0.8,
92
93        .number_of_fc_indexes = 3,
94        .ma_predictor_bits    = 0,
95        .vq_indexes_bits      = {6, 7, 7, 7, 5},
96        .pitch_delay_bits     = {8, 5, 5},
97        .gp_index_bits        = 0,
98        .fc_index_bits        = {9, 9, 9},
99        .gc_index_bits        = 7
100    },
101
102    [MODE_6k5] = {
103        .mode_name          = "6k5",
104        .bits_per_frame     = 232,
105        .subframe_count     = 3,
106        .frames_per_packet  = 2,
107        .pitch_sharp_factor = 0.8,
108
109        .number_of_fc_indexes = 3,
110        .ma_predictor_bits    = 0,
111        .vq_indexes_bits      = {6, 7, 7, 7, 5},
112        .pitch_delay_bits     = {8, 5, 5},
113        .gp_index_bits        = 0,
114        .fc_index_bits        = {5, 5, 5},
115        .gc_index_bits        = 7
116    },
117
118    [MODE_5k0] = {
119        .mode_name          = "5k0",
120        .bits_per_frame     = 296,
121        .subframe_count     = 5,
122        .frames_per_packet  = 2,
123        .pitch_sharp_factor = 0.85,
124
125        .number_of_fc_indexes = 1,
126        .ma_predictor_bits    = 0,
127        .vq_indexes_bits      = {6, 7, 7, 7, 5},
128        .pitch_delay_bits     = {8, 5, 8, 5, 5},
129        .gp_index_bits        = 0,
130        .fc_index_bits        = {10},
131        .gc_index_bits        = 7
132    }
133};
134
135const float ff_pow_0_5[] = {
136    1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
137    1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
138    1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
139    1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
140};
141
142static void dequant(float *out, const int *idx, const float *cbs[])
143{
144    int i;
145    int stride  = 2;
146    int num_vec = 5;
147
148    for (i = 0; i < num_vec; i++)
149        memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
150
151}
152
153static void lsf_decode_fp(float *lsfnew, float *lsf_history,
154                          const SiprParameters *parm)
155{
156    int i;
157    float lsf_tmp[LP_FILTER_ORDER];
158
159    dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
160
161    for (i = 0; i < LP_FILTER_ORDER; i++)
162        lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
163
164    ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
165
166    /* Note that a minimum distance is not enforced between the last value and
167       the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
168    ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
169    lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
170
171    memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
172
173    for (i = 0; i < LP_FILTER_ORDER - 1; i++)
174        lsfnew[i] = cos(lsfnew[i]);
175    lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
176}
177
178/** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
179static void pitch_sharpening(int pitch_lag_int, float beta,
180                             float *fixed_vector)
181{
182    int i;
183
184    for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
185        fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
186}
187
188/**
189 * Extract decoding parameters from the input bitstream.
190 * @param parms          parameters structure
191 * @param pgb            pointer to initialized GetBitContext structure
192 */
193static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
194                              const SiprModeParam *p)
195{
196    int i, j;
197
198    if (p->ma_predictor_bits)
199        parms->ma_pred_switch       = get_bits(pgb, p->ma_predictor_bits);
200
201    for (i = 0; i < 5; i++)
202        parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
203
204    for (i = 0; i < p->subframe_count; i++) {
205        parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
206        if (p->gp_index_bits)
207            parms->gp_index[i]      = get_bits(pgb, p->gp_index_bits);
208
209        for (j = 0; j < p->number_of_fc_indexes; j++)
210            parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
211
212        parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
213    }
214}
215
216static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
217                           int num_subfr)
218{
219    double lsfint[LP_FILTER_ORDER];
220    int i,j;
221    float t, t0 = 1.0 / num_subfr;
222
223    t = t0 * 0.5;
224    for (i = 0; i < num_subfr; i++) {
225        for (j = 0; j < LP_FILTER_ORDER; j++)
226            lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
227
228        ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
229        Az += LP_FILTER_ORDER;
230        t += t0;
231    }
232}
233
234/**
235 * Evaluate the adaptive impulse response.
236 */
237static void eval_ir(const float *Az, int pitch_lag, float *freq,
238                    float pitch_sharp_factor)
239{
240    float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
241    int i;
242
243    tmp1[0] = 1.0;
244    for (i = 0; i < LP_FILTER_ORDER; i++) {
245        tmp1[i+1] = Az[i] * ff_pow_0_55[i];
246        tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
247    }
248    memset(tmp1 + 11, 0, 37 * sizeof(float));
249
250    ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
251                                 LP_FILTER_ORDER);
252
253    pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
254}
255
256/**
257 * Evaluate the convolution of a vector with a sparse vector.
