1/*
2 * The simplest mpeg audio layer 2 encoder
3 * Copyright (c) 2000, 2001 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * The simplest mpeg audio layer 2 encoder.
25 */
26
27#include "libavutil/channel_layout.h"
28
29#include "avcodec.h"
30#include "internal.h"
31#include "put_bits.h"
32
33#define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
34#define WFRAC_BITS  14   /* fractional bits for window */
35
36#include "mpegaudio.h"
37#include "mpegaudiodsp.h"
38#include "mpegaudiodata.h"
39#include "mpegaudiotab.h"
40
41/* currently, cannot change these constants (need to modify
42   quantization stage) */
43#define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
44
45#define SAMPLES_BUF_SIZE 4096
46
47typedef struct MpegAudioContext {
48    PutBitContext pb;
49    int nb_channels;
50    int lsf;           /* 1 if mpeg2 low bitrate selected */
51    int bitrate_index; /* bit rate */
52    int freq_index;
53    int frame_size; /* frame size, in bits, without padding */
54    /* padding computation */
55    int frame_frac, frame_frac_incr, do_padding;
56    short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
57    int samples_offset[MPA_MAX_CHANNELS];       /* offset in samples_buf */
58    int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
59    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
60    /* code to group 3 scale factors */
61    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
62    int sblimit; /* number of used subbands */
63    const unsigned char *alloc_table;
64    int16_t filter_bank[512];
65    int scale_factor_table[64];
66    unsigned char scale_diff_table[128];
67#if USE_FLOATS
68    float scale_factor_inv_table[64];
69#else
70    int8_t scale_factor_shift[64];
71    unsigned short scale_factor_mult[64];
72#endif
73    unsigned short total_quant_bits[17]; /* total number of bits per allocation group */
74} MpegAudioContext;
75
76static av_cold int MPA_encode_init(AVCodecContext *avctx)
77{
78    MpegAudioContext *s = avctx->priv_data;
79    int freq = avctx->sample_rate;
80    int bitrate = avctx->bit_rate;
81    int channels = avctx->channels;
82    int i, v, table;
83    float a;
84
85    if (channels <= 0 || channels > 2){
86        av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
87        return AVERROR(EINVAL);
88    }
89    bitrate = bitrate / 1000;
90    s->nb_channels = channels;
91    avctx->frame_size = MPA_FRAME_SIZE;
92    avctx->delay      = 512 - 32 + 1;
93
94    /* encoding freq */
95    s->lsf = 0;
96    for(i=0;i<3;i++) {
97        if (avpriv_mpa_freq_tab[i] == freq)
98            break;
99        if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
100            s->lsf = 1;
101            break;
102        }
103    }
104    if (i == 3){
105        av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
106        return AVERROR(EINVAL);
107    }
108    s->freq_index = i;
109
110    /* encoding bitrate & frequency */
111    for(i=1;i<15;i++) {
112        if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
113            break;
114    }
115    if (i == 15 && !avctx->bit_rate) {
116        i = 14;
117        bitrate = avpriv_mpa_bitrate_tab[s->lsf][1][i];
118        avctx->bit_rate = bitrate * 1000;
119    }
120    if (i == 15){
121        av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
122        return AVERROR(EINVAL);
123    }
124    s->bitrate_index = i;
125
126    /* compute total header size & pad bit */
127
128    a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
129    s->frame_size = ((int)a) * 8;
130
131    /* frame fractional size to compute padding */
132    s->frame_frac = 0;
133    s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
134
135    /* select the right allocation table */
136    table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
137
138    /* number of used subbands */
139    s->sblimit = ff_mpa_sblimit_table[table];
140    s->alloc_table = ff_mpa_alloc_tables[table];
141
142    av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
143            bitrate, freq, s->frame_size, table, s->frame_frac_incr);
144
145    for(i=0;i<s->nb_channels;i++)
