1/*
2 * IMC compatible decoder
3 * Copyright (c) 2002-2004 Maxim Poliakovski
4 * Copyright (c) 2006 Benjamin Larsson
5 * Copyright (c) 2006 Konstantin Shishkov
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/**
25 *  @file
26 *  IMC - Intel Music Coder
27 *  A mdct based codec using a 256 points large transform
28 *  divided into 32 bands with some mix of scale factors.
29 *  Only mono is supported.
30 *
31 */
32
33
34#include <math.h>
35#include <stddef.h>
36#include <stdio.h>
37
38#include "libavutil/channel_layout.h"
39#include "libavutil/float_dsp.h"
40#include "libavutil/internal.h"
41#include "libavutil/libm.h"
42#include "avcodec.h"
43#include "bswapdsp.h"
44#include "get_bits.h"
45#include "fft.h"
46#include "internal.h"
47#include "sinewin.h"
48
49#include "imcdata.h"
50
51#define IMC_BLOCK_SIZE 64
52#define IMC_FRAME_ID 0x21
53#define BANDS 32
54#define COEFFS 256
55
56typedef struct IMCChannel {
57    float old_floor[BANDS];
58    float flcoeffs1[BANDS];
59    float flcoeffs2[BANDS];
60    float flcoeffs3[BANDS];
61    float flcoeffs4[BANDS];
62    float flcoeffs5[BANDS];
63    float flcoeffs6[BANDS];
64    float CWdecoded[COEFFS];
65
66    int bandWidthT[BANDS];     ///< codewords per band
67    int bitsBandT[BANDS];      ///< how many bits per codeword in band
68    int CWlengthT[COEFFS];     ///< how many bits in each codeword
69    int levlCoeffBuf[BANDS];
70    int bandFlagsBuf[BANDS];   ///< flags for each band
71    int sumLenArr[BANDS];      ///< bits for all coeffs in band
72    int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
73    int skipFlagBits[BANDS];   ///< bits used to code skip flags
74    int skipFlagCount[BANDS];  ///< skipped coeffients per band
75    int skipFlags[COEFFS];     ///< skip coefficient decoding or not
76    int codewords[COEFFS];     ///< raw codewords read from bitstream
77
78    float last_fft_im[COEFFS];
79
80    int decoder_reset;
81} IMCChannel;
82
83typedef struct {
84    IMCChannel chctx[2];
85
86    /** MDCT tables */
87    //@{
88    float mdct_sine_window[COEFFS];
89    float post_cos[COEFFS];
90    float post_sin[COEFFS];
91    float pre_coef1[COEFFS];
92    float pre_coef2[COEFFS];
93    //@}
94
95    float sqrt_tab[30];
96    GetBitContext gb;
97
98    BswapDSPContext bdsp;
99    AVFloatDSPContext fdsp;
100    FFTContext fft;
101    DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
102    float *out_samples;
103
104    int coef0_pos;
105
106    int8_t cyclTab[32], cyclTab2[32];
107    float  weights1[31], weights2[31];
108} IMCContext;
109
110static VLC huffman_vlc[4][4];
111
112#define VLC_TABLES_SIZE 9512
113
114static const int vlc_offsets[17] = {
115    0,     640, 1156, 1732, 2308, 2852, 3396, 3924,
116    4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
117};
118
119static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
120
121static inline double freq2bark(double freq)
122{
123    return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
124}
125
126static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
127{
128    double freqmin[32], freqmid[32], freqmax[32];
129    double scale = sampling_rate / (256.0 * 2.0 * 2.0);
130    double nyquist_freq = sampling_rate * 0.5;
131    double freq, bark, prev_bark = 0, tf, tb;
132    int i, j;
133
134    for (i = 0; i < 32; i++) {
135        freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
136        bark = freq2bark(freq);
137
138        if (i > 0) {
139            tb = bark - prev_bark;
140            q->weights1[i - 1] = pow(10.0, -1.0 * tb);
141            q->weights2[i - 1] = pow(10.0, -2.7 * tb);
142        }
143        prev_bark = bark;
144
145        freqmid[i] = freq;
146
147        tf = freq;
148        while (tf < nyquist_freq) {
149            tf += 0.5;
150            tb =  freq2bark(tf);
151            if (tb > bark + 0.5)
152                break;
153        }
154        freqmax[i] = tf;
155
156        tf = freq;
157        while (tf > 0.0) {
158            tf -= 0.5;
159            tb =  freq2bark(tf);
160            if (tb <= bark - 0.5)
161                break;
162        }
163        freqmin[i] = tf;
164    }
165
166    for (i = 0; i < 32; i++) {
167        freq = freqmax[i];
168        for (j = 31; j > 0 && freq <= freqmid[j]; j--);
169        q->cyclTab[i] = j + 1;
170
171        freq = freqmin[i];
172        for (j = 0; j < 32 && freq >= freqmid[j]; j++);
173        q->cyclTab2[i] = j - 1;
174    }
175}
176