258 */
259static void convolute_with_sparse(float *out, const AMRFixed *pulses,
260                                  const float *shape, int length)
261{
262    int i, j;
263
264    memset(out, 0, length*sizeof(float));
265    for (i = 0; i < pulses->n; i++)
266        for (j = pulses->x[i]; j < length; j++)
267            out[j] += pulses->y[i] * shape[j - pulses->x[i]];
268}
269
270/**
271 * Apply postfilter, very similar to AMR one.
272 */
273static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
274{
275    float buf[SUBFR_SIZE + LP_FILTER_ORDER];
276    float *pole_out = buf + LP_FILTER_ORDER;
277    float lpc_n[LP_FILTER_ORDER];
278    float lpc_d[LP_FILTER_ORDER];
279    int i;
280
281    for (i = 0; i < LP_FILTER_ORDER; i++) {
282        lpc_d[i] = lpc[i] * ff_pow_0_75[i];
283        lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
284    };
285
286    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
287           LP_FILTER_ORDER*sizeof(float));
288
289    ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
290                                 LP_FILTER_ORDER);
291
292    memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
293           LP_FILTER_ORDER*sizeof(float));
294
295    ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
296
297    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
298           LP_FILTER_ORDER*sizeof(*pole_out));
299
300    memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
301           LP_FILTER_ORDER*sizeof(*pole_out));
302
303    ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
304                                      LP_FILTER_ORDER);
305
306}
307
308static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
309                                SiprMode mode, int low_gain)
310{
311    int i;
312
313    switch (mode) {
314    case MODE_6k5:
315        for (i = 0; i < 3; i++) {
316            fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
317            fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
318        }
319        fixed_sparse->n = 3;
320        break;
321    case MODE_8k5:
322        for (i = 0; i < 3; i++) {
323            fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
324            fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
325
326            fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
327
328            fixed_sparse->y[2*i + 1] =
329                (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
330                -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
331        }
332
333        fixed_sparse->n = 6;
334        break;
335    case MODE_5k0:
336    default:
337        if (low_gain) {
338            int offset = (pulses[0] & 0x200) ? 2 : 0;
339            int val = pulses[0];
340
341            for (i = 0; i < 3; i++) {
342                int index = (val & 0x7) * 6 + 4 - i*2;
343
344                fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
345                fixed_sparse->x[i] = index;
346
347                val >>= 3;
348            }
349            fixed_sparse->n = 3;
350        } else {
351            int pulse_subset = (pulses[0] >> 8) & 1;
352
353            fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
354            fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
355
356            fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
357            fixed_sparse->y[1] = -fixed_sparse->y[0];
358            fixed_sparse->n = 2;
359        }
360        break;
361    }
362}
363
364static void decode_frame(SiprContext *ctx, SiprParameters *params,
365                         float *out_data)
366{
367    int i, j;
368    int subframe_count = modes[ctx->mode].subframe_count;
369    int frame_size = subframe_count * SUBFR_SIZE;
370    float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
371    float *excitation;
372    float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
373    float lsf_new[LP_FILTER_ORDER];
374    float *impulse_response = ir_buf + LP_FILTER_ORDER;
375    float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
376                                        // memory alignment
377    int t0_first = 0;
378    AMRFixed fixed_cb;
379
380    memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
381    lsf_decode_fp(lsf_new, ctx->lsf_history, params);
382
383    sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
384
385    memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
386
387    excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
388
389    for (i = 0; i < subframe_count; i++) {
390        float *pAz = Az + i*LP_FILTER_ORDER;
391        float fixed_vector[SUBFR_SIZE];
392        int T0,T0_frac;
393        float pitch_gain, gain_code, avg_energy;
394
395        ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
396                            ctx->mode == MODE_5k0, 6);
397
398        if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
399            t0_first = T0;
400
401        ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
402                              ff_b60_sinc, 6,
403                              2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
404                              SUBFR_SIZE);
405
406        decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
407                            ctx->past_pitch_gain < 0.8);
408
409        eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
410
411        convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
412                              SUBFR_SIZE);
413
414        avg_energy = (0.01 + avpriv_scalarproduct_float_c(fixed_vector,
415                                                          fixed_vector,
416                                                          SUBFR_SIZE)) /
417                     SUBFR_SIZE;
418
419        ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
420
421        gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
