1/*
2 * AAC coefficients encoder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * AAC coefficients encoder
25 */
26
27/***********************************
28 *              TODOs:
29 * speedup quantizer selection
30 * add sane pulse detection
31 ***********************************/
32
33#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34
35#include <float.h>
36#include "libavutil/mathematics.h"
37#include "avcodec.h"
38#include "put_bits.h"
39#include "aac.h"
40#include "aacenc.h"
41#include "aactab.h"
42
43/** bits needed to code codebook run value for long windows */
44static const uint8_t run_value_bits_long[64] = {
45     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
46     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
47    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
48    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
49};
50
51/** bits needed to code codebook run value for short windows */
52static const uint8_t run_value_bits_short[16] = {
53    3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
54};
55
56static const uint8_t *run_value_bits[2] = {
57    run_value_bits_long, run_value_bits_short
58};
59
60
61/**
62 * Quantize one coefficient.
63 * @return absolute value of the quantized coefficient
64 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
65 */
66static av_always_inline int quant(float coef, const float Q)
67{
68    float a = coef * Q;
69    return sqrtf(a * sqrtf(a)) + 0.4054;
70}
71
72static void quantize_bands(int *out, const float *in, const float *scaled,
73                           int size, float Q34, int is_signed, int maxval)
74{
75    int i;
76    double qc;
77    for (i = 0; i < size; i++) {
78        qc = scaled[i] * Q34;
79        out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
80        if (is_signed && in[i] < 0.0f) {
81            out[i] = -out[i];
82        }
83    }
84}
85
86static void abs_pow34_v(float *out, const float *in, const int size)
87{
88#ifndef USE_REALLY_FULL_SEARCH
89    int i;
90    for (i = 0; i < size; i++) {
91        float a = fabsf(in[i]);
92        out[i] = sqrtf(a * sqrtf(a));
93    }
94#endif /* USE_REALLY_FULL_SEARCH */
95}
96
97static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
98static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
99
100/**
101 * Calculate rate distortion cost for quantizing with given codebook
102 *
103 * @return quantization distortion
104 */
105static av_always_inline float quantize_and_encode_band_cost_template(
106                                struct AACEncContext *s,
107                                PutBitContext *pb, const float *in,
108                                const float *scaled, int size, int scale_idx,
109                                int cb, const float lambda, const float uplim,
110                                int *bits, int BT_ZERO, int BT_UNSIGNED,
111                                int BT_PAIR, int BT_ESC)
112{
113    const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
114    const float Q   = ff_aac_pow2sf_tab [q_idx];
115    const float Q34 = ff_aac_pow34sf_tab[q_idx];
116    const float IQ  = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
117    const float CLIPPED_ESCAPE = 165140.0f*IQ;
118    int i, j;
119    float cost = 0;
120    const int dim = BT_PAIR ? 2 : 4;
121    int resbits = 0;
122    const int range  = aac_cb_range[cb];
123    const int maxval = aac_cb_maxval[cb];
124    int off;
125
126    if (BT_ZERO) {
127        for (i = 0; i < size; i++)
128            cost += in[i]*in[i];
129        if (bits)
130            *bits = 0;
131        return cost * lambda;
132    }
133    if (!scaled) {
134        abs_pow34_v(s->scoefs, in, size);
135        scaled = s->scoefs;
136    }
137    quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
138    if (BT_UNSIGNED) {
139        off = 0;
140    } else {
141        off = maxval;
142    }
143    for (i = 0; i < size; i += dim) {
144        const float *vec;
145        int *quants = s->qcoefs + i;
146        int curidx = 0;
147        int curbits;
148        float rd = 0.0f;
149        for (j = 0; j < dim; j++) {
150            curidx *= range;
151            curidx += quants[j] + off;
152        }
153        curbits =  ff_aac_spectral_bits[cb-1][curidx];
154        vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
155        if (BT_UNSIGNED) {
156            for (j = 0; j < dim; j++) {
157                float t = fabsf(in[i+j]);
158                float di;
159                if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
160                    if (t >= CLIPPED_ESCAPE) {
161                        di = t - CLIPPED_ESCAPE;
162                        curbits += 21;
163                    } else {
164                        int c = av_clip(quant(t, Q), 0, 8191);
165                        di = t - c*cbrtf(c)*IQ;
166                        curbits += av_log2(c)*2 - 4 + 1;
167                    }
168                } else {
169                    di = t - vec[j]*IQ;
170                }
171                if (vec[j] != 0.0f)
172                    curbits++;
173                rd += di*di;
174            }
175        } else {
176            for (j = 0; j < dim; j++) {
177                float di = in[i+j] - vec[j]*IQ;
178                rd += di*di;
179            }
180        }
181        cost    += rd * lambda + curbits;
182        resbits += curbits;
183        if (cost >= uplim)
184            return uplim;
185        if (pb) {