177static av_cold int imc_decode_init(AVCodecContext *avctx)
178{
179    int i, j, ret;
180    IMCContext *q = avctx->priv_data;
181    double r1, r2;
182
183    if (avctx->codec_id == AV_CODEC_ID_IMC)
184        avctx->channels = 1;
185
186    if (avctx->channels > 2) {
187        avpriv_request_sample(avctx, "Number of channels > 2");
188        return AVERROR_PATCHWELCOME;
189    }
190
191    for (j = 0; j < avctx->channels; j++) {
192        q->chctx[j].decoder_reset = 1;
193
194        for (i = 0; i < BANDS; i++)
195            q->chctx[j].old_floor[i] = 1.0;
196
197        for (i = 0; i < COEFFS / 2; i++)
198            q->chctx[j].last_fft_im[i] = 0;
199    }
200
201    /* Build mdct window, a simple sine window normalized with sqrt(2) */
202    ff_sine_window_init(q->mdct_sine_window, COEFFS);
203    for (i = 0; i < COEFFS; i++)
204        q->mdct_sine_window[i] *= sqrt(2.0);
205    for (i = 0; i < COEFFS / 2; i++) {
206        q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
207        q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
208
209        r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
210        r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
211
212        if (i & 0x1) {
213            q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
214            q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
215        } else {
216            q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
217            q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
218        }
219    }
220
221    /* Generate a square root table */
222
223    for (i = 0; i < 30; i++)
224        q->sqrt_tab[i] = sqrt(i);
225
226    /* initialize the VLC tables */
227    for (i = 0; i < 4 ; i++) {
228        for (j = 0; j < 4; j++) {
229            huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
230            huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
231            init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
232                     imc_huffman_lens[i][j], 1, 1,
233                     imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
234        }
235    }
236
237    if (avctx->codec_id == AV_CODEC_ID_IAC) {
238        iac_generate_tabs(q, avctx->sample_rate);
239    } else {
240        memcpy(q->cyclTab,  cyclTab,  sizeof(cyclTab));
241        memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
242        memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
243        memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
244    }
245
246    if ((ret = ff_fft_init(&q->fft, 7, 1))) {
247        av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
248        return ret;
249    }
250    ff_bswapdsp_init(&q->bdsp);
251    avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
252    avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
253    avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
254                                                 : AV_CH_LAYOUT_STEREO;
255
256    return 0;
257}
258
259static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
260                                 float *flcoeffs2, int *bandWidthT,
261                                 float *flcoeffs3, float *flcoeffs5)
262{
263    float   workT1[BANDS];
264    float   workT2[BANDS];
265    float   workT3[BANDS];
266    float   snr_limit = 1.e-30;
267    float   accum = 0.0;
268    int i, cnt2;
269
270    for (i = 0; i < BANDS; i++) {
271        flcoeffs5[i] = workT2[i] = 0.0;
272        if (bandWidthT[i]) {
273            workT1[i] = flcoeffs1[i] * flcoeffs1[i];
274            flcoeffs3[i] = 2.0 * flcoeffs2[i];
275        } else {
276            workT1[i]    = 0.0;
277            flcoeffs3[i] = -30000.0;
278        }
279        workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
280        if (workT3[i] <= snr_limit)
281            workT3[i] = 0.0;
282    }
283
284    for (i = 0; i < BANDS; i++) {
285        for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
286            flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
287        workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
288    }
289
290    for (i = 1; i < BANDS; i++) {
291        accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
292        flcoeffs5[i] += accum;
293    }
294
295    for (i = 0; i < BANDS; i++)
296        workT2[i] = 0.0;
297
298    for (i = 0; i < BANDS; i++) {
299        for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