146        s->samples_offset[i] = 0;
147
148    for(i=0;i<257;i++) {
149        int v;
150        v = ff_mpa_enwindow[i];
151#if WFRAC_BITS != 16
152        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
153#endif
154        s->filter_bank[i] = v;
155        if ((i & 63) != 0)
156            v = -v;
157        if (i != 0)
158            s->filter_bank[512 - i] = v;
159    }
160
161    for(i=0;i<64;i++) {
162        v = (int)(exp2((3 - i) / 3.0) * (1 << 20));
163        if (v <= 0)
164            v = 1;
165        s->scale_factor_table[i] = v;
166#if USE_FLOATS
167        s->scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20);
168#else
169#define P 15
170        s->scale_factor_shift[i] = 21 - P - (i / 3);
171        s->scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0);
172#endif
173    }
174    for(i=0;i<128;i++) {
175        v = i - 64;
176        if (v <= -3)
177            v = 0;
178        else if (v < 0)
179            v = 1;
180        else if (v == 0)
181            v = 2;
182        else if (v < 3)
183            v = 3;
184        else
185            v = 4;
186        s->scale_diff_table[i] = v;
187    }
188
189    for(i=0;i<17;i++) {
190        v = ff_mpa_quant_bits[i];
191        if (v < 0)
192            v = -v;
193        else
194            v = v * 3;
195        s->total_quant_bits[i] = 12 * v;
196    }
197
198    return 0;
199}
200
201/* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
202static void idct32(int *out, int *tab)
203{
204    int i, j;
205    int *t, *t1, xr;
206    const int *xp = costab32;
207
208    for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
209
210    t = tab + 30;
211    t1 = tab + 2;
212    do {
213        t[0] += t[-4];
214        t[1] += t[1 - 4];
215        t -= 4;
216    } while (t != t1);
217
218    t = tab + 28;
219    t1 = tab + 4;
220    do {
221        t[0] += t[-8];
222        t[1] += t[1-8];
223        t[2] += t[2-8];
224        t[3] += t[3-8];
225        t -= 8;
226    } while (t != t1);
227
228    t = tab;
229    t1 = tab + 32;
230    do {
231        t[ 3] = -t[ 3];
232        t[ 6] = -t[ 6];
233
234        t[11] = -t[11];
235        t[12] = -t[12];
236        t[13] = -t[13];
237        t[15] = -t[15];
238        t += 16;
239    } while (t != t1);
240
241
242    t = tab;
243    t1 = tab + 8;
244    do {
245        int x1, x2, x3, x4;
246
247        x3 = MUL(t[16], FIX(SQRT2*0.5));
248        x4 = t[0] - x3;
249        x3 = t[0] + x3;
250
251        x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
252        x1 = MUL((t[8] - x2), xp[0]);
253        x2 = MUL((t[8] + x2), xp[1]);
254
255        t[ 0] = x3 + x1;
256        t[ 8] = x4 - x2;
257        t[16] = x4 + x2;
258        t[24] = x3 - x1;
259        t++;
260    } while (t != t1);
261
262    xp += 2;
263    t = tab;
264    t1 = tab + 4;
265    do {
266        xr = MUL(t[28],xp[0]);
267        t[28] = (t[0] - xr);
268        t[0] = (t[0] + xr);
269
270        xr = MUL(t[4],xp[1]);
271        t[ 4] = (t[24] - xr);
272        t[24] = (t[24] + xr);
273
274        xr = MUL(t[20],xp[2]);
275        t[20] = (t[8] - xr);
276        t[ 8] = (t[8] + xr);
277
278        xr = MUL(t[12],xp[3]);
279        t[12] = (t[16] - xr);
280        t[16] = (t[16] + xr);
281        t++;
282    } while (t != t1);
283    xp += 4;
284
285    for (i = 0; i < 4; i++) {
286        xr = MUL(tab[30-i*4],xp[0]);
287        tab[30-i*4] = (tab[i*4] - xr);
288        tab[   i*4] = (tab[i*4] + xr);
289
290        xr = MUL(tab[ 2+i*4],xp[1]);
291        tab[ 2+i*4] = (tab[28-i*4] - xr);
292        tab[28-i*4] = (tab[28-i*4] + xr);
293
294        xr = MUL(tab[31-i*4],xp[0]);
295        tab[31-i*4] = (tab[1+i*4] - xr);
296        tab[ 1+i*4] = (tab[1+i*4] + xr);
297
298        xr = MUL(tab[ 3+i*4],xp[1]);
299        tab[ 3+i*4] = (tab[29-i*4] - xr);
300        tab[29-i*4] = (tab[29-i*4] + xr);
301
302        xp += 2;
303    }
304
305    t = tab + 30;
306    t1 = tab + 1;
307    do {
308        xr = MUL(t1[0], *xp);
309        t1[0] = (t[0] - xr);
310        t[0] = (t[0] + xr);
311        t -= 2;
312        t1 += 2;
313        xp++;
314    } while (t >= tab);
