1/*
2 * Copyright (c) 2013-2014 Mozilla Corporation
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * Celt non-power of 2 iMDCT
24 */
25
26#include <float.h>
27#include <math.h>
28#include <stddef.h>
29
30#include "config.h"
31
32#include "libavutil/attributes.h"
33#include "libavutil/common.h"
34
35#include "avfft.h"
36#include "opus.h"
37#include "opus_imdct.h"
38
39// minimal iMDCT size to make SIMD opts easier
40#define CELT_MIN_IMDCT_SIZE 120
41
42// complex c = a * b
43#define CMUL3(cre, cim, are, aim, bre, bim)          \
44do {                                                 \
45    cre = are * bre - aim * bim;                     \
46    cim = are * bim + aim * bre;                     \
47} while (0)
48
49#define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
50
51// complex c = a * b
52//         d = a * conjugate(b)
53#define CMUL2(c, d, a, b)                            \
54do {                                                 \
55    float are = (a).re;                              \
56    float aim = (a).im;                              \
57    float bre = (b).re;                              \
58    float bim = (b).im;                              \
59    float rr  = are * bre;                           \
60    float ri  = are * bim;                           \
61    float ir  = aim * bre;                           \
62    float ii  = aim * bim;                           \
63    (c).re =  rr - ii;                               \
64    (c).im =  ri + ir;                               \
65    (d).re =  rr + ii;                               \
66    (d).im = -ri + ir;                               \
67} while (0)
68
69av_cold void ff_celt_imdct_uninit(CeltIMDCTContext **ps)
70{
71    CeltIMDCTContext *s = *ps;
72    int i;
73
74    if (!s)
75        return;
76
77    for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++)
78        av_freep(&s->exptab[i]);
79
80    av_freep(&s->twiddle_exptab);
81
82    av_freep(&s->tmp);
83
84    av_freep(ps);
85}
86
87static void celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
88                            ptrdiff_t stride, float scale);
89
90av_cold int ff_celt_imdct_init(CeltIMDCTContext **ps, int N)
91{
92    CeltIMDCTContext *s;
93    int len2 = 15 * (1 << N);
94    int len  = 2 * len2;
95    int i, j;
96
97    if (len2 > CELT_MAX_FRAME_SIZE || len2 < CELT_MIN_IMDCT_SIZE)
98        return AVERROR(EINVAL);
99
100    s = av_mallocz(sizeof(*s));
101    if (!s)
102        return AVERROR(ENOMEM);
103
104    s->fft_n = N - 1;
105    s->len4 = len2 / 2;
106    s->len2 = len2;
107
108    s->tmp  = av_malloc(len * 2 * sizeof(*s->tmp));
109    if (!s->tmp)
110        goto fail;
111
112    s->twiddle_exptab  = av_malloc(s->len4 * sizeof(*s->twiddle_exptab));
113    if (!s->twiddle_exptab)
114        goto fail;
115
116    for (i = 0; i < s->len4; i++) {
117        s->twiddle_exptab[i].re = cos(2 * M_PI * (i + 0.125 + s->len4) / len);
118        s->twiddle_exptab[i].im = sin(2 * M_PI * (i + 0.125 + s->len4) / len);
119    }
120
121    for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++) {
122        int N = 15 * (1 << i);
123        s->exptab[i] = av_malloc(sizeof(*s->exptab[i]) * FFMAX(N, 19));
124        if (!s->exptab[i])
125            goto fail;
126
127        for (j = 0; j < N; j++) {
128            s->exptab[i][j].re = cos(2 * M_PI * j / N);
129            s->exptab[i][j].im = sin(2 * M_PI * j / N);
130        }
131    }
132
133    // wrap around to simplify fft15
134    for (j = 15; j < 19; j++)
135        s->exptab[0][j] = s->exptab[0][j - 15];
136
137    s->imdct_half = celt_imdct_half;
138
139    if (ARCH_AARCH64)
140        ff_celt_imdct_init_aarch64(s);
141
142    *ps = s;
143
144    return 0;
145fail:
146    ff_celt_imdct_uninit(&s);
147    return AVERROR(ENOMEM);
148}
149
150static void fft5(FFTComplex *out, const FFTComplex *in, ptrdiff_t stride)
151{
152    // [0] = exp(2 * i * pi / 5), [1] = exp(2 * i * pi * 2 / 5)
153    static const FFTComplex fact[] = { { 0.30901699437494745,  0.95105651629515353 },
154                                       { -0.80901699437494734, 0.58778525229247325 } };
155
156    FFTComplex z[4][4];
157
158    CMUL2(z[0][0], z[0][3], in[1 * stride], fact[0]);
159    CMUL2(z[0][1], z[0][2], in[1 * stride], fact[1]);