300            flcoeffs5[cnt2] += workT3[i];
301        workT2[cnt2+1] += workT3[i];
302    }
303
304    accum = 0.0;
305
306    for (i = BANDS-2; i >= 0; i--) {
307        accum = (workT2[i+1] + accum) * q->weights2[i];
308        flcoeffs5[i] += accum;
309        // there is missing code here, but it seems to never be triggered
310    }
311}
312
313
314static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
315                                  int *levlCoeffs)
316{
317    int i;
318    VLC *hufftab[4];
319    int start = 0;
320    const uint8_t *cb_sel;
321    int s;
322
323    s = stream_format_code >> 1;
324    hufftab[0] = &huffman_vlc[s][0];
325    hufftab[1] = &huffman_vlc[s][1];
326    hufftab[2] = &huffman_vlc[s][2];
327    hufftab[3] = &huffman_vlc[s][3];
328    cb_sel = imc_cb_select[s];
329
330    if (stream_format_code & 4)
331        start = 1;
332    if (start)
333        levlCoeffs[0] = get_bits(&q->gb, 7);
334    for (i = start; i < BANDS; i++) {
335        levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
336                                 hufftab[cb_sel[i]]->bits, 2);
337        if (levlCoeffs[i] == 17)
338            levlCoeffs[i] += get_bits(&q->gb, 4);
339    }
340}
341
342static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
343                                      int *levlCoeffs)
344{
345    int i;
346
347    q->coef0_pos  = get_bits(&q->gb, 5);
348    levlCoeffs[0] = get_bits(&q->gb, 7);
349    for (i = 1; i < BANDS; i++)
350        levlCoeffs[i] = get_bits(&q->gb, 4);
351}
352
353static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
354                                          float *flcoeffs1, float *flcoeffs2)
355{
356    int i, level;
357    float tmp, tmp2;
358    // maybe some frequency division thingy
359
360    flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
361    flcoeffs2[0] = log2f(flcoeffs1[0]);
362    tmp  = flcoeffs1[0];
363    tmp2 = flcoeffs2[0];
364
365    for (i = 1; i < BANDS; i++) {
366        level = levlCoeffBuf[i];
367        if (level == 16) {
368            flcoeffs1[i] = 1.0;
369            flcoeffs2[i] = 0.0;
370        } else {
371            if (level < 17)
372                level -= 7;
373            else if (level <= 24)
374                level -= 32;
375            else
376                level -= 16;
377
378            tmp  *= imc_exp_tab[15 + level];
379            tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
380            flcoeffs1[i] = tmp;
381            flcoeffs2[i] = tmp2;
382        }
383    }
384}
385
386
387static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
388                                           float *old_floor, float *flcoeffs1,
389                                           float *flcoeffs2)
390{
391    int i;
392    /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
393     *       and flcoeffs2 old scale factors
394     *       might be incomplete due to a missing table that is in the binary code
395     */
396    for (i = 0; i < BANDS; i++) {
397        flcoeffs1[i] = 0;
398        if (levlCoeffBuf[i] < 16) {
399            flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
400            flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
401        } else {
402            flcoeffs1[i] = old_floor[i];
403        }
404    }
405}
406
407static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
408                                              float *flcoeffs1, float *flcoeffs2)
409{
410    int i, level, pos;
411    float tmp, tmp2;
412
413    pos = q->coef0_pos;
414    flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
415    flcoeffs2[pos] = log2f(flcoeffs1[0]);
416    tmp  = flcoeffs1[pos];
417    tmp2 = flcoeffs2[pos];
418
419    levlCoeffBuf++;
420    for (i = 0; i < BANDS; i++) {
421        if (i == pos)
422            continue;
423        level = *levlCoeffBuf++;
424        flcoeffs1[i] = tmp  * powf(10.0, -level * 0.4375); //todo tab
425        flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
426    }
427}
428
429/**
430 * Perform bit allocation depending on bits available
431 */
432static int bit_allocation(IMCContext *q, IMCChannel *chctx,
433                          int stream_format_code, int freebits, int flag)
434{
435    int i, j;
436    const float limit = -1.e20;
437    float highest = 0.0;
438    int indx;
439    int t1 = 0;
440    int t2 = 1;
441    float summa = 0.0;
442    int iacc = 0;
443    int summer = 0;
