1/*
2 * Apple ProRes compatible decoder
3 *
4 * Copyright (c) 2010-2011 Maxim Poliakovski
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
26 * It is used for storing and editing high definition video data in Apple's Final Cut Pro.
27 *
28 * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
29 */
30
31#define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32
33#include <stdint.h>
34
35#include "libavutil/intmath.h"
36#include "avcodec.h"
37#include "idctdsp.h"
38#include "internal.h"
39#include "proresdata.h"
40#include "proresdsp.h"
41#include "get_bits.h"
42
43typedef struct {
44    const uint8_t *index;            ///< pointers to the data of this slice
45    int slice_num;
46    int x_pos, y_pos;
47    int slice_width;
48    int prev_slice_sf;               ///< scalefactor of the previous decoded slice
49    DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64];
50    DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64];
51    DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64];
52} ProresThreadData;
53
54typedef struct {
55    ProresDSPContext dsp;
56    AVFrame    *frame;
57    ScanTable  scantable;
58    int        scantable_type;           ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
59
60    int        frame_type;               ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
61    int        pic_format;               ///< 2 = 422, 3 = 444
62    uint8_t    qmat_luma[64];            ///< dequantization matrix for luma
63    uint8_t    qmat_chroma[64];          ///< dequantization matrix for chroma
64    int        qmat_changed;             ///< 1 - global quantization matrices changed
65    int        total_slices;            ///< total number of slices in a picture
66    ProresThreadData *slice_data;
67    int        pic_num;
68    int        chroma_factor;
69    int        mb_chroma_factor;
70    int        num_chroma_blocks;       ///< number of chrominance blocks in a macroblock
71    int        num_x_slices;
72    int        num_y_slices;
73    int        slice_width_factor;
74    int        slice_height_factor;
75    int        num_x_mbs;
76    int        num_y_mbs;
77    int        alpha_info;
78} ProresContext;
79
80
81static av_cold int decode_init(AVCodecContext *avctx)
82{
83    ProresContext *ctx = avctx->priv_data;
84
85    ctx->total_slices     = 0;
86    ctx->slice_data       = NULL;
87
88    avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE;
89    ff_proresdsp_init(&ctx->dsp, avctx);
90
91    ctx->scantable_type = -1;   // set scantable type to uninitialized
92    memset(ctx->qmat_luma, 4, 64);
93    memset(ctx->qmat_chroma, 4, 64);
94
95    return 0;
96}
97
98
99static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
100                               const int data_size, AVCodecContext *avctx)
101{
102    int hdr_size, version, width, height, flags;
103    const uint8_t *ptr;
104
105    hdr_size = AV_RB16(buf);
106    if (hdr_size > data_size) {
107        av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
108        return AVERROR_INVALIDDATA;
109    }
110
111    version = AV_RB16(buf + 2);
112    if (version >= 2) {
113        av_log(avctx, AV_LOG_ERROR,
114               "unsupported header version: %d\n", version);
115        return AVERROR_INVALIDDATA;
116    }
117
118    width  = AV_RB16(buf + 8);
119    height = AV_RB16(buf + 10);
120    if (width != avctx->width || height != avctx->height) {
121        av_log(avctx, AV_LOG_ERROR,
122               "picture dimension changed: old: %d x %d, new: %d x %d\n",
123               avctx->width, avctx->height, width, height);
124        return AVERROR_INVALIDDATA;
125    }
126
127    ctx->frame_type = (buf[12] >> 2) & 3;
128    if (ctx->frame_type > 2) {
129        av_log(avctx, AV_LOG_ERROR,
130               "unsupported frame type: %d\n", ctx->frame_type);
131        return AVERROR_INVALIDDATA;
132    }
133
134    ctx->chroma_factor     = (buf[12] >> 6) & 3;
135    ctx->mb_chroma_factor  = ctx->chroma_factor + 2;