315
316    for(i=0;i<32;i++) {
317        out[i] = tab[bitinv32[i]];
318    }
319}
320
321#define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
322
323static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
324{
325    short *p, *q;
326    int sum, offset, i, j;
327    int tmp[64];
328    int tmp1[32];
329    int *out;
330
331    offset = s->samples_offset[ch];
332    out = &s->sb_samples[ch][0][0][0];
333    for(j=0;j<36;j++) {
334        /* 32 samples at once */
335        for(i=0;i<32;i++) {
336            s->samples_buf[ch][offset + (31 - i)] = samples[0];
337            samples += incr;
338        }
339
340        /* filter */
341        p = s->samples_buf[ch] + offset;
342        q = s->filter_bank;
343        /* maxsum = 23169 */
344        for(i=0;i<64;i++) {
345            sum = p[0*64] * q[0*64];
346            sum += p[1*64] * q[1*64];
347            sum += p[2*64] * q[2*64];
348            sum += p[3*64] * q[3*64];
349            sum += p[4*64] * q[4*64];
350            sum += p[5*64] * q[5*64];
351            sum += p[6*64] * q[6*64];
352            sum += p[7*64] * q[7*64];
353            tmp[i] = sum;
354            p++;
355            q++;
356        }
357        tmp1[0] = tmp[16] >> WSHIFT;
358        for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
359        for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
360
361        idct32(out, tmp1);
362
363        /* advance of 32 samples */
364        offset -= 32;
365        out += 32;
366        /* handle the wrap around */
367        if (offset < 0) {
368            memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
369                    s->samples_buf[ch], (512 - 32) * 2);
370            offset = SAMPLES_BUF_SIZE - 512;
371        }
372    }
373    s->samples_offset[ch] = offset;
374}
375
376static void compute_scale_factors(MpegAudioContext *s,
377                                  unsigned char scale_code[SBLIMIT],
378                                  unsigned char scale_factors[SBLIMIT][3],
379                                  int sb_samples[3][12][SBLIMIT],
380                                  int sblimit)
381{
382    int *p, vmax, v, n, i, j, k, code;
383    int index, d1, d2;
384    unsigned char *sf = &scale_factors[0][0];
385
386    for(j=0;j<sblimit;j++) {
387        for(i=0;i<3;i++) {
388            /* find the max absolute value */
389            p = &sb_samples[i][0][j];
390            vmax = abs(*p);
391            for(k=1;k<12;k++) {
392                p += SBLIMIT;
393                v = abs(*p);
394                if (v > vmax)
395                    vmax = v;
396            }
397            /* compute the scale factor index using log 2 computations */
398            if (vmax > 1) {
399                n = av_log2(vmax);
400                /* n is the position of the MSB of vmax. now
401                   use at most 2 compares to find the index */
402                index = (21 - n) * 3 - 3;
403                if (index >= 0) {
404                    while (vmax <= s->scale_factor_table[index+1])
405                        index++;
406                } else {
407                    index = 0; /* very unlikely case of overflow */
408                }
409            } else {
410                index = 62; /* value 63 is not allowed */
411            }
412
413            av_dlog(NULL, "%2d:%d in=%x %x %d\n",
414                    j, i, vmax, s->scale_factor_table[index], index);
415            /* store the scale factor */
416            av_assert2(index >=0 && index <= 63);
417            sf[i] = index;
418        }
419
420        /* compute the transmission factor : look if the scale factors
421           are close enough to each other */
422        d1 = s->scale_diff_table[sf[0] - sf[1] + 64];
423        d2 = s->scale_diff_table[sf[1] - sf[2] + 64];
424
425        /* handle the 25 cases */
426        switch(d1 * 5 + d2) {
427        case 0*5+0:
428        case 0*5+4:
429        case 3*5+4:
430        case 4*5+0:
431        case 4*5+4:
432            code = 0;
433            break;
434        case 0*5+1:
435        case 0*5+2:
436        case 4*5+1:
437        case 4*5+2:
438            code = 3;
439            sf[2] = sf[1];
440            break;
441        case 0*5+3:
442        case 4*5+3:
443            code = 3;
444            sf[1] = sf[2];
445            break;
446        case 1*5+0:
447        case 1*5+4:
448        case 2*5+4:
449            code = 1;
450            sf[1] = sf[0];
451            break;
452        case 1*5+1:
453        case 1*5+2:
454        case 2*5+0:
455        case 2*5+1:
456        case 2*5+2:
457            code = 2;
458            sf[1] = sf[2] = sf[0];
459            break;
460        case 2*5+3:
461        case 3*5+3:
462            code = 2;
463            sf[0] = sf[1] = sf[2];
464            break;
465        case 3*5+0:
466        case 3*5+1:
467        case 3*5+2:
468            code = 2;
469            sf[0] = sf[2] = sf[1];
470            break;
471        case 1*5+3:
472            code = 2;
473            if (sf[0] > sf[2])
474              sf[0] = sf[2];
475            sf[1] = sf[2] = sf[0];
476            break;
477        default:
478            av_assert2(0); //cannot happen
479            code = 0;           /* kill warning */
480        }
481
482        av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
483                sf[0], sf[1], sf[2], d1, d2, code);
484        scale_code[j] = code;
485        sf += 3;
486    }
487}
488
489/* The most important function : psycho acoustic module. In this
490   encoder there is basically none, so this is the worst you can do,
491   but also this is the simpler. */
492static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
493{
494    int i;
495
496    for(i=0;i<s->sblimit;i++) {
497        smr[i] = (int)(fixed_smr[i] * 10);
498    }
499}
500
501
502#define SB_NOTALLOCATED  0
503#define SB_ALLOCATED     1
504#define SB_NOMORE        2
505
506/* Try to maximize the smr while using a number of bits inferior to
507   the frame size. I tried to make the code simpler, faster and
508   smaller than other encoders :-) */
509static void compute_bit_allocation(MpegAudioContext *s,
510                                   short smr1[MPA_MAX_CHANNELS][SBLIMIT],
511                                   unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
512                                   int *padding)
513{
514    int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
515    int incr;
516    short smr[MPA_MAX_CHANNELS][SBLIMIT];
517    unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
518    const unsigned char *alloc;
519
520    memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
521    memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
522    memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
523
524    /* compute frame size and padding */
525    max_frame_size = s->frame_size;
526    s->frame_frac += s->frame_frac_incr;
527    if (s->frame_frac >= 65536) {
528        s->frame_frac -= 65536;
529        s->do_padding = 1;
530        max_frame_size += 8;
531    } else {
532        s->do_padding = 0;
533    }
534
535    /* compute the header + bit alloc size */
536    current_frame_size = 32;
537    alloc = s->alloc_table;
538    for(i=0;i<s->sblimit;i++) {
539        incr = alloc[0];
540        current_frame_size += incr * s->nb_channels;
541        alloc += 1 << incr;
542    }
543    for(;;) {
544        /* look for the subband with the largest signal to mask ratio */
545        max_sb = -1;
546        max_ch = -1;
547        max_smr = INT_MIN;
548        for(ch=0;ch<s->nb_channels;ch++) {
549            for(i=0;i<s->sblimit;i++) {
550                if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
551                    max_smr = smr[ch][i];
552                    max_sb = i;
553                    max_ch = ch;
554                }
555            }
556        }
557        if (max_sb < 0)
558            break;
559        av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
560                current_frame_size, max_frame_size, max_sb, max_ch,
561                bit_alloc[max_ch][max_sb]);
562
563        /* find alloc table entry (XXX: not optimal, should use
564           pointer table) */
565        alloc = s->alloc_table;