422                                          avg_energy, ctx->energy_history,
423                                          34 - 15.0/(0.05*M_LN10/M_LN2),
424                                          pred);
425
426        ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
427                                pitch_gain, gain_code, SUBFR_SIZE);
428
429        pitch_gain *= 0.5 * pitch_gain;
430        pitch_gain = FFMIN(pitch_gain, 0.4);
431
432        ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
433        ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
434        gain_code *= ctx->gain_mem;
435
436        for (j = 0; j < SUBFR_SIZE; j++)
437            fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
438
439        if (ctx->mode == MODE_5k0) {
440            postfilter_5k0(ctx, pAz, fixed_vector);
441
442            ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
443                                         pAz, excitation, SUBFR_SIZE,
444                                         LP_FILTER_ORDER);
445        }
446
447        ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
448                                     SUBFR_SIZE, LP_FILTER_ORDER);
449
450        excitation += SUBFR_SIZE;
451    }
452
453    memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
454           LP_FILTER_ORDER * sizeof(float));
455
456    if (ctx->mode == MODE_5k0) {
457        for (i = 0; i < subframe_count; i++) {
458            float energy = avpriv_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
459                                                        ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
460                                                        SUBFR_SIZE);
461            ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
462                                     &synth[i * SUBFR_SIZE], energy,
463                                     SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
464        }
465
466        memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
467               LP_FILTER_ORDER*sizeof(float));
468    }
469    memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
470           (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
471
472    ff_acelp_apply_order_2_transfer_function(out_data, synth,
473                                             (const float[2]) {-1.99997   , 1.000000000},
474                                             (const float[2]) {-1.93307352, 0.935891986},
475                                             0.939805806,
476                                             ctx->highpass_filt_mem,
477                                             frame_size);
478}
479
480static av_cold int sipr_decoder_init(AVCodecContext * avctx)
481{
482    SiprContext *ctx = avctx->priv_data;
483    int i;
484
485    switch (avctx->block_align) {
486    case 20: ctx->mode = MODE_16k; break;
487    case 19: ctx->mode = MODE_8k5; break;
488    case 29: ctx->mode = MODE_6k5; break;
489    case 37: ctx->mode = MODE_5k0; break;
490    default:
491        if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
492        else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
493        else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
494        else                              ctx->mode = MODE_5k0;
495        av_log(avctx, AV_LOG_WARNING,
496               "Invalid block_align: %d. Mode %s guessed based on bitrate: %d\n",
497               avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
498    }
499
500    av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
501
502    if (ctx->mode == MODE_16k) {
503        ff_sipr_init_16k(ctx);
504        ctx->decode_frame = ff_sipr_decode_frame_16k;
505    } else {
506        ctx->decode_frame = decode_frame;
507    }
508
509    for (i = 0; i < LP_FILTER_ORDER; i++)
510        ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
511
512    for (i = 0; i < 4; i++)
513        ctx->energy_history[i] = -14;
514
515    avctx->channels       = 1;
516    avctx->channel_layout = AV_CH_LAYOUT_MONO;
517    avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
518
519    return 0;
520}
521
522static int sipr_decode_frame(AVCodecContext *avctx, void *data,
523                             int *got_frame_ptr, AVPacket *avpkt)
524{
525    SiprContext *ctx = avctx->priv_data;
526    AVFrame *frame   = data;
527    const uint8_t *buf=avpkt->data;
528    SiprParameters parm;
529    const SiprModeParam *mode_par = &modes[ctx->mode];
530    GetBitContext gb;
531    float *samples;
532    int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
533    int i, ret;
534
535    ctx->avctx = avctx;
536    if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
537        av_log(avctx, AV_LOG_ERROR,
538               "Error processing packet: packet size (%d) too small\n",
539               avpkt->size);
540        return -1;
541    }
542
543    /* get output buffer */
544    frame->nb_samples = mode_par->frames_per_packet * subframe_size *
545                        mode_par->subframe_count;
546    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
547        return ret;
548    samples = (float *)frame->data[0];
549
550    init_get_bits(&gb, buf, mode_par->bits_per_frame);
551
552    for (i = 0; i < mode_par->frames_per_packet; i++) {
553        decode_parameters(&parm, &gb, mode_par);
554
555        ctx->decode_frame(ctx, &parm, samples);
556
557        samples += subframe_size * mode_par->subframe_count;
558    }
559
560    *got_frame_ptr = 1;
561
562    return mode_par->bits_per_frame >> 3;
563}
564
565AVCodec ff_sipr_decoder = {
566    .name           = "sipr",
567    .long_name      = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
568    .type           = AVMEDIA_TYPE_AUDIO,
569    .id             = AV_CODEC_ID_SIPR,
570    .priv_data_size = sizeof(SiprContext),
571    .init           = sipr_decoder_init,
572    .decode         = sipr_decode_frame,
573    .capabilities   = CODEC_CAP_DR1,
574};
575