444    int rres, cwlen;
445    float lowest = 1.e10;
446    int low_indx = 0;
447    float workT[32];
448    int flg;
449    int found_indx = 0;
450
451    for (i = 0; i < BANDS; i++)
452        highest = FFMAX(highest, chctx->flcoeffs1[i]);
453
454    for (i = 0; i < BANDS - 1; i++) {
455        if (chctx->flcoeffs5[i] <= 0) {
456            av_log(NULL, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
457            return AVERROR_INVALIDDATA;
458        }
459        chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
460    }
461    chctx->flcoeffs4[BANDS - 1] = limit;
462
463    highest = highest * 0.25;
464
465    for (i = 0; i < BANDS; i++) {
466        indx = -1;
467        if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
468            indx = 0;
469
470        if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
471            indx = 1;
472
473        if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
474            indx = 2;
475
476        if (indx == -1)
477            return AVERROR_INVALIDDATA;
478
479        chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
480    }
481
482    if (stream_format_code & 0x2) {
483        chctx->flcoeffs4[0] = limit;
484        chctx->flcoeffs4[1] = limit;
485        chctx->flcoeffs4[2] = limit;
486        chctx->flcoeffs4[3] = limit;
487    }
488
489    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
490        iacc  += chctx->bandWidthT[i];
491        summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
492    }
493
494    if (!iacc)
495        return AVERROR_INVALIDDATA;
496
497    chctx->bandWidthT[BANDS - 1] = 0;
498    summa = (summa * 0.5 - freebits) / iacc;
499
500
501    for (i = 0; i < BANDS / 2; i++) {
502        rres = summer - freebits;
503        if ((rres >= -8) && (rres <= 8))
504            break;
505
506        summer = 0;
507        iacc   = 0;
508
509        for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
510            cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
511
512            chctx->bitsBandT[j] = cwlen;
513            summer += chctx->bandWidthT[j] * cwlen;
514
515            if (cwlen > 0)
516                iacc += chctx->bandWidthT[j];
517        }
518
519        flg = t2;
520        t2 = 1;
521        if (freebits < summer)
522            t2 = -1;
523        if (i == 0)
524            flg = t2;
525        if (flg != t2)
526            t1++;
527
528        summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
529    }
530
531    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
532        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
533            chctx->CWlengthT[j] = chctx->bitsBandT[i];
534    }
535
536    if (freebits > summer) {
537        for (i = 0; i < BANDS; i++) {
538            workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
539                                              : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
540        }
541
542        highest = 0.0;
543
544        do {
545            if (highest <= -1.e20)
546                break;
547
548            found_indx = 0;
549            highest = -1.e20;
550
551            for (i = 0; i < BANDS; i++) {
552                if (workT[i] > highest) {
553                    highest = workT[i];
554                    found_indx = i;
555                }
556            }
557
558            if (highest > -1.e20) {
559                workT[found_indx] -= 2.0;
560                if (++chctx->bitsBandT[found_indx] == 6)
561                    workT[found_indx] = -1.e20;
562
563                for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
564                    chctx->CWlengthT[j]++;
565                    summer++;
566                }
567            }
568        } while (freebits > summer);
569    }
570    if (freebits < summer) {
571        for (i = 0; i < BANDS; i++) {
572            workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
573                                       : 1.e20;
574        }
575        if (stream_format_code & 0x2) {
576            workT[0] = 1.e20;
577            workT[1] = 1.e20;
578            workT[2] = 1.e20;
579            workT[3] = 1.e20;
580        }
581        while (freebits < summer) {
582            lowest   = 1.e10;
583            low_indx = 0;
584            for (i = 0; i < BANDS; i++) {
585                if (workT[i] < lowest) {
586                    lowest   = workT[i];
587                    low_indx = i;
588                }