186            put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
187            if (BT_UNSIGNED)
188                for (j = 0; j < dim; j++)
189                    if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
190                        put_bits(pb, 1, in[i+j] < 0.0f);
191            if (BT_ESC) {
192                for (j = 0; j < 2; j++) {
193                    if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
194                        int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
195                        int len = av_log2(coef);
196
197                        put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
198                        put_bits(pb, len, coef & ((1 << len) - 1));
199                    }
200                }
201            }
202        }
203    }
204
205    if (bits)
206        *bits = resbits;
207    return cost;
208}
209
210#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
211static float quantize_and_encode_band_cost_ ## NAME(                                        \
212                                struct AACEncContext *s,                                \
213                                PutBitContext *pb, const float *in,                     \
214                                const float *scaled, int size, int scale_idx,           \
215                                int cb, const float lambda, const float uplim,          \
216                                int *bits) {                                            \
217    return quantize_and_encode_band_cost_template(                                      \
218                                s, pb, in, scaled, size, scale_idx,                     \
219                                BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
220                                BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
221}
222
223QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
224QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
225QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
226QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
227QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
228QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
229
230static float (*const quantize_and_encode_band_cost_arr[])(
231                                struct AACEncContext *s,
232                                PutBitContext *pb, const float *in,
233                                const float *scaled, int size, int scale_idx,
234                                int cb, const float lambda, const float uplim,
235                                int *bits) = {
236    quantize_and_encode_band_cost_ZERO,
237    quantize_and_encode_band_cost_SQUAD,
238    quantize_and_encode_band_cost_SQUAD,
239    quantize_and_encode_band_cost_UQUAD,
240    quantize_and_encode_band_cost_UQUAD,
241    quantize_and_encode_band_cost_SPAIR,
242    quantize_and_encode_band_cost_SPAIR,
243    quantize_and_encode_band_cost_UPAIR,
244    quantize_and_encode_band_cost_UPAIR,
245    quantize_and_encode_band_cost_UPAIR,
246    quantize_and_encode_band_cost_UPAIR,
247    quantize_and_encode_band_cost_ESC,
248};
249
250#define quantize_and_encode_band_cost(                                  \
251                                s, pb, in, scaled, size, scale_idx, cb, \
252                                lambda, uplim, bits)                    \
253    quantize_and_encode_band_cost_arr[cb](                              \
254                                s, pb, in, scaled, size, scale_idx, cb, \
255                                lambda, uplim, bits)
256
257static float quantize_band_cost(struct AACEncContext *s, const float *in,
258                                const float *scaled, int size, int scale_idx,
259                                int cb, const float lambda, const float uplim,
260                                int *bits)
261{
262    return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
263                                         cb, lambda, uplim, bits);
264}
265
266static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
267                                     const float *in, int size, int scale_idx,
268                                     int cb, const float lambda)
269{
270    quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
271                                  INFINITY, NULL);
272}
273
274static float find_max_val(int group_len, int swb_size, const float *scaled) {
275    float maxval = 0.0f;
276    int w2, i;
277    for (w2 = 0; w2 < group_len; w2++) {
278        for (i = 0; i < swb_size; i++) {
279            maxval = FFMAX(maxval, scaled[w2*128+i]);
280        }
281    }
282    return maxval;
283}
284
285static int find_min_book(float maxval, int sf) {
286    float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
287    float Q34 = sqrtf(Q * sqrtf(Q));
288    int qmaxval, cb;
289    qmaxval = maxval * Q34 + 0.4054f;
290    if      (qmaxval ==  0) cb = 0;
291    else if (qmaxval ==  1) cb = 1;
292    else if (qmaxval ==  2) cb = 3;
293    else if (qmaxval <=  4) cb = 5;
294    else if (qmaxval <=  7) cb = 7;
295    else if (qmaxval <= 12) cb = 9;
296    else                    cb = 11;
297    return cb;
298}
299
300/**
301 * structure used in optimal codebook search
302 */
303typedef struct BandCodingPath {
304    int prev_idx; ///< pointer to the previous path point
305    float cost;   ///< path cost
306    int run;
307} BandCodingPath;
308
309/**
310 * Encode band info for single window group bands.