566        for(i=0;i<max_sb;i++) {
567            alloc += 1 << alloc[0];
568        }
569
570        if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
571            /* nothing was coded for this band: add the necessary bits */
572            incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
573            incr += s->total_quant_bits[alloc[1]];
574        } else {
575            /* increments bit allocation */
576            b = bit_alloc[max_ch][max_sb];
577            incr = s->total_quant_bits[alloc[b + 1]] -
578                s->total_quant_bits[alloc[b]];
579        }
580
581        if (current_frame_size + incr <= max_frame_size) {
582            /* can increase size */
583            b = ++bit_alloc[max_ch][max_sb];
584            current_frame_size += incr;
585            /* decrease smr by the resolution we added */
586            smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
587            /* max allocation size reached ? */
588            if (b == ((1 << alloc[0]) - 1))
589                subband_status[max_ch][max_sb] = SB_NOMORE;
590            else
591                subband_status[max_ch][max_sb] = SB_ALLOCATED;
592        } else {
593            /* cannot increase the size of this subband */
594            subband_status[max_ch][max_sb] = SB_NOMORE;
595        }
596    }
597    *padding = max_frame_size - current_frame_size;
598    av_assert0(*padding >= 0);
599}
600
601/*
602 * Output the mpeg audio layer 2 frame. Note how the code is small
603 * compared to other encoders :-)
604 */
605static void encode_frame(MpegAudioContext *s,
606                         unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
607                         int padding)
608{
609    int i, j, k, l, bit_alloc_bits, b, ch;
610    unsigned char *sf;
611    int q[3];
612    PutBitContext *p = &s->pb;
613
614    /* header */
615
616    put_bits(p, 12, 0xfff);
617    put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
618    put_bits(p, 2, 4-2);  /* layer 2 */
619    put_bits(p, 1, 1); /* no error protection */
620    put_bits(p, 4, s->bitrate_index);
621    put_bits(p, 2, s->freq_index);
622    put_bits(p, 1, s->do_padding); /* use padding */
623    put_bits(p, 1, 0);             /* private_bit */
624    put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
625    put_bits(p, 2, 0); /* mode_ext */
626    put_bits(p, 1, 0); /* no copyright */
627    put_bits(p, 1, 1); /* original */
628    put_bits(p, 2, 0); /* no emphasis */
629
630    /* bit allocation */
631    j = 0;
632    for(i=0;i<s->sblimit;i++) {
633        bit_alloc_bits = s->alloc_table[j];
634        for(ch=0;ch<s->nb_channels;ch++) {
635            put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
636        }
637        j += 1 << bit_alloc_bits;
638    }
639
640    /* scale codes */
641    for(i=0;i<s->sblimit;i++) {
642        for(ch=0;ch<s->nb_channels;ch++) {
643            if (bit_alloc[ch][i])
644                put_bits(p, 2, s->scale_code[ch][i]);
645        }
646    }
647
648    /* scale factors */
649    for(i=0;i<s->sblimit;i++) {
650        for(ch=0;ch<s->nb_channels;ch++) {
651            if (bit_alloc[ch][i]) {
652                sf = &s->scale_factors[ch][i][0];
653                switch(s->scale_code[ch][i]) {
654                case 0:
655                    put_bits(p, 6, sf[0]);
656                    put_bits(p, 6, sf[1]);
657                    put_bits(p, 6, sf[2]);
658                    break;
659                case 3:
660                case 1:
661                    put_bits(p, 6, sf[0]);
662                    put_bits(p, 6, sf[2]);
663                    break;
664                case 2:
665                    put_bits(p, 6, sf[0]);
666                    break;
667                }
668            }
669        }
670    }
671
672    /* quantization & write sub band samples */
673
674    for(k=0;k<3;k++) {
675        for(l=0;l<12;l+=3) {
676            j = 0;
677            for(i=0;i<s->sblimit;i++) {
678                bit_alloc_bits = s->alloc_table[j];
679                for(ch=0;ch<s->nb_channels;ch++) {
680                    b = bit_alloc[ch][i];