136    ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
137    ctx->alpha_info        = buf[17] & 0xf;
138
139    if (ctx->alpha_info > 2) {
140        av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
141        return AVERROR_INVALIDDATA;
142    }
143    if (avctx->skip_alpha) ctx->alpha_info = 0;
144
145    switch (ctx->chroma_factor) {
146    case 2:
147        avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA422P10
148                                         : AV_PIX_FMT_YUV422P10;
149        break;
150    case 3:
151        avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA444P10
152                                         : AV_PIX_FMT_YUV444P10;
153        break;
154    default:
155        av_log(avctx, AV_LOG_ERROR,
156               "unsupported picture format: %d\n", ctx->pic_format);
157        return AVERROR_INVALIDDATA;
158    }
159
160    if (ctx->scantable_type != ctx->frame_type) {
161        if (!ctx->frame_type)
162            ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
163                              ff_prores_progressive_scan);
164        else
165            ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
166                              ff_prores_interlaced_scan);
167        ctx->scantable_type = ctx->frame_type;
168    }
169
170    if (ctx->frame_type) {      /* if interlaced */
171        ctx->frame->interlaced_frame = 1;
172        ctx->frame->top_field_first  = ctx->frame_type & 1;
173    } else {
174        ctx->frame->interlaced_frame = 0;
175    }
176
177    avctx->color_primaries = buf[14];
178    avctx->color_trc       = buf[15];
179    avctx->colorspace      = buf[16];
180
181    ctx->qmat_changed = 0;
182    ptr   = buf + 20;
183    flags = buf[19];
184    if (flags & 2) {
185        if (ptr - buf > hdr_size - 64) {
186            av_log(avctx, AV_LOG_ERROR, "header data too small\n");
187            return AVERROR_INVALIDDATA;
188        }
189        if (memcmp(ctx->qmat_luma, ptr, 64)) {
190            memcpy(ctx->qmat_luma, ptr, 64);
191            ctx->qmat_changed = 1;
192        }
193        ptr += 64;
194    } else {
195        memset(ctx->qmat_luma, 4, 64);
196        ctx->qmat_changed = 1;
197    }
198
199    if (flags & 1) {
200        if (ptr - buf > hdr_size - 64) {
201            av_log(avctx, AV_LOG_ERROR, "header data too small\n");
202            return -1;
203        }
204        if (memcmp(ctx->qmat_chroma, ptr, 64)) {
205            memcpy(ctx->qmat_chroma, ptr, 64);
206            ctx->qmat_changed = 1;
207        }
208    } else {
209        memset(ctx->qmat_chroma, 4, 64);
210        ctx->qmat_changed = 1;
211    }
212
213    return hdr_size;
214}
215
216
217static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
218                                 const int data_size, AVCodecContext *avctx)
219{
220    int   i, hdr_size, pic_data_size, num_slices;
221    int   slice_width_factor, slice_height_factor;
222    int   remainder, num_x_slices;
223    const uint8_t *data_ptr, *index_ptr;
224
225    hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
226    if (hdr_size < 8 || hdr_size > data_size) {
227        av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
228        return AVERROR_INVALIDDATA;
229    }
230
231    pic_data_size = AV_RB32(buf + 1);
232    if (pic_data_size > data_size) {
233        av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
234        return AVERROR_INVALIDDATA;
235    }
236
237    slice_width_factor  = buf[7] >> 4;
238    slice_height_factor = buf[7] & 0xF;
239    if (slice_width_factor > 3 || slice_height_factor) {
240        av_log(avctx, AV_LOG_ERROR,
241               "unsupported slice dimension: %d x %d\n",
242               1 << slice_width_factor, 1 << slice_height_factor);
243        return AVERROR_INVALIDDATA;
244    }
245
246    ctx->slice_width_factor  = slice_width_factor;
247    ctx->slice_height_factor = slice_height_factor;
248
249    ctx->num_x_mbs = (avctx->width + 15) >> 4;
250    ctx->num_y_mbs = (avctx->height +