311 */
312static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
313                                     int win, int group_len, const float lambda)
314{
315    BandCodingPath path[120][12];
316    int w, swb, cb, start, size;
317    int i, j;
318    const int max_sfb  = sce->ics.max_sfb;
319    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
320    const int run_esc  = (1 << run_bits) - 1;
321    int idx, ppos, count;
322    int stackrun[120], stackcb[120], stack_len;
323    float next_minrd = INFINITY;
324    int next_mincb = 0;
325
326    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
327    start = win*128;
328    for (cb = 0; cb < 12; cb++) {
329        path[0][cb].cost     = 0.0f;
330        path[0][cb].prev_idx = -1;
331        path[0][cb].run      = 0;
332    }
333    for (swb = 0; swb < max_sfb; swb++) {
334        size = sce->ics.swb_sizes[swb];
335        if (sce->zeroes[win*16 + swb]) {
336            for (cb = 0; cb < 12; cb++) {
337                path[swb+1][cb].prev_idx = cb;
338                path[swb+1][cb].cost     = path[swb][cb].cost;
339                path[swb+1][cb].run      = path[swb][cb].run + 1;
340            }
341        } else {
342            float minrd = next_minrd;
343            int mincb = next_mincb;
344            next_minrd = INFINITY;
345            next_mincb = 0;
346            for (cb = 0; cb < 12; cb++) {
347                float cost_stay_here, cost_get_here;
348                float rd = 0.0f;
349                for (w = 0; w < group_len; w++) {
350                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
351                    rd += quantize_band_cost(s, sce->coeffs + start + w*128,
352                                             s->scoefs + start + w*128, size,
353                                             sce->sf_idx[(win+w)*16+swb], cb,
354                                             lambda / band->threshold, INFINITY, NULL);
355                }
356                cost_stay_here = path[swb][cb].cost + rd;
357                cost_get_here  = minrd              + rd + run_bits + 4;
358                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
359                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
360                    cost_stay_here += run_bits;
361                if (cost_get_here < cost_stay_here) {
362                    path[swb+1][cb].prev_idx = mincb;
363                    path[swb+1][cb].cost     = cost_get_here;
364                    path[swb+1][cb].run      = 1;
365                } else {
366                    path[swb+1][cb].prev_idx = cb;
367                    path[swb+1][cb].cost     = cost_stay_here;
368                    path[swb+1][cb].run      = path[swb][cb].run + 1;
369                }
370                if (path[swb+1][cb].cost < next_minrd) {
371                    next_minrd = path[swb+1][cb].cost;
372                    next_mincb = cb;
373                }
374            }
375        }
376        start += sce->ics.swb_sizes[swb];
377    }
378
379    //convert resulting path from backward-linked list
380    stack_len = 0;
381    idx       = 0;
382    for (cb = 1; cb < 12; cb++)
383        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
384            idx = cb;
385    ppos = max_sfb;
386    while (ppos > 0) {
387        cb = idx;
388        stackrun[stack_len] = path[ppos][cb].run;
389        stackcb [stack_len] = cb;
390        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
391        ppos -= path[ppos][cb].run;
392        stack_len++;
393    }
394    //perform actual band info encoding
395    start = 0;
396    for (i = stack_len - 1; i >= 0; i--) {
397        put_bits(&s->pb, 4, stackcb[i]);
398        count = stackrun[i];
399        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
400        //XXX: memset when band_type is also uint8_t
401        for (j = 0; j < count; j++) {
402            sce->band_type[win*16 + start] =  stackcb[i];
403            start++;
404        }
405        while (count >= run_esc) {
406            put_bits(&s->pb, run_bits, run_esc);
407            count -= run_esc;
408        }
409        put_bits(&s->pb, run_bits, count);
410    }
411}
412
413static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
414                                  int win, int group_len, const float lambda)
415{
416    BandCodingPath path[120][12];
417    int w, swb, cb, start, size;
418    int i, j;
419    const int max_sfb  = sce->ics.max_sfb;
420    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
421    const int run_esc  = (1 << run_bits) - 1;
422    int idx, ppos, count;
423    int stackrun[120], stackcb[120], stack_len;
424    float next_minbits = INFINITY;
425    int next_mincb = 0;
426
427    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
428    start = win*128;
429    for (cb = 0; cb < 12; cb++) {
430        path[0][cb].cost     = run_bits+4;
431        path[0][cb].prev_idx = -1;
432        path[0][cb].run      = 0;
433    }
434    for (swb = 0; swb < max_sfb; swb++) {
435        size = sce->ics.swb_sizes[swb];
436        if (sce->zeroes[win*16 + swb]) {
437            float cost_stay_here = path[swb][0].cost;
438            float cost_get_here  = next_minbits + run_bits + 4;
439            if (   run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
440                != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
441                cost_stay_here += run_bits;
442            if (cost_get_here < cost_stay_here) {
443                path[swb+1][0].prev_idx = next_mincb;