589            }
590            // if (lowest >= 1.e10)
591            //     break;
592            workT[low_indx] = lowest + 2.0;
593
594            if (!--chctx->bitsBandT[low_indx])
595                workT[low_indx] = 1.e20;
596
597            for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
598                if (chctx->CWlengthT[j] > 0) {
599                    chctx->CWlengthT[j]--;
600                    summer--;
601                }
602            }
603        }
604    }
605    return 0;
606}
607
608static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
609{
610    int i, j;
611
612    memset(chctx->skipFlagBits,  0, sizeof(chctx->skipFlagBits));
613    memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
614    for (i = 0; i < BANDS; i++) {
615        if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
616            continue;
617
618        if (!chctx->skipFlagRaw[i]) {
619            chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
620
621            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
622                chctx->skipFlags[j] = get_bits1(&q->gb);
623                if (chctx->skipFlags[j])
624                    chctx->skipFlagCount[i]++;
625            }
626        } else {
627            for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
628                if (!get_bits1(&q->gb)) { // 0
629                    chctx->skipFlagBits[i]++;
630                    chctx->skipFlags[j]      = 1;
631                    chctx->skipFlags[j + 1]  = 1;
632                    chctx->skipFlagCount[i] += 2;
633                } else {
634                    if (get_bits1(&q->gb)) { // 11
635                        chctx->skipFlagBits[i] += 2;
636                        chctx->skipFlags[j]     = 0;
637                        chctx->skipFlags[j + 1] = 1;
638                        chctx->skipFlagCount[i]++;
639                    } else {
640                        chctx->skipFlagBits[i] += 3;
641                        chctx->skipFlags[j + 1] = 0;
642                        if (!get_bits1(&q->gb)) { // 100
643                            chctx->skipFlags[j] = 1;
644                            chctx->skipFlagCount[i]++;
645                        } else { // 101
646                            chctx->skipFlags[j] = 0;
647                        }
648                    }
649                }
650            }
651
652            if (j < band_tab[i + 1]) {
653                chctx->skipFlagBits[i]++;
654                if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
655                    chctx->skipFlagCount[i]++;
656            }
657        }
658    }
659}
660
661/**
662 * Increase highest' band coefficient sizes as some bits won't be used
663 */
664static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
665                                      int summer)
666{
667    float workT[32];
668    int corrected = 0;
669    int i, j;
670    float highest  = 0;
671    int found_indx = 0;
672
673    for (i = 0; i < BANDS; i++) {
674        workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
675                                          : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
676    }
677
678    while (corrected < summer) {
679        if (highest <= -1.e20)
680            break;
681
682        highest = -1.e20;
683
684        for (i = 0; i < BANDS; i++) {
685            if (workT[i] > highest) {
686                highest = workT[i];
687                found_indx = i;
688            }
689        }
690
691        if (highest > -1.e20) {
692            workT[found_indx] -= 2.0;
693            if (++(chctx->bitsBandT[found_indx]) == 6)
694                workT[found_indx] = -1.e20;
695
696            for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
697                if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
698                    chctx->CWlengthT[j]++;
699                    corrected++;
700                }
701            }
702        }
703    }
704}
705
706static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
707{
708    int i;
709    float re, im;
710    float *dst1 = q->out_samples;
711    float *dst2 = q->out_samples + (COEFFS - 1);
712
713    /* prerotation */
714    for (i = 0; i < COEFFS / 2; i++) {
715        q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
716                            (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