251                      (1 << (4 + ctx->frame->interlaced_frame)) - 1) >>
252                     (4 + ctx->frame->interlaced_frame);
253
254    remainder    = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
255    num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
256                   ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
257
258    num_slices = num_x_slices * ctx->num_y_mbs;
259    if (num_slices != AV_RB16(buf + 5)) {
260        av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
261        return AVERROR_INVALIDDATA;
262    }
263
264    if (ctx->total_slices != num_slices) {
265        av_freep(&ctx->slice_data);
266        ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
267        if (!ctx->slice_data)
268            return AVERROR(ENOMEM);
269        ctx->total_slices = num_slices;
270    }
271
272    if (hdr_size + num_slices * 2 > data_size) {
273        av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
274        return AVERROR_INVALIDDATA;
275    }
276
277    /* parse slice table allowing quick access to the slice data */
278    index_ptr = buf + hdr_size;
279    data_ptr = index_ptr + num_slices * 2;
280
281    for (i = 0; i < num_slices; i++) {
282        ctx->slice_data[i].index = data_ptr;
283        ctx->slice_data[i].prev_slice_sf = 0;
284        data_ptr += AV_RB16(index_ptr + i * 2);
285    }
286    ctx->slice_data[i].index = data_ptr;
287    ctx->slice_data[i].prev_slice_sf = 0;
288
289    if (data_ptr > buf + data_size) {
290        av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
291        return -1;
292    }
293
294    return pic_data_size;
295}
296
297
298/**
299 * Read an unsigned rice/exp golomb codeword.
300 */
301static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook)
302{
303    unsigned int rice_order, exp_order, switch_bits;
304    unsigned int buf, code;
305    int log, prefix_len, len;
306
307    OPEN_READER(re, gb);
308    UPDATE_CACHE(re, gb);
309    buf = GET_CACHE(re, gb);
310
311    /* number of prefix bits to switch between Rice and expGolomb */
312    switch_bits = (codebook & 3) + 1;
313    rice_order  = codebook >> 5;        /* rice code order */
314    exp_order   = (codebook >> 2) & 7;  /* exp golomb code order */
315
316    log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
317
318    if (log < switch_bits) { /* ok, we got a rice code */
319        if (!rice_order) {
320            /* shortcut for faster decoding of rice codes without remainder */
321            code = log;
322            LAST_SKIP_BITS(re, gb, log + 1);
323        } else {
324            prefix_len = log + 1;
325            code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
326            LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
327        }
328    } else { /* otherwise we got a exp golomb code */
329        len  = (log << 1) - switch_bits + exp_order + 1;
330        code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
331        LAST_SKIP_BITS(re, gb, len);
332    }
333
334    CLOSE_READER(re, gb);
335
336    return code;
337}
338
339#define LSB2SIGN(x) (-((x) & 1))
340#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
341
342/**
343 * Decode DC coefficients for all blocks in a slice.
344 */
345static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
346                                    int nblocks)
347{
348    int16_t prev_dc;
349    int     i, sign;
350    int16_t delta;
351    unsigned int code;
352
353    code   = decode_vlc_codeword(gb, FIRST_DC_CB);
354    out[0] = prev_dc = TOSIGNED(code);
355
356    out   += 64; /* move to the DC coeff of the next block */
357    delta  = 3;
358
359    for (i = 1; i < nblocks; i++, out += 64) {
360        code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]);
361
362        sign     = -(((delta >> 15) & 1) ^ (code & 1));
363        delta    = (((code + 1) >> 1) ^ sign) - sign;
364        prev_dc += delta;
365        out[0]   = prev_dc;
366    }
367}
368
369
370/**
371 * Decode AC coefficients for all blocks in a slice.
372 */
373static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out,
374                                   int blocks_per_slice,
375                                   int plane_size_factor,
376                                   const uint8_t *scan)
377{
378    int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
379    int max_coeffs, bits_left;
380
381    /* set initial prediction values */
382    run   = 4;
383    level = 2;
384
385    max_coeffs = blocks_per_slice << 6;
386    block_mask = blocks_per_slice - 1;
387
388    for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
389        run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)];
390        lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)];
391
392        bits_left = get_bits_left(gb);
393        if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
394            return 0;
395
396        run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]);
397        if (run < 0)
398            return AVERROR_INVALIDDATA;
399
400        bits_left = get_bits_left(gb);
401        if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
402            return AVERROR_INVALIDDATA;
403
404        level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1;
405        if (level < 0)
406            return AVERROR_INVALIDDATA;
407
408        pos += run + 1;
409        if (pos >= max_coeffs)
410            break;
411
412        sign = get_sbits(gb, 1);
413        out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
414            (level ^ sign) - sign;
415    }
416
417    return 0;
418}
419
420
421/**
422 * Decode a slice plane (luma or chroma).
423 */
424static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td,
425                              const uint8_t *buf,
426                              int data_size, uint16_t *out_ptr,
427                              int linesize, int mbs_per_slice,
428                              int blocks_per_mb, int plane_size_factor,
429                              const int16_t *qmat, int is_chroma)
430{
431    GetBitContext gb;
432    int16_t *block_ptr;
433    int mb_num, blocks_per_slice, ret;
434
435    blocks_per_slice = mbs_per_slice * blocks_per_mb;
436
437    memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
438
439    init_get_bits(&gb, buf, data_size << 3);
440
441    decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
442
443    ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
444                           plane_size_factor, ctx->scantable.permutated);
445    if (ret < 0)
446        return ret;
447
448    /* inverse quantization, inverse transform and output */
449    block_ptr = td->blocks;
450
451    if (!is_chroma) {
452        for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
453            ctx->dsp.idct_put(out_ptr,                    linesize, block_ptr, qmat);
454            block_ptr += 64;
455            if (blocks_per_mb > 2) {
456                ctx->dsp.idct_put(out_ptr + 8,            linesize, block_ptr, qmat);
457                block_ptr += 64;
458            }
459            ctx->dsp.idct_put(out_ptr + linesize * 4,     linesize, block_ptr, qmat);
460            block_ptr += 64;
461            if (blocks_per_mb > 2) {
462                ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
463                block_ptr += 64;
464            }
465        }
466    } else {
467        for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
468            ctx->dsp.idct_put(out_ptr,                    linesize, block_ptr, qmat);
469            block_ptr += 64;
470            ctx->dsp.idct_put(out_ptr + linesize * 4,     linesize, block_ptr, qmat);
471            block_ptr += 64;
472            if (blocks_per_mb > 2) {
473                ctx->dsp.idct_put(out_ptr + 8,            linesize, block_ptr, qmat);
474                block_ptr += 64;
475                ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
476                block_ptr += 64;
477            }
478        }
479    }
480    return 0;
481}
482
483
484static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
485                         const int num_bits)
486{
487    const int mask = (1 << num_bits) - 1;
488    int i, idx, val, alpha_val;
489
490    idx       = 0;
491    alpha_val = mask;
492    do {
493        do {
494            if (get_bits1(gb))
495                val = get_bits(gb, num_bits);
496            else {
497                int sign;
498                val  = get_bits(gb, num_bits == 16 ? 7 : 4);
499                sign = val & 1;
500                val  = (val + 2) >> 1;
501                if (sign)
502                    val = -val;
503            }
504            alpha_val = (alpha_val + val) & mask;
505            if (num_bits == 16)
506                dst[idx++] = alpha_val >> 6;
507            else
508                dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
509            if (idx >= num_coeffs) {
510                break;
511            }
512        } while (get_bits1(gb));
513        val = get_bits(gb, 4);
514        if (!val)
515            val = get_bits(gb, 11);
516        if (idx + val > num_coeffs)
517            val = num_coeffs - idx;
518        if (num_bits == 16)
519            for (i = 0; i < val; i++)
520                dst[idx++] = alpha_val >> 6;
521        else
522            for (i = 0; i < val; i++)
523                dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
524    } while (idx < num_coeffs);
525}
526
527/**
528 * Decode alpha slice plane.
529 */
530static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td,
531                               const uint8_t *buf, int data_size,
532                               uint16_t *out_ptr, int linesize,
533                               int mbs_per_slice)
534{
535    GetBitContext gb;
536    int i;
537    uint16_t *block_ptr;
538
539    memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
540
541    init_get_bits(&gb, buf, data_size << 3);
542
543    if (ctx->alpha_info == 2)
544        unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16);
545    else
546        unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8);
547
548    block_ptr = td->blocks;
549
550    for (i = 0; i < 16; i++) {
551        memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr));
552        out_ptr   += linesize >> 1;
553        block_ptr += 16 * mbs_per_slice;
554    }
555}
556
557static int decode_slice(AVCodecContext *avctx, void *tdata)
558{
559    ProresThreadData *td = tdata;
560    ProresContext *ctx = avctx->priv_data;
561    int mb_x_pos  = td->x_pos;
562    int mb_y_pos  = td->y_pos;
563    int pic_num   = ctx->pic_num;
564    int slice_num = td->slice_num;
565    int mbs_per_slice = td->slice_width;
566    const uint8_t *buf;
567    uint8_t *y_data, *u_data, *v_data, *a_data;
568    AVFrame *pic = ctx->frame;
569    int i, sf, slice_width_factor;
570    int slice_data_size, hdr_size;
571    int y_data_size, u_data_size, v_data_size, a_data_size;
572    int y_linesize, u_linesize, v_linesize, a_linesize;
573    int coff[4];
574    int ret;
575
576    buf             = ctx->slice_data[slice_num].index;
577    slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
578
579    slice_width_factor = av_log2(mbs_per_slice);
580
581    y_data     = pic->data[0];
582    u_data     = pic->data[1];
583    v_data     = pic->data[2];
584    a_data     = pic->data[3];
585    y_linesize = pic->linesize[0];
586    u_linesize = pic->linesize[1];
587    v_linesize = pic->linesize[2];
588    a_linesize = pic->linesize[3];
589
590    if (pic->interlaced_frame) {
591        if (!(pic_num ^ pic->top_field_first)) {
592            y_data += y_linesize;
593            u_data += u_linesize;
594            v_data += v_linesize;
595            if (a_data)
596                a_data += a_linesize;
597        }
598        y_linesize <<= 1;
599        u_linesize <<= 1;
600        v_linesize <<= 1;
601        a_linesize <<= 1;
602    }
603    y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5);
604    u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor);
605    v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor);
606    if (a_data)
607        a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5);
608
609    if (slice_data_size < 6) {
610        av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
611        return AVERROR_INVALIDDATA;
612    }
613
614    /* parse slice header */
615    hdr_size    = buf[0] >> 3;
616    coff[0]     = hdr_size;
617    y_data_size = AV_RB16(buf + 2);
618    coff[1]     = coff[0] + y_data_size;
619    u_data_size = AV_RB16(buf + 4);
620    coff[2]     = coff[1] + u_data_size;
621    v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2];
622    coff[3]     = coff[2] + v_data_size;
623    a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0;
624
625    /* if V or alpha component size is negative that means that previous
626       component sizes are too large */
627    if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) {
628        av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
629        return AVERROR_INVALIDDATA;
630    }
631
632    sf = av_clip(buf[1], 1, 224);
633    sf = sf > 128 ? (sf - 96) << 2 : sf;
634
635    /* scale quantization matrixes according with slice's scale factor */
636    /* TODO: this can be SIMD-optimized a lot */
637    if (ctx->qmat_changed || sf != td->prev_slice_sf) {
638        td->prev_slice_sf = sf;
639        for (i = 0; i < 64; i++) {
640            td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]]   = ctx->qmat_luma[i]   * sf;
641            td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
642        }
643    }
644
645    /* decode luma plane */
646    ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size,
647                             (uint16_t*) y_data, y_linesize,
648                             mbs_per_slice, 4, slice_width_factor + 2,