444                path[swb+1][0].cost     = cost_get_here;
445                path[swb+1][0].run      = 1;
446            } else {
447                path[swb+1][0].prev_idx = 0;
448                path[swb+1][0].cost     = cost_stay_here;
449                path[swb+1][0].run      = path[swb][0].run + 1;
450            }
451            next_minbits = path[swb+1][0].cost;
452            next_mincb = 0;
453            for (cb = 1; cb < 12; cb++) {
454                path[swb+1][cb].cost = 61450;
455                path[swb+1][cb].prev_idx = -1;
456                path[swb+1][cb].run = 0;
457            }
458        } else {
459            float minbits = next_minbits;
460            int mincb = next_mincb;
461            int startcb = sce->band_type[win*16+swb];
462            next_minbits = INFINITY;
463            next_mincb = 0;
464            for (cb = 0; cb < startcb; cb++) {
465                path[swb+1][cb].cost = 61450;
466                path[swb+1][cb].prev_idx = -1;
467                path[swb+1][cb].run = 0;
468            }
469            for (cb = startcb; cb < 12; cb++) {
470                float cost_stay_here, cost_get_here;
471                float bits = 0.0f;
472                for (w = 0; w < group_len; w++) {
473                    bits += quantize_band_cost(s, sce->coeffs + start + w*128,
474                                               s->scoefs + start + w*128, size,
475                                               sce->sf_idx[(win+w)*16+swb], cb,
476                                               0, INFINITY, NULL);
477                }
478                cost_stay_here = path[swb][cb].cost + bits;
479                cost_get_here  = minbits            + bits + run_bits + 4;
480                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
481                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
482                    cost_stay_here += run_bits;
483                if (cost_get_here < cost_stay_here) {
484                    path[swb+1][cb].prev_idx = mincb;
485                    path[swb+1][cb].cost     = cost_get_here;
486                    path[swb+1][cb].run      = 1;
487                } else {
488                    path[swb+1][cb].prev_idx = cb;
489                    path[swb+1][cb].cost     = cost_stay_here;
490                    path[swb+1][cb].run      = path[swb][cb].run + 1;
491                }
492                if (path[swb+1][cb].cost < next_minbits) {
493                    next_minbits = path[swb+1][cb].cost;
494                    next_mincb = cb;
495                }
496            }
497        }
498        start += sce->ics.swb_sizes[swb];
499    }
500
501    //convert resulting path from backward-linked list
502    stack_len = 0;
503    idx       = 0;
504    for (cb = 1; cb < 12; cb++)
505        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
506            idx = cb;
507    ppos = max_sfb;
508    while (ppos > 0) {
509        av_assert1(idx >= 0);
510        cb = idx;
511        stackrun[stack_len] = path[ppos][cb].run;
512        stackcb [stack_len] = cb;
513        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
514        ppos -= path[ppos][cb].run;
515        stack_len++;
516    }
517    //perform actual band info encoding
518    start = 0;
519    for (i = stack_len - 1; i >= 0; i--) {
520        put_bits(&s->pb, 4, stackcb[i]);
521        count = stackrun[i];
522        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
523        //XXX: memset when band_type is also uint8_t
524        for (j = 0; j < count; j++) {
525            sce->band_type[win*16 + start] =  stackcb[i];
526            start++;
527        }
528        while (count >= run_esc) {
529            put_bits(&s->pb, run_bits, run_esc);
530            count -= run_esc;
531        }
532        put_bits(&s->pb, run_bits, count);
533    }
534}
535
536/** Return the minimum scalefactor where the quantized coef does not clip. */
537static av_always_inline uint8_t coef2minsf(float coef) {
538    return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
539}
540
541/** Return the maximum scalefactor where the quantized coef is not zero. */
542static av_always_inline uint8_t coef2maxsf(float coef) {
543    return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
544}
545
546typedef struct TrellisPath {
547    float cost;
548    int prev;
549} TrellisPath;
550
551#define TRELLIS_STAGES 121
552#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
553
554static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
555                                       SingleChannelElement *sce,
556                                       const float lambda)
557{
558    int q, w, w2, g, start = 0;
559    int i, j;
560    int idx;
561    TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
562    int bandaddr[TRELLIS_STAGES];
563    int minq;
564    float mincost;
565    float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
566    int q0, q1, qcnt = 0;
567
568    for (i = 0; i < 1024; i++) {
569        float t = fabsf(sce->coeffs[i]);
570        if (t > 0.0f) {
571            q0f = FFMIN(q0f, t);
572            q1f = FFMAX(q1f, t);
573            qnrgf += t*t;
574            qcnt++;
575        }
576    }
577
578    if (!qcnt) {
579        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
580        memset(sce->zeroes, 1, sizeof(sce->zeroes));
581        return;
582    }
583
584    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
585    q0 = coef2minsf(q0f);
586    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
587    q1 = coef2maxsf(q1f);
588    if (q1 - q0 > 60) {
589        int q0low  = q0;
590        int q1high = q1;
591        //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
592        int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
593        q1 = qnrg + 30;
594        q0 = qnrg - 30;
595        if (q0 < q0low) {
596            q1 += q0low - q0;
597            q0  = q0low;
598        } else if (q1 > q1high) {
599            q0 -= q1 - q1high;
600            q1  = q1high;
601        }
602    }
603
604    for (i = 0; i < TRELLIS_STATES; i++) {
605        paths[0][i].cost    = 0.0f;
606        paths[0][i].prev    = -1;
607    }
608    for (j = 1; j < TRELLIS_STAGES; j++) {
609        for (i = 0; i < TRELLIS_STATES; i++) {
610            paths[j][i].cost    = INFINITY;
611            paths[j][i].prev    = -2;
612        }
613    }
614    idx = 1;
615    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
616    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
617        start = w*128;
618        for (g = 0; g < sce->ics.num_swb; g++) {
619            const float *coefs = sce->coeffs + start;
620            float qmin, qmax;
621            int nz = 0;
622
623            bandaddr[idx] = w * 16 + g;
624            qmin = INT_MAX;
625            qmax = 0.0f;
626            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
627                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
628                if (band->energy <= band->threshold || band->threshold == 0.0f) {
629                    sce->zeroes[(w+w2)*16+g] = 1;
630                    continue;
631                }
632                sce->zeroes[(w+w2)*16+g] = 0;
633                nz = 1;
634                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
635                    float t = fabsf(coefs[w2*128+i]);
636                    if (t > 0.0f)
637                        qmin = FFMIN(qmin, t);
638                    qmax = FFMAX(qmax, t);
639                }
640            }
641            if (nz) {
642                int minscale, maxscale;
643                float minrd = INFINITY;
644                float maxval;
645                //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
646                minscale = coef2minsf(qmin);
647                //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
648                maxscale = coef2maxsf(qmax);
649                minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
650                maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
651                maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
652                for (q = minscale; q < maxscale; q++) {
653                    float dist = 0;
654                    int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
655                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
656                        FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
657                        dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
658                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL);
659                    }
660                    minrd = FFMIN(minrd, dist);
661
662                    for (i = 0; i < q1 - q0; i++) {
663                        float cost;
664                        cost = paths[idx - 1][i].cost + dist
665                               + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
666                        if (cost < paths[idx][q].cost) {
667                            paths[idx][q].cost    = cost;
668                            paths[idx][q].prev    = i;
669                        }
670                    }
671                }
672            } else {
673                for (q = 0; q < q1 - q0; q++) {
674                    paths[idx][q].cost = paths[idx - 1][q].cost + 1;
675                    paths[idx][q].prev = q;
676                }
677            }
678            sce->zeroes[w*16+g] = !nz;
679            start += sce->ics.swb_sizes[g];
680            idx++;
681        }
682    }
683    idx--;
684    mincost = paths[idx][0].cost;
685    minq    = 0;
686    for (i = 1; i < TRELLIS_STATES; i++) {
687        if (paths[idx][i].cost < mincost) {
688            mincost = paths[idx][i].cost;
689            minq = i;
690        }
691    }
692    while (idx) {
693        sce->sf_idx[bandaddr[idx]] = minq + q0;
694        minq = paths[idx][minq].prev;
695        idx--;
696    }
697    //set the same quantizers inside window groups
698    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
699        for (g = 0;  g < sce->ics.num_swb; g++)
700            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
701                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
702}
703
704/**
705 * two-loop quantizers search taken from ISO 13818-7 Appendix C
706 */
707static void search_for_quantizers_twoloop(AVCodecContext *avctx,
708                                          AACEncContext *s,
709                                          SingleChannelElement *sce,
710                                          const float lambda)
711{
712    int start = 0, i, w, w2, g;
713    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
714    float dists[128] = { 0 }, uplims[128];
715    float maxvals[128];
716    int fflag, minscaler;
717    int its  = 0;
718    int allz = 0;
719    float minthr = INFINITY;
720
721    // for values above this the decoder might end up in an endless loop
722    // due to always having more bits than what can be encoded.
723    destbits = FFMIN(destbits, 5800);
724    //XXX: some heuristic to determine initial quantizers will reduce search time
725    //determine zero bands and upper limits
726    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
727        for (g = 0;  g < sce->ics.num_swb; g++) {
728            int nz = 0;
729            float uplim = 0.0f;
730            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
731                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
732                uplim += band->threshold;
733                if (band->energy <= band->threshold || band->threshold == 0.0f) {
734                    sce->zeroes[(w+w2)*16+g] = 1;
735                    continue;
736                }
737                nz = 1;
738            }
739            uplims[w*16+g] = uplim *512;
740            sce->zeroes[w*16+g] = !nz;
741            if (nz)
742                minthr = FFMIN(minthr, uplim);
743            allz |= nz;
744        }
745    }
746    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
747        for (g = 0;  g < sce->ics.num_swb; g++) {
748            if (sce->zeroes[w*16+g]) {
749                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
750                continue;
751            }
752            sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
753        }
754    }
755
756    if (!allz)
757        return;
758    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
759
760    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
761        start = w*128;
762        for (g = 0;  g < sce->ics.num_swb; g++) {
763            const float *scaled = s->scoefs + start;
764            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
765            start += sce->ics.swb_sizes[g];
766        }
767    }
768
769    //perform two-loop search
770    //outer loop - improve quality
771    do {
772        int tbits, qstep;
773        minscaler = sce->sf_idx[0];
774        //inner loop - quantize spectrum to fit into given number of bits
775        qstep = its ? 1 : 32;
776        do {
777            int prev = -1;
778            tbits = 0;
779            fflag = 0;
780            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
781                start = w*128;
782                for (g = 0;  g < sce->ics.num_swb; g++) {
783                    const float *coefs = sce->coeffs + start;
784                    const float *scaled = s->scoefs + start;
785                    int bits = 0;
786                    int cb;
787                    float dist = 0.0f;
788
789                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
790                        start += sce->ics.swb_sizes[g];
791                        continue;
792                    }
793                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
794                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
795                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
796                        int b;
797                        dist += quantize_band_cost(s, coefs + w2*128,
798                                                   scaled + w2*128,
799                                                   sce->ics.swb_sizes[g],
800                                                   sce->sf_idx[w*16+g],
801                                                   cb,
802                                                   1.0f,
803                                                   INFINITY,
804                                                   &b);
805                        bits += b;
806                    }
807                    dists[w*16+g] = dist - bits;
808                    if (prev != -1) {
809                        bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
810                    }
811                    tbits += bits;
812                    start += sce->ics.swb_sizes[g];
813                    prev = sce->sf_idx[w*16+g];
814                }
815            }
816            if (tbits > destbits) {
817                for (i = 0; i < 128; i++)
818                    if (sce->sf_idx[i] < 218 - qstep)
819                        sce->sf_idx[i] += qstep;
820            } else {
821                for (i = 0; i < 128; i++)
822                    if (sce->sf_idx[i] > 60 - qstep)
823                        sce->sf_idx[i] -= qstep;
824            }
825            qstep >>= 1;
826            if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
827                qstep = 1;
828        } while (qstep);
829
830        fflag = 0;
831        minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
832        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
833            for (g = 0; g < sce->ics.num_swb; g++) {
834                int prevsc = sce->sf_idx[w*16+g];
835                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
836                    if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
837                        sce->sf_idx[w*16+g]--;
838                    else //Try to make sure there is some energy in every band
839                        sce->sf_idx[w*16+g]-=2;
840                }
841                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
842                sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
843                if (sce->sf_idx[w*16+g] != prevsc)
844                    fflag = 1;
845                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
846            }
847        }
848        its++;
849    } while (fflag && its < 10);
850}
851
852static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
853                                       SingleChannelElement *sce,
854                                       const float lambda)
855{
856    int start = 0, i, w, w2, g;
857    float uplim[128], maxq[128];
858    int minq, maxsf;
859    float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
860    int last = 0, lastband = 0, curband = 0;
861    float avg_energy = 0.0;
862    if (sce->ics.num_windows == 1) {
863        start = 0;
864        for (i = 0; i < 1024; i++) {
865            if (i - start >= sce->ics.swb_sizes[curband]) {
866                start += sce->ics.swb_sizes[curband];
867                curband++;
868            }
869            if (sce->coeffs[i]) {
870                avg_energy += sce->coeffs[i] * sce->coeffs[i];
871                last = i;
872                lastband = curband;
873            }
874        }
875    } else {
876        for (w = 0; w < 8; w++) {
877            const float *coeffs = sce->coeffs + w*128;
878            curband = start = 0;
879            for (i = 0; i < 128; i++) {
880                if (i - start >= sce->ics.swb_sizes[curband]) {
881                    start += sce->ics.swb_sizes[curband];
882                    curband++;
883                }
884                if (coeffs[i]) {
885                    avg_energy += coeffs[i] * coeffs[i];
886                    last = FFMAX(last, i);
887                    lastband = FFMAX(lastband, curband);
888                }
889            }
890        }
891    }
892    last++;
893    avg_energy /= last;
894    if (avg_energy == 0.0f) {
895        for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
896            sce->sf_idx[i] = SCALE_ONE_POS;
897        return;
898    }
899    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
900        start = w*128;
901        for (g = 0; g < sce->ics.num_swb; g++) {
902            float *coefs   = sce->coeffs + start;
903            const int size = sce->ics.swb_sizes[g];
904            int start2 = start, end2 = start + size, peakpos = start;
905            float maxval = -1, thr = 0.0f, t;
906            maxq[w*16+g] = 0.0f;
907            if (g > lastband) {
908                maxq[w*16+g] = 0.0f;
909                start += size;
910                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
911                    memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
912                continue;
913            }
914            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
915                for (i = 0; i < size; i++) {
916                    float t = coefs[w2*128+i]*coefs[w2*128+i];
917                    maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
918                    thr += t;
919                    if (sce->ics.num_windows == 1 && maxval < t) {
920                        maxval  = t;
921                        peakpos = start+i;
922                    }
923                }
924            }
925            if (sce->ics.num_windows == 1) {
926                start2 = FFMAX(peakpos - 2, start2);
927                end2   = FFMIN(peakpos + 3, end2);
928            } else {
929                start2 -= start;
930                end2   -= start;
931            }
932            start += size;
933            thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
934            t   = 1.0 - (1.0 * start2 / last);
935            uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
936        }
937    }
938    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
939    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
940    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
941        start = w*128;
942        for (g = 0;  g < sce->ics.num_swb; g++) {
943            const float *coefs  = sce->coeffs + start;
944            const float *scaled = s->scoefs   + start;
945            const int size      = sce->ics.swb_sizes[g];
946            int scf, prev_scf, step;
947            int min_scf = -1, max_scf = 256;
948            float curdiff;
949            if (maxq[w*16+g] < 21.544) {
950                sce->zeroes[w*16+g] = 1;
951                start += size;
952                continue;
953            }
954            sce->zeroes[w*16+g] = 0;
955            scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
956            step = 16;
957            for (;;) {
958                float dist = 0.0f;
959                int quant_max;
960
961                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
962                    int b;
963                    dist += quantize_band_cost(s, coefs + w2*128,
964                                               scaled + w2*128,
965                                               sce->ics.swb_sizes[g],
966                                               scf,
967                                               ESC_BT,
968                                               lambda,
969                                               INFINITY,
970                                               &b);
971                    dist -= b;
972                }
973                dist *= 1.0f / 512.0f / lambda;
974                quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
975                if (quant_max >= 8191) { // too much, return to the previous quantizer
976                    sce->sf_idx[w*16+g] = prev_scf;
977                    break;
978                }
979                prev_scf = scf;
980                curdiff = fabsf(dist - uplim[w*16+g]);
981                if (curdiff <= 1.0f)
982                    step = 0;
983                else
984                    step = log2f(curdiff);
985                if (dist > uplim[w*16+g])
986                    step = -step;
987                scf += step;
988                scf = av_clip_uint8(scf);
989                step = scf - prev_scf;
990                if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
991                    sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
992                    break;
993                }
994                if (step > 0)
995                    min_scf = prev_scf;
996                else
997                    max_scf = prev_scf;
998            }
999            start += size;
1000        }
1001    }
1002    minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
1003    for (i = 1; i < 128; i++) {
1004        if (!sce->sf_idx[i])
1005            sce->sf_idx[i] = sce->sf_idx[i-1];
1006        else
1007            minq = FFMIN(minq, sce->sf_idx[i]);
1008    }
1009    if (minq == INT_MAX)
1010        minq = 0;
1011    minq = FFMIN(minq, SCALE_MAX_POS);
1012    maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
1013    for (i = 126; i >= 0; i--) {
1014        if (!sce->sf_idx[i])