717        q->samples[i].im =  (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
718                            (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
719    }
720
721    /* FFT */
722    q->fft.fft_permute(&q->fft, q->samples);
723    q->fft.fft_calc(&q->fft, q->samples);
724
725    /* postrotation, window and reorder */
726    for (i = 0; i < COEFFS / 2; i++) {
727        re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
728        im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
729        *dst1 =  (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
730               + (q->mdct_sine_window[i * 2] * re);
731        *dst2 =  (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
732               - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
733        dst1 += 2;
734        dst2 -= 2;
735        chctx->last_fft_im[i] = im;
736    }
737}
738
739static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
740                               int stream_format_code)
741{
742    int i, j;
743    int middle_value, cw_len, max_size;
744    const float *quantizer;
745
746    for (i = 0; i < BANDS; i++) {
747        for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
748            chctx->CWdecoded[j] = 0;
749            cw_len = chctx->CWlengthT[j];
750
751            if (cw_len <= 0 || chctx->skipFlags[j])
752                continue;
753
754            max_size     = 1 << cw_len;
755            middle_value = max_size >> 1;
756
757            if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
758                return AVERROR_INVALIDDATA;
759
760            if (cw_len >= 4) {
761                quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
762                if (chctx->codewords[j] >= middle_value)
763                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 8]                * chctx->flcoeffs6[i];
764                else
765                    chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
766            }else{
767                quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
768                if (chctx->codewords[j] >= middle_value)
769                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 1]            * chctx->flcoeffs6[i];
770                else
771                    chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
772            }
773        }
774    }
775    return 0;
776}
777
778
779static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
780{
781    int i, j, cw_len, cw;
782
783    for (i = 0; i < BANDS; i++) {
784        if (!chctx->sumLenArr[i])
785            continue;
786        if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
787            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
788                cw_len = chctx->CWlengthT[j];
789                cw = 0;
790
791                if (get_bits_count(&q->gb) + cw_len > 512) {
792                    av_dlog(NULL, "Band %i coeff %i cw_len %i\n", i, j, cw_len);
793                    return AVERROR_INVALIDDATA;
794                }
795
796                if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
797                    cw = get_bits(&q->gb, cw_len);
798
799                chctx->codewords[j] = cw;
800            }
801        }
802    }
803    return 0;
804}
805
806static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
807{
808    int i, j;
809    int bits, summer;
810
811    for (i = 0; i < BANDS; i++) {
812        chctx->sumLenArr[i]   = 0;
813        chctx->skipFlagRaw[i] = 0;
814        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
815            chctx->sumLenArr[i] += chctx->CWlengthT[j];
816        if (chctx->bandFlagsBuf[i])
817            if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
818                chctx->skipFlagRaw[i] = 1;
819    }
820
821    imc_get_skip_coeff(q, chctx);
822
823    for (i = 0; i < BANDS; i++) {
824        chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
825        /* band has flag set and at least one coded coefficient */
826        if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
827            chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
828                                   q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
829        }
830    }
831
832    /* calculate bits left, bits needed and adjust bit allocation */
833    bits = summer = 0;
834
835    for (i = 0; i < BANDS; i++) {
836        if (chctx->bandFlagsBuf[i]) {
837            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
838                if (chctx->skipFlags[j]) {
839                    summer += chctx->CWlengthT[j];
840                    chctx->CWlengthT[j] = 0;
841                }
842            }
843            bits   += chctx->skipFlagBits[i];
844            summer -= chctx->skipFlagBits[i];
845        }
846    }
847    imc_adjust_bit_allocation(q, chctx, summer);
848}
849
850static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
851{
852    int stream_format_code;
853    int imc_hdr, i, j, ret;
854    int flag;
855    int bits;
856    int counter, bitscount;
857    IMCChannel *chctx = q->chctx + ch;
858
859
860    /* Check the frame header */
861    imc_hdr = get_bits(&q->gb, 9);
862    if (imc_hdr & 0x18) {
863        av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
864        av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
865        return AVERROR_INVALIDDATA;
866    }
867    stream_format_code = get_bits(&q->gb, 3);
868
869    if (stream_format_code & 0x04)
870        chctx->decoder_reset = 1;
871
872    if (chctx->decoder_reset) {
873        for (i = 0; i < BANDS; i++)
874            chctx->old_floor[i] = 1.0;
875        for (i = 0; i < COEFFS; i++)
876            chctx->CWdecoded[i] = 0;
877        chctx->decoder_reset = 0;
878    }
879
880    flag = get_bits1(&q->gb);
881    if (stream_format_code & 0x1)
882        imc_decode_level_coefficients_raw(q, chctx->levlCoeffBuf,
883                                          chctx->flcoeffs1, chctx->flcoeffs2);
884    else if (stream_format_code & 0x1)
885        imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
886    else
887        imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
888
889    if (stream_format_code & 0x4)
890        imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
891                                      chctx->flcoeffs1, chctx->flcoeffs2);
892    else
893        imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
894                                       chctx->flcoeffs1, chctx->flcoeffs2);
895
896    for(i=0; i<BANDS; i++) {
897        if(chctx->flcoeffs1[i] > INT_MAX) {
898            av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
899            return AVERROR_INVALIDDATA;
900        }
901    }
902
903    memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
904
905    counter = 0;
906    if (stream_format_code & 0x1) {
907        for (i = 0; i < BANDS; i++) {
908            chctx->bandWidthT[i]   = band_tab[i + 1] - band_tab[i];
909            chctx->bandFlagsBuf[i] = 0;
910            chctx->flcoeffs3[i]    = chctx->flcoeffs2[i] * 2;
911            chctx->flcoeffs5[i]    = 1.0;
912        }
913    } else {
914        for (i = 0; i < BANDS; i++) {
915            if (chctx->levlCoeffBuf[i] == 16) {
916                chctx->bandWidthT[i] = 0;
917                counter++;
918            } else
919                chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
920        }
921
922        memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
923        for (i = 0; i < BANDS - 1; i++)
924            if (chctx->bandWidthT[i])
925                chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
926
927        imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
928                             chctx->bandWidthT, chctx->flcoeffs3,
929                             chctx->flcoeffs5);
930    }
931
932    bitscount = 0;
933    /* first 4 bands will be assigned 5 bits per coefficient */
934    if (stream_format_code & 0x2) {
935        bitscount += 15;
936
937        chctx->bitsBandT[0] = 5;
938        chctx->CWlengthT[0] = 5;
939        chctx->CWlengthT[1] = 5;
940        chctx->CWlengthT[2] = 5;
941        for (i = 1; i < 4; i++) {
942            if (stream_format_code & 0x1)
943                bits = 5;
944            else
945                bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
946            chctx->bitsBandT[i] = bits;
947            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
948                chctx->CWlengthT[j] = bits;
949                bitscount      += bits;
950            }
951        }
952    }
953    if (avctx->codec_id == AV_CODEC_ID_IAC) {
954        bitscount += !!chctx->bandWidthT[BANDS - 1];
955        if (!(stream_format_code & 0x2))
956            bitscount += 16;
957    }
958
959    if ((ret = bit_allocation(q, chctx, stream_format_code,
960                              512 - bitscount - get_bits_count(&q->gb),
961                              flag)) < 0) {
962        av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
963        chctx->decoder_reset = 1;
964        return ret;
965    }
966
967    if (stream_format_code & 0x1) {
968        for (i = 0; i < BANDS; i++)
969            chctx->skipFlags[i] = 0;
970    } else {
971        imc_refine_bit_allocation(q, chctx);
972    }
973
974    for (i = 0; i < BANDS; i++) {
975        chctx->sumLenArr[i] = 0;
976
977        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
978            if (!chctx->skipFlags[j])
979                chctx->sumLenArr[i] += chctx->CWlengthT[j];
980    }
981
982    memset(chctx->codewords, 0, sizeof(chctx->codewords));
983
984    if (imc_get_coeffs(q, chctx) < 0) {
985        av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
986        chctx->decoder_reset = 1;
987        return AVERROR_INVALIDDATA;
988    }
989
990    if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
991        av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
992        chctx->decoder_reset = 1;
993        return AVERROR_INVALIDDATA;
994    }
995
996    memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
997
998    imc_imdct256(q, chctx, avctx->channels);
999
1000    return 0;
1001}
1002
1003static int imc_decode_frame(AVCodecContext *avctx, void *data,
1004                            int *got_frame_ptr, AVPacket *avpkt)
1005{
1006    AVFrame *frame     = data;
1007    const uint8_t *buf = avpkt->data;
1008    int buf_size = avpkt->size;
1009    int ret, i;
1010
1011    IMCContext *q = avctx->priv_data;
1012
1013    LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
1014
1015    if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1016        av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1017        return AVERROR_INVALIDDATA;
1018    }
1019
1020    /* get output buffer */
1021    frame->nb_samples = COEFFS;
1022    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1023        return ret;
1024
1025    for (i = 0; i < avctx->channels; i++) {
1026        q->out_samples = (float *)frame->extended_data[i];
1027
1028        q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1029
1030        init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1031
1032        buf += IMC_BLOCK_SIZE;
1033
1034        if ((ret = imc_decode_block(avctx, q, i)) < 0)
1035            return ret;
1036    }
1037
1038    if (avctx->channels == 2) {
1039        q->fdsp.butterflies_float((float *)frame->extended_data[0],
1040                                  (float *)frame->extended_data[1], COEFFS);
1041    }
1042
1043    *got_frame_ptr = 1;
1044
1045    return IMC_BLOCK_SIZE * avctx->channels;
1046}
1047
1048
1049static av_cold int imc_decode_close(AVCodecContext * avctx)
1050{
1051    IMCContext *q = avctx->priv_data;
1052
1053    ff_fft_end(&q->fft);
1054
1055    return 0;
1056}
1057
1058static av_cold void flush(AVCodecContext *avctx)
1059{
1060    IMCContext *q = avctx->priv_data;
1061
1062    q->chctx[0].decoder_reset =
1063    q->chctx[1].decoder_reset = 1;
1064}
1065
1066#if CONFIG_IMC_DECODER
1067AVCodec ff_imc_decoder = {
1068    .name           = "imc",
1069    .long_name      = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1070    .type           = AVMEDIA_TYPE_AUDIO,
1071    .id             = AV_CODEC_ID_IMC,
1072    .priv_data_size = sizeof(IMCContext),
1073    .init           = imc_decode_init,
1074    .close          = imc_decode_close,
1075    .decode         = imc_decode_frame,
1076    .flush          = flush,
1077    .capabilities   = CODEC_CAP_DR1,
1078    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1079                                                      AV_SAMPLE_FMT_NONE },
1080};
1081#endif
1082#if CONFIG_IAC_DECODER
1083AVCodec ff_iac_decoder = {
1084    .name           = "iac",
1085    .long_name      = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1086    .type           = AVMEDIA_TYPE_AUDIO,
1087    .id             = AV_CODEC_ID_IAC,
1088    .priv_data_size = sizeof(IMCContext),
1089    .init           = imc_decode_init,
1090    .close          = imc_decode_close,
1091    .decode         = imc_decode_frame,
1092    .flush          = flush,
1093    .capabilities   = CODEC_CAP_DR1,
1094    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1095                                                      AV_SAMPLE_FMT_NONE },
1096};
1097#endif
1098