649                             td->qmat_luma_scaled, 0);
650
651    if (ret < 0)
652        return ret;
653
654    /* decode U chroma plane */
655    ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size,
656                             (uint16_t*) u_data, u_linesize,
657                             mbs_per_slice, ctx->num_chroma_blocks,
658                             slice_width_factor + ctx->chroma_factor - 1,
659                             td->qmat_chroma_scaled, 1);
660    if (ret < 0)
661        return ret;
662
663    /* decode V chroma plane */
664    ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size,
665                             (uint16_t*) v_data, v_linesize,
666                             mbs_per_slice, ctx->num_chroma_blocks,
667                             slice_width_factor + ctx->chroma_factor - 1,
668                             td->qmat_chroma_scaled, 1);
669    if (ret < 0)
670        return ret;
671
672    /* decode alpha plane if available */
673    if (a_data && a_data_size)
674        decode_alpha_plane(ctx, td, buf + coff[3], a_data_size,
675                           (uint16_t*) a_data, a_linesize,
676                           mbs_per_slice);
677
678    return 0;
679}
680
681
682static int decode_picture(ProresContext *ctx, int pic_num,
683                          AVCodecContext *avctx)
684{
685    int slice_num, slice_width, x_pos, y_pos;
686
687    slice_num = 0;
688
689    ctx->pic_num = pic_num;
690    for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
691        slice_width = 1 << ctx->slice_width_factor;
692
693        for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
694             x_pos += slice_width) {
695            while (ctx->num_x_mbs - x_pos < slice_width)
696                slice_width >>= 1;
697
698            ctx->slice_data[slice_num].slice_num   = slice_num;
699            ctx->slice_data[slice_num].x_pos       = x_pos;
700            ctx->slice_data[slice_num].y_pos       = y_pos;
701            ctx->slice_data[slice_num].slice_width = slice_width;
702
703            slice_num++;
704        }
705    }
706
707    return avctx->execute(avctx, decode_slice,
708                          ctx->slice_data, NULL, slice_num,
709                          sizeof(ctx->slice_data[0]));
710}
711
712
713#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
714
715static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
716                        AVPacket *avpkt)
717{
718    ProresContext *ctx = avctx->priv_data;
719    const uint8_t *buf = avpkt->data;
720    int buf_size       = avpkt->size;
721    int frame_hdr_size, pic_num, pic_data_size;
722
723    ctx->frame            = data;
724    ctx->frame->pict_type = AV_PICTURE_TYPE_I;
725    ctx->frame->key_frame = 1;
726
727    /* check frame atom container */
728    if (buf_size < 28 || buf_size < AV_RB32(buf) ||
729        AV_RB32(buf + 4) != FRAME_ID) {
730        av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
731        return AVERROR_INVALIDDATA;
732    }
733
734    MOVE_DATA_PTR(8);
735
736    frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
737    if (frame_hdr_size < 0)
738        return AVERROR_INVALIDDATA;
739
740    MOVE_DATA_PTR(frame_hdr_size);
741
742    if (ff_get_buffer(avctx, ctx->frame, 0) < 0)
743        return -1;
744
745    for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) {
746        pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
747        if (pic_data_size < 0)
748            return AVERROR_INVALIDDATA;
749
750        if (decode_picture(ctx, pic_num, avctx))
751            return -1;
752
753        MOVE_DATA_PTR(pic_data_size);
754    }
755
756    ctx->frame = NULL;
757    *got_frame = 1;
758
759    return avpkt->size;
760}
761
762
763static av_cold int decode_close(AVCodecContext *avctx)
764{
765    ProresContext *ctx = avctx->priv_data;
766
767    av_freep(&ctx->slice_data);
768
769    return 0;
770}
771
772
773AVCodec ff_prores_lgpl_decoder = {
774    .name           = "prores_lgpl",
775    .long_name      = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
776    .type           = AVMEDIA_TYPE_VIDEO,
777    .id             = AV_CODEC_ID_PRORES,
778    .priv_data_size = sizeof(ProresContext),
779    .init           = decode_init,
780    .close          = decode_close,
781    .decode         = decode_frame,
782    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
783};
784