160    CMUL2(z[1][0], z[1][3], in[2 * stride], fact[0]);
161    CMUL2(z[1][1], z[1][2], in[2 * stride], fact[1]);
162    CMUL2(z[2][0], z[2][3], in[3 * stride], fact[0]);
163    CMUL2(z[2][1], z[2][2], in[3 * stride], fact[1]);
164    CMUL2(z[3][0], z[3][3], in[4 * stride], fact[0]);
165    CMUL2(z[3][1], z[3][2], in[4 * stride], fact[1]);
166
167    out[0].re = in[0].re + in[stride].re + in[2 * stride].re + in[3 * stride].re + in[4 * stride].re;
168    out[0].im = in[0].im + in[stride].im + in[2 * stride].im + in[3 * stride].im + in[4 * stride].im;
169
170    out[1].re = in[0].re + z[0][0].re + z[1][1].re + z[2][2].re + z[3][3].re;
171    out[1].im = in[0].im + z[0][0].im + z[1][1].im + z[2][2].im + z[3][3].im;
172
173    out[2].re = in[0].re + z[0][1].re + z[1][3].re + z[2][0].re + z[3][2].re;
174    out[2].im = in[0].im + z[0][1].im + z[1][3].im + z[2][0].im + z[3][2].im;
175
176    out[3].re = in[0].re + z[0][2].re + z[1][0].re + z[2][3].re + z[3][1].re;
177    out[3].im = in[0].im + z[0][2].im + z[1][0].im + z[2][3].im + z[3][1].im;
178
179    out[4].re = in[0].re + z[0][3].re + z[1][2].re + z[2][1].re + z[3][0].re;
180    out[4].im = in[0].im + z[0][3].im + z[1][2].im + z[2][1].im + z[3][0].im;
181}
182
183static void fft15(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, ptrdiff_t stride)
184{
185    const FFTComplex *exptab = s->exptab[0];
186    FFTComplex tmp[5];
187    FFTComplex tmp1[5];
188    FFTComplex tmp2[5];
189    int k;
190
191    fft5(tmp,  in,              stride * 3);
192    fft5(tmp1, in +     stride, stride * 3);
193    fft5(tmp2, in + 2 * stride, stride * 3);
194
195    for (k = 0; k < 5; k++) {
196        FFTComplex t1, t2;
197
198        CMUL(t1, tmp1[k], exptab[k]);
199        CMUL(t2, tmp2[k], exptab[2 * k]);
200        out[k].re = tmp[k].re + t1.re + t2.re;
201        out[k].im = tmp[k].im + t1.im + t2.im;
202
203        CMUL(t1, tmp1[k], exptab[k + 5]);
204        CMUL(t2, tmp2[k], exptab[2 * (k + 5)]);
205        out[k + 5].re = tmp[k].re + t1.re + t2.re;
206        out[k + 5].im = tmp[k].im + t1.im + t2.im;
207
208        CMUL(t1, tmp1[k], exptab[k + 10]);
209        CMUL(t2, tmp2[k], exptab[2 * k + 5]);
210        out[k + 10].re = tmp[k].re + t1.re + t2.re;
211        out[k + 10].im = tmp[k].im + t1.im + t2.im;
212    }
213}
214
215/*
216 * FFT of the length 15 * (2^N)
217 */
218static void fft_calc(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in,
219                     int N, ptrdiff_t stride)
220{
221    if (N) {
222        const FFTComplex *exptab = s->exptab[N];
223        const int len2 = 15 * (1 << (N - 1));
224        int k;
225
226        fft_calc(s, out,        in,          N - 1, stride * 2);
227        fft_calc(s, out + len2, in + stride, N - 1, stride * 2);
228
229        for (k = 0; k < len2; k++) {
230            FFTComplex t;
231
232            CMUL(t, out[len2 + k], exptab[k]);
233
234            out[len2 + k].re = out[k].re - t.re;
235            out[len2 + k].im = out[k].im - t.im;
236
237            out[k].re += t.re;
238            out[k].im += t.im;
239        }
240    } else
241        fft15(s, out, in, stride);
242}
243
244static void celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
245                            ptrdiff_t stride, float scale)
246{
247    FFTComplex *z = (FFTComplex *)dst;
248    const int len8 = s->len4 / 2;
249    const float *in1 = src;
250    const float *in2 = src + (s->len2 - 1) * stride;
251    int i;
252
253    for (i = 0; i < s->len4; i++) {
254        FFTComplex tmp = { *in2, *in1 };
255        CMUL(s->tmp[i], tmp, s->twiddle_exptab[i]);
256        in1 += 2 * stride;
257        in2 -= 2 * stride;
258    }
259
260    fft_calc(s, z, s->tmp, s->fft_n, 1);
261
262    for (i = 0; i < len8; i++) {
263        float r0, i0, r1, i1;
264
265        CMUL3(r0, i1, z[len8 - i - 1].im, z[len8 - i - 1].re,  s->twiddle_exptab[len8 - i - 1].im, s->twiddle_exptab[len8 - i - 1].re);
266        CMUL3(r1, i0, z[len8 + i].im,     z[len8 + i].re,      s->twiddle_exptab[len8 + i].im,     s->twiddle_exptab[len8 + i].re);
267        z[len8 - i - 1].re = scale * r0;
268        z[len8 - i - 1].im = scale * i0;
269        z[len8 + i].re     = scale * r1;
270        z[len8 + i].im     = scale * i1;
271    }
272}
273