1015            sce->sf_idx[i] = sce->sf_idx[i+1];
1016        sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
1017    }
1018}
1019
1020static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
1021                                       SingleChannelElement *sce,
1022                                       const float lambda)
1023{
1024    int i, w, w2, g;
1025    int minq = 255;
1026
1027    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
1028    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
1029        for (g = 0; g < sce->ics.num_swb; g++) {
1030            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
1031                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
1032                if (band->energy <= band->threshold) {
1033                    sce->sf_idx[(w+w2)*16+g] = 218;
1034                    sce->zeroes[(w+w2)*16+g] = 1;
1035                } else {
1036                    sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
1037                    sce->zeroes[(w+w2)*16+g] = 0;
1038                }
1039                minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
1040            }
1041        }
1042    }
1043    for (i = 0; i < 128; i++) {
1044        sce->sf_idx[i] = 140;
1045        //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
1046    }
1047    //set the same quantizers inside window groups
1048    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
1049        for (g = 0;  g < sce->ics.num_swb; g++)
1050            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
1051                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
1052}
1053
1054static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
1055                          const float lambda)
1056{
1057    int start = 0, i, w, w2, g;
1058    float M[128], S[128];
1059    float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
1060    SingleChannelElement *sce0 = &cpe->ch[0];
1061    SingleChannelElement *sce1 = &cpe->ch[1];
1062    if (!cpe->common_window)
1063        return;
1064    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
1065        for (g = 0;  g < sce0->ics.num_swb; g++) {
1066            if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
1067                float dist1 = 0.0f, dist2 = 0.0f;
1068                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1069                    FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
1070                    FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
1071                    float minthr = FFMIN(band0->threshold, band1->threshold);
1072                    float maxthr = FFMAX(band0->threshold, band1->threshold);
1073                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1074                        M[i] = (sce0->coeffs[start+w2*128+i]
1075                              + sce1->coeffs[start+w2*128+i]) * 0.5;
1076                        S[i] =  M[i]
1077                              - sce1->coeffs[start+w2*128+i];
1078                    }
1079                    abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1080                    abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1081                    abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
1082                    abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
1083                    dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
1084                                                L34,
1085                                                sce0->ics.swb_sizes[g],
1086                                                sce0->sf_idx[(w+w2)*16+g],
1087                                                sce0->band_type[(w+w2)*16+g],
1088                                                lambda / band0->threshold, INFINITY, NULL);
1089                    dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
1090                                                R34,
1091                                                sce1->ics.swb_sizes[g],
1092                                                sce1->sf_idx[(w+w2)*16+g],
1093                                                sce1->band_type[(w+w2)*16+g],
1094                                                lambda / band1->threshold, INFINITY, NULL);
1095                    dist2 += quantize_band_cost(s, M,
1096                                                M34,
1097                                                sce0->ics.swb_sizes[g],
1098                                                sce0->sf_idx[(w+w2)*16+g],
1099                                                sce0->band_type[(w+w2)*16+g],
1100                                                lambda / maxthr, INFINITY, NULL);
1101                    dist2 += quantize_band_cost(s, S,
1102                                                S34,
1103                                                sce1->ics.swb_sizes[g],
1104                                                sce1->sf_idx[(w+w2)*16+g],
1105                                                sce1->band_type[(w+w2)*16+g],
1106                                                lambda / minthr, INFINITY, NULL);
1107                }
1108                cpe->ms_mask[w*16+g] = dist2 < dist1;
1109            }
1110            start += sce0->ics.swb_sizes[g];
1111        }
1112    }
1113}
1114
1115AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
1116    [AAC_CODER_FAAC] = {
1117        search_for_quantizers_faac,
1118        encode_window_bands_info,
1119        quantize_and_encode_band,
1120        search_for_ms,
1121    },
1122    [AAC_CODER_ANMR] = {
1123        search_for_quantizers_anmr,
1124        encode_window_bands_info,
1125        quantize_and_encode_band,
1126        search_for_ms,
1127    },
1128    [AAC_CODER_TWOLOOP] = {
1129        search_for_quantizers_twoloop,
1130        codebook_trellis_rate,
1131        quantize_and_encode_band,
1132        search_for_ms,
1133    },
1134    [AAC_CODER_FAST] = {
1135        search_for_quantizers_fast,
1136        encode_window_bands_info,
1137        quantize_and_encode_band,
1138        search_for_ms,
1139    },
1140};
1141