681                    if (b) {
682                        int qindex, steps, m, sample, bits;
683                        /* we encode 3 sub band samples of the same sub band at a time */
684                        qindex = s->alloc_table[j+b];
685                        steps = ff_mpa_quant_steps[qindex];
686                        for(m=0;m<3;m++) {
687                            sample = s->sb_samples[ch][k][l + m][i];
688                            /* divide by scale factor */
689#if USE_FLOATS
690                            {
691                                float a;
692                                a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]];
693                                q[m] = (int)((a + 1.0) * steps * 0.5);
694                            }
695#else
696                            {
697                                int q1, e, shift, mult;
698                                e = s->scale_factors[ch][i][k];
699                                shift = s->scale_factor_shift[e];
700                                mult = s->scale_factor_mult[e];
701
702                                /* normalize to P bits */
703                                if (shift < 0)
704                                    q1 = sample << (-shift);
705                                else
706                                    q1 = sample >> shift;
707                                q1 = (q1 * mult) >> P;
708                                q1 += 1 << P;
709                                if (q1 < 0)
710                                    q1 = 0;
711                                q[m] = (q1 * (unsigned)steps) >> (P + 1);
712                            }
713#endif
714                            if (q[m] >= steps)
715                                q[m] = steps - 1;
716                            av_assert2(q[m] >= 0 && q[m] < steps);
717                        }
718                        bits = ff_mpa_quant_bits[qindex];
719                        if (bits < 0) {
720                            /* group the 3 values to save bits */
721                            put_bits(p, -bits,
722                                     q[0] + steps * (q[1] + steps * q[2]));
723                        } else {
724                            put_bits(p, bits, q[0]);
725                            put_bits(p, bits, q[1]);
726                            put_bits(p, bits, q[2]);
727                        }
728                    }
729                }
730                /* next subband in alloc table */
731                j += 1 << bit_alloc_bits;
732            }
733        }
734    }
735
736    /* padding */
737    for(i=0;i<padding;i++)
738        put_bits(p, 1, 0);
739
740    /* flush */
741    flush_put_bits(p);
742}
743
744static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
745                            const AVFrame *frame, int *got_packet_ptr)
746{
747    MpegAudioContext *s = avctx->priv_data;
748    const int16_t *samples = (const int16_t *)frame->data[0];
749    short smr[MPA_MAX_CHANNELS][SBLIMIT];
750    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
751    int padding, i, ret;
752
753    for(i=0;i<s->nb_channels;i++) {
754        filter(s, i, samples + i, s->nb_channels);
755    }
756
757    for(i=0;i<s->nb_channels;i++) {
758        compute_scale_factors(s, s->scale_code[i], s->scale_factors[i],
759                              s->sb_samples[i], s->sblimit);
760    }
761    for(i=0;i<s->nb_channels;i++) {
762        psycho_acoustic_model(s, smr[i]);
763    }
764    compute_bit_allocation(s, smr, bit_alloc, &padding);
765
766    if ((ret = ff_alloc_packet2(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE)) < 0)
767        return ret;
768
769    init_put_bits(&s->pb, avpkt->data, avpkt->size);
770
771    encode_frame(s, bit_alloc, padding);
772
773    if (frame->pts != AV_NOPTS_VALUE)
774        avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
775
776    avpkt->size = put_bits_count(&s->pb) / 8;
777    *got_packet_ptr = 1;
778    return 0;
779}
780
781static const AVCodecDefault mp2_defaults[] = {
782    { "b", "0" },
783    { NULL },
784};
785
786