1/*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
29#include "aac.h"
30#include "sbr.h"
31#include "aacsbr.h"
32#include "aacsbrdata.h"
33#include "fft.h"
34#include "aacps.h"
35#include "libavutil/libm.h"
36
37#include <stdint.h>
38#include <float.h>
39
40#define ENVELOPE_ADJUSTMENT_OFFSET 2
41#define NOISE_FLOOR_OFFSET 6.0f
42
43/**
44 * SBR VLC tables
45 */
46enum {
47    T_HUFFMAN_ENV_1_5DB,
48    F_HUFFMAN_ENV_1_5DB,
49    T_HUFFMAN_ENV_BAL_1_5DB,
50    F_HUFFMAN_ENV_BAL_1_5DB,
51    T_HUFFMAN_ENV_3_0DB,
52    F_HUFFMAN_ENV_3_0DB,
53    T_HUFFMAN_ENV_BAL_3_0DB,
54    F_HUFFMAN_ENV_BAL_3_0DB,
55    T_HUFFMAN_NOISE_3_0DB,
56    T_HUFFMAN_NOISE_BAL_3_0DB,
57};
58
59/**
60 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
61 */
62enum {
63    FIXFIX,
64    FIXVAR,
65    VARFIX,
66    VARVAR,
67};
68
69enum {
70    EXTENSION_ID_PS = 2,
71};
72
73static VLC vlc_sbr[10];
74static const int8_t vlc_sbr_lav[10] =
75    { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
76static const DECLARE_ALIGNED(16, float, zero64)[64];
77
78#define SBR_INIT_VLC_STATIC(num, size) \
79    INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size,     \
80                    sbr_tmp[num].sbr_bits ,                      1,                      1, \
81                    sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
82                    size)
83
84#define SBR_VLC_ROW(name) \
85    { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
86
87av_cold void ff_aac_sbr_init(void)
88{
89    int n;
90    static const struct {
91        const void *sbr_codes, *sbr_bits;
92        const unsigned int table_size, elem_size;
93    } sbr_tmp[] = {
94        SBR_VLC_ROW(t_huffman_env_1_5dB),
95        SBR_VLC_ROW(f_huffman_env_1_5dB),
96        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
97        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
98        SBR_VLC_ROW(t_huffman_env_3_0dB),
99        SBR_VLC_ROW(f_huffman_env_3_0dB),
100        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
101        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
102        SBR_VLC_ROW(t_huffman_noise_3_0dB),
103        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
104    };
105
106    // SBR VLC table initialization
107    SBR_INIT_VLC_STATIC(0, 1098);
108    SBR_INIT_VLC_STATIC(1, 1092);
109    SBR_INIT_VLC_STATIC(2, 768);
110    SBR_INIT_VLC_STATIC(3, 1026);
111    SBR_INIT_VLC_STATIC(4, 1058);
112    SBR_INIT_VLC_STATIC(5, 1052);
113    SBR_INIT_VLC_STATIC(6, 544);
114    SBR_INIT_VLC_STATIC(7, 544);
115    SBR_INIT_VLC_STATIC(8, 592);
116    SBR_INIT_VLC_STATIC(9, 512);
117
118    for (n = 1; n < 320; n++)
119        sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
120    sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
121    sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
122
123    for (n = 0; n < 320; n++)
124        sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
125
126    ff_ps_init();
127}
128
129av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
130{
131    float mdct_scale;
132    sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
133    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
134    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
135    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
136    /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
137     * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
138     * and scale back down at synthesis. */
139    mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
140    ff_mdct_init(&sbr->mdct,     7, 1, 1.0 / (64 * mdct_scale));
141    ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
142    ff_ps_ctx_init(&sbr->ps);
143}
144
145av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
146{
147    ff_mdct_end(&sbr->mdct);
148    ff_mdct_end(&sbr->mdct_ana);
149}
150
151static int qsort_comparison_function_int16(const void *a, const void *b)
152{
153    return *(const int16_t *)a - *(const int16_t *)b;
154}
155
156static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
157{
158    int i;
159    for (i = 0; i <= last_el; i++)
160        if (table[i] == needle)
161            return 1;
162    return 0;
163}
164
165/// Limiter Frequency Band Table (14496-3 sp04 p198)
166static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
167{
168    int k;
169    if (sbr->bs_limiter_bands > 0) {
170        static const float bands_warped[3] = { 1.32715174233856803909f,   //2^(0.49/1.2)
171                                               1.18509277094158210129f,   //2^(0.49/2)
172                                               1.11987160404675912501f }; //2^(0.49/3)
173        const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
174        int16_t patch_borders[7];
175        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
176
177        patch_borders[0] = sbr->kx[1];
178        for (k = 1; k <= sbr->num_patches; k++)
179            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
180
181        memcpy(sbr->f_tablelim, sbr->f_tablelow,
182               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
183        if (sbr->num_patches > 1)
184            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
185                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));
186
187        qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
188              sizeof(sbr->f_tablelim[0]),
189              qsort_comparison_function_int16);
190
191        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
192        while (out < sbr->f_tablelim + sbr->n_lim) {
193            if (*in >= *out * lim_bands_per_octave_warped) {
194                *++out = *in++;
195            } else if (*in == *out ||
196                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
197                in++;
198                sbr->n_lim--;
199            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
200                *out = *in++;
201                sbr->n_lim--;
202            } else {
203                *++out = *in++;
204            }
205        }
206    } else {
207        sbr->f_tablelim[0] = sbr->f_tablelow[0];
208        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
209        sbr->n_lim = 1;
210    }
211}
212
213static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
214{
215    unsigned int cnt = get_bits_count(gb);
216    uint8_t bs_header_extra_1;
217    uint8_t bs_header_extra_2;
218    int old_bs_limiter_bands = sbr->bs_limiter_bands;
219    SpectrumParameters old_spectrum_params;
220
221    sbr->start = 1;
222
223    // Save last spectrum parameters variables to compare to new ones
224    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
225
226    sbr->bs_amp_res_header              = get_bits1(gb);
227    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
228    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
229    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
230                                          skip_bits(gb, 2); // bs_reserved
231
232    bs_header_extra_1 = get_bits1(gb);
233    bs_header_extra_2 = get_bits1(gb);
234
235    if (bs_header_extra_1) {
236        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
237        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
238        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
239    } else {
240        sbr->spectrum_params.bs_freq_scale  = 2;
241        sbr->spectrum_params.bs_alter_scale = 1;
242        sbr->spectrum_params.bs_noise_bands = 2;
243    }
244
245    // Check if spectrum parameters changed
246    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
247        sbr->reset = 1;
248
249    if (bs_header_extra_2) {
250        sbr->bs_limiter_bands  = get_bits(gb, 2);
251        sbr->bs_limiter_gains  = get_bits(gb, 2);
252        sbr->bs_interpol_freq  = get_bits1(gb);
253        sbr->bs_smoothing_mode = get_bits1(gb);
254    } else {
255        sbr->bs_limiter_bands  = 2;
256        sbr->bs_limiter_gains  = 2;
257        sbr->bs_interpol_freq  = 1;
258        sbr->bs_smoothing_mode = 1;
259    }
260
261    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
262        sbr_make_f_tablelim(sbr);
263
264    return get_bits_count(gb) - cnt;
265}
266
267static int array_min_int16(const int16_t *array, int nel)
268{
269    int i, min = array[0];
270    for (i = 1; i < nel; i++)
271        min = FFMIN(array[i], min);
272    return min;
273}
274
275static void make_bands(int16_t* bands, int start, int stop, int num_bands)
276{
277    int k, previous, present;
278    float base, prod;
279
280    base = powf((float)stop / start, 1.0f / num_bands);
281    prod = start;
282    previous = start;
283
284    for (k = 0; k < num_bands-1; k++) {
285        prod *= base;
286        present  = lrintf(prod);
287        bands[k] = present - previous;
288        previous = present;
289    }
290    bands[num_bands-1] = stop - previous;
291}
292
293static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
294{
295    // Requirements (14496-3 sp04 p205)
296    if (n_master <= 0) {
297        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
298        return -1;
299    }
300    if (bs_xover_band >= n_master) {
301        av_log(avctx, AV_LOG_ERROR,
302               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
303               bs_xover_band);
304        return -1;
305    }
306    return 0;
307}
308
309/// Master Frequency Band Table (14496-3 sp04 p194)
310static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
311                             SpectrumParameters *spectrum)
312{
313    unsigned int temp, max_qmf_subbands;
314    unsigned int start_min, stop_min;
315    int k;
316    const int8_t *sbr_offset_ptr;
317    int16_t stop_dk[13];
318
319    if (sbr->sample_rate < 32000) {
320        temp = 3000;
321    } else if (sbr->sample_rate < 64000) {
322        temp = 4000;
323    } else
324        temp = 5000;
325
326    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
327    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
328
329    switch (sbr->sample_rate) {
330    case 16000:
331        sbr_offset_ptr = sbr_offset[0];
332        break;
333    case 22050:
334        sbr_offset_ptr = sbr_offset[1];
335        break;
336    case 24000:
337        sbr_offset_ptr = sbr_offset[2];
338        break;
339    case 32000:
340        sbr_offset_ptr = sbr_offset[3];
341        break;
342    case 44100: case 48000: case 64000:
343        sbr_offset_ptr = sbr_offset[4];
344        break;
345    case 88200: case 96000: case 128000: case 176400: case 192000:
346        sbr_offset_ptr = sbr_offset[5];
347        break;
348    default:
349        av_log(ac->avctx, AV_LOG_ERROR,
350               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
351        return -1;
352    }
353
354    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
355
356    if (spectrum->bs_stop_freq < 14) {
357        sbr->k[2] = stop_min;
358        make_bands(stop_dk, stop_min, 64, 13);
359        qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
360        for (k = 0; k < spectrum->bs_stop_freq; k++)
361            sbr->k[2] += stop_dk[k];
362    } else if (spectrum->bs_stop_freq == 14) {
363        sbr->k[2] = 2*sbr->k[0];
364    } else if (spectrum->bs_stop_freq == 15) {
365        sbr->k[2] = 3*sbr->k[0];
366    } else {
367        av_log(ac->avctx, AV_LOG_ERROR,
368               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
369        return -1;
370    }
371    sbr->k[2] = FFMIN(64, sbr->k[2]);
372
373    // Requirements (14496-3 sp04 p205)
374    if (sbr->sample_rate <= 32000) {
375        max_qmf_subbands = 48;
376    } else if (sbr->sample_rate == 44100) {
377        max_qmf_subbands = 35;
378    } else if (sbr->sample_rate >= 48000)
379        max_qmf_subbands = 32;
380
381    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
382        av_log(ac->avctx, AV_LOG_ERROR,
383               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
384        return -1;
385    }
386
387    if (!spectrum->bs_freq_scale) {
388        int dk, k2diff;
389
390        dk = spectrum->bs_alter_scale + 1;
391        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
392        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
393            return -1;
394
395        for (k = 1; k <= sbr->n_master; k++)
396            sbr->f_master[k] = dk;
397
398        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
399        if (k2diff < 0) {
400            sbr->f_master[1]--;
401            sbr->f_master[2]-= (k2diff < -1);
402        } else if (k2diff) {
403            sbr->f_master[sbr->n_master]++;
404        }
405
406        sbr->f_master[0] = sbr->k[0];
407        for (k = 1; k <= sbr->n_master; k++)
408            sbr->f_master[k] += sbr->f_master[k - 1];
409
410    } else {
411        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
412        int two_regions, num_bands_0;
413        int vdk0_max, vdk1_min;
414        int16_t vk0[49];
415
416        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
417            two_regions = 1;
418            sbr->k[1] = 2 * sbr->k[0];
419        } else {
420            two_regions = 0;
421            sbr->k[1] = sbr->k[2];
422        }
423
424        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
425
426        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
427            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
428            return -1;
429        }
430
431        vk0[0] = 0;
432
433        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
434
435        qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
436        vdk0_max = vk0[num_bands_0];
437
438        vk0[0] = sbr->k[0];
439        for (k = 1; k <= num_bands_0; k++) {
440            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
441                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
442                return -1;
443            }
444            vk0[k] += vk0[k-1];
445        }
446
447        if (two_regions) {
448            int16_t vk1[49];
449            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
450                                                     : 1.0f; // bs_alter_scale = {0,1}
451            int num_bands_1 = lrintf(half_bands * invwarp *
452                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
453
454            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
455
456            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
457
458            if (vdk1_min < vdk0_max) {
459                int change;
460                qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
461                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
462                vk1[1]           += change;
463                vk1[num_bands_1] -= change;
464            }
465
466            qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
467
468            vk1[0] = sbr->k[1];
469            for (k = 1; k <= num_bands_1; k++) {
470                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
471                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
472                    return -1;
473                }
474                vk1[k] += vk1[k-1];
475            }
476
477            sbr->n_master = num_bands_0 + num_bands_1;
478            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
479                return -1;
480            memcpy(&sbr->f_master[0],               vk0,
481                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
482            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
483                    num_bands_1      * sizeof(sbr->f_master[0]));
484
485        } else {
486            sbr->n_master = num_bands_0;
487            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
488                return -1;
489            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
490        }
491    }
492
493    return 0;
494}
495
496/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
497static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
498{
499    int i, k, sb = 0;
500    int msb = sbr->k[0];
501    int usb = sbr->kx[1];
502    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
503
504    sbr->num_patches = 0;
505
506    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
507        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
508    } else
509        k = sbr->n_master;
510
511    do {
512        int odd = 0;
513        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
514            sb = sbr->f_master[i];
515            odd = (sb + sbr->k[0]) & 1;
516        }
517
518        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
519        // After this check the final number of patches can still be six which is
520        // illegal however the Coding Technologies decoder check stream has a final
521        // count of 6 patches
522        if (sbr->num_patches > 5) {
523            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
524            return -1;
525        }
526
527        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
528        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
529
530        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
531            usb = sb;
532            msb = sb;
533            sbr->num_patches++;
534        } else
535            msb = sbr->kx[1];
536
537        if (sbr->f_master[k] - sb < 3)
538            k = sbr->n_master;
539    } while (sb != sbr->kx[1] + sbr->m[1]);
540
541    if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
542        sbr->num_patches--;
543
544    return 0;
545}
546
547/// Derived Frequency Band Tables (14496-3 sp04 p197)
548static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
549{
550    int k, temp;
551
552    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
553    sbr->n[0] = (sbr->n[1] + 1) >> 1;
554
555    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
556           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
557    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
558    sbr->kx[1] = sbr->f_tablehigh[0];
559
560    // Requirements (14496-3 sp04 p205)
561    if (sbr->kx[1] + sbr->m[1] > 64) {
562        av_log(ac->avctx, AV_LOG_ERROR,
563               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
564        return -1;
565    }
566    if (sbr->kx[1] > 32) {
567        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
568        return -1;
569    }
570
571    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
572    temp = sbr->n[1] & 1;
573    for (k = 1; k <= sbr->n[0]; k++)
574        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
575
576    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
577                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
578    if (sbr->n_q > 5) {
579        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
580        return -1;
581    }
582
583    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
584    temp = 0;
585    for (k = 1; k <= sbr->n_q; k++) {
586        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
587        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
588    }
589
590    if (sbr_hf_calc_npatches(ac, sbr) < 0)
591        return -1;
592
593    sbr_make_f_tablelim(sbr);
594
595    sbr->data[0].f_indexnoise = 0;
596    sbr->data[1].f_indexnoise = 0;
597
598    return 0;
599}
600
601static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
602                                              int elements)
603{
604    int i;
605    for (i = 0; i < elements; i++) {
606        vec[i] = get_bits1(gb);
607    }
608}
609
610/** ceil(log2(index+1)) */
611static const int8_t ceil_log2[] = {
612    0, 1, 2, 2, 3, 3,
613};
614
615static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
616                         GetBitContext *gb, SBRData *ch_data)
617{
618    int i;
619    unsigned bs_pointer = 0;
620    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
621    int abs_bord_trail = 16;
622    int num_rel_lead, num_rel_trail;
623    unsigned bs_num_env_old = ch_data->bs_num_env;
624
625    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
626    ch_data->bs_amp_res = sbr->bs_amp_res_header;
627    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
628
629    switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
630    case FIXFIX:
631        ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
632        num_rel_lead                        = ch_data->bs_num_env - 1;
633        if (ch_data->bs_num_env == 1)
634            ch_data->bs_amp_res = 0;
635
636        if (ch_data->bs_num_env > 4) {
637            av_log(ac->avctx, AV_LOG_ERROR,
638                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
639                   ch_data->bs_num_env);
640            return -1;
641        }
642
643        ch_data->t_env[0]                   = 0;
644        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
645
646        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
647                   ch_data->bs_num_env;
648        for (i = 0; i < num_rel_lead; i++)
649            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
650
651        ch_data->bs_freq_res[1] = get_bits1(gb);
652        for (i = 1; i < ch_data->bs_num_env; i++)
653            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
654        break;
655    case FIXVAR:
656        abs_bord_trail                     += get_bits(gb, 2);
657        num_rel_trail                       = get_bits(gb, 2);
658        ch_data->bs_num_env                 = num_rel_trail + 1;
659        ch_data->t_env[0]                   = 0;
660        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
661
662        for (i = 0; i < num_rel_trail; i++)
663            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
664                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
665
666        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
667
668        for (i = 0; i < ch_data->bs_num_env; i++)
669            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
670        break;
671    case VARFIX:
672        ch_data->t_env[0]                   = get_bits(gb, 2);
673        num_rel_lead                        = get_bits(gb, 2);
674        ch_data->bs_num_env                 = num_rel_lead + 1;
675        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
676
677        for (i = 0; i < num_rel_lead; i++)
678            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
679
680        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
681
682        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
683        break;
684    case VARVAR:
685        ch_data->t_env[0]                   = get_bits(gb, 2);
686        abs_bord_trail                     += get_bits(gb, 2);
687        num_rel_lead                        = get_bits(gb, 2);
688        num_rel_trail                       = get_bits(gb, 2);
689        ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;
690
691        if (ch_data->bs_num_env > 5) {
692            av_log(ac->avctx, AV_LOG_ERROR,
693                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
694                   ch_data->bs_num_env);
695            return -1;
696        }
697
698        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
699
700        for (i = 0; i < num_rel_lead; i++)
701            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
702        for (i = 0; i < num_rel_trail; i++)
703            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
704                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
705
706        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
707
708        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
709        break;
710    }
711
712    if (bs_pointer > ch_data->bs_num_env + 1) {
713        av_log(ac->avctx, AV_LOG_ERROR,
714               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
715               bs_pointer);
716        return -1;
717    }
718
719    for (i = 1; i <= ch_data->bs_num_env; i++) {
720        if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
721            av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
722            return -1;
723        }
724    }
725
726    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
727
728    ch_data->t_q[0]                     = ch_data->t_env[0];
729    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
730    if (ch_data->bs_num_noise > 1) {
731        unsigned int idx;
732        if (ch_data->bs_frame_class == FIXFIX) {
733            idx = ch_data->bs_num_env >> 1;
734        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
735            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
736        } else { // VARFIX
737            if (!bs_pointer)
738                idx = 1;
739            else if (bs_pointer == 1)
740                idx = ch_data->bs_num_env - 1;
741            else // bs_pointer > 1
742                idx = bs_pointer - 1;
743        }
744        ch_data->t_q[1] = ch_data->t_env[idx];
745    }
746
747    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
748    ch_data->e_a[1] = -1;
749    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
750        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
751    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
752        ch_data->e_a[1] = bs_pointer - 1;
753
754    return 0;
755}
756
757static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
758    //These variables are saved from the previous frame rather than copied
759    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
760    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
761    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
762
763    //These variables are read from the bitstream and therefore copied
764    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
765    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
766    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
767    dst->bs_num_env        = src->bs_num_env;
768    dst->bs_amp_res        = src->bs_amp_res;
769    dst->bs_num_noise      = src->bs_num_noise;
770    dst->bs_frame_class    = src->bs_frame_class;
771    dst->e_a[1]            = src->e_a[1];
772}
773
774/// Read how the envelope and noise floor data is delta coded
775static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
776                          SBRData *ch_data)
777{
778    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
779    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
780}
781
782/// Read inverse filtering data
783static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
784                          SBRData *ch_data)
785{
786    int i;
787
788    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
789    for (i = 0; i < sbr->n_q; i++)
790        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
791}
792
793static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
794                              SBRData *ch_data, int ch)
795{
796    int bits;
797    int i, j, k;
798    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
799    int t_lav, f_lav;
800    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
801    const int odd = sbr->n[1] & 1;
802
803    if (sbr->bs_coupling && ch) {
804        if (ch_data->bs_amp_res) {
805            bits   = 5;
806            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
807            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
808            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
809            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
810        } else {
811            bits   = 6;
812            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
813            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
814            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
815            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
816        }
817    } else {
818        if (ch_data->bs_amp_res) {
819            bits   = 6;
820            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
821            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
822            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
823            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
824        } else {
825            bits   = 7;
826            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
827            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
828            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
829            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
830        }
831    }
832
833    for (i = 0; i < ch_data->bs_num_env; i++) {
834        if (ch_data->bs_df_env[i]) {
835            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
836            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
837                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
838                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
839            } else if (ch_data->bs_freq_res[i + 1]) {
840                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
841                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
842                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
843                }
844            } else {
845                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
846                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
847                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
848                }
849            }
850        } else {
851            ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
852            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
853                ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
854        }
855    }
856
857    //assign 0th elements of env_facs from last elements
858    memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
859           sizeof(ch_data->env_facs[0]));
860}
861
862static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
863                           SBRData *ch_data, int ch)
864{
865    int i, j;
866    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
867    int t_lav, f_lav;
868    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
869
870    if (sbr->bs_coupling && ch) {
871        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
872        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
873        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
874        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
875    } else {
876        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
877        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
878        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
879        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
880    }
881
882    for (i = 0; i < ch_data->bs_num_noise; i++) {
883        if (ch_data->bs_df_noise[i]) {
884            for (j = 0; j < sbr->n_q; j++)
885                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
886        } else {
887            ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
888            for (j = 1; j < sbr->n_q; j++)
889                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
890        }
891    }
892
893    //assign 0th elements of noise_facs from last elements
894    memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
895           sizeof(ch_data->noise_facs[0]));
896}
897
898static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
899                               GetBitContext *gb,
900                               int bs_extension_id, int *num_bits_left)
901{
902    switch (bs_extension_id) {
903    case EXTENSION_ID_PS:
904        if (!ac->m4ac.ps) {
905            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
906            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
907            *num_bits_left = 0;
908        } else {
909#if 1
910            *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
911#else
912            av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
913            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
914            *num_bits_left = 0;
915#endif
916        }
917        break;
918    default:
919        av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
920        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
921        *num_bits_left = 0;
922        break;
923    }
924}
925
926static int read_sbr_single_channel_element(AACContext *ac,
927                                            SpectralBandReplication *sbr,
928                                            GetBitContext *gb)
929{
930    if (get_bits1(gb)) // bs_data_extra
931        skip_bits(gb, 4); // bs_reserved
932
933    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
934        return -1;
935    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
936    read_sbr_invf(sbr, gb, &sbr->data[0]);
937    read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
938    read_sbr_noise(sbr, gb, &sbr->data[0], 0);
939
940    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
941        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
942
943    return 0;
944}
945
946static int read_sbr_channel_pair_element(AACContext *ac,
947                                          SpectralBandReplication *sbr,
948                                          GetBitContext *gb)
949{
950    if (get_bits1(gb))    // bs_data_extra
951        skip_bits(gb, 8); // bs_reserved
952
953    if ((sbr->bs_coupling = get_bits1(gb))) {
954        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
955            return -1;
956        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
957        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
958        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
959        read_sbr_invf(sbr, gb, &sbr->data[0]);
960        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
961        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
962        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
963        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
964        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
965        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
966    } else {
967        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
968            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
969            return -1;
970        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
971        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
972        read_sbr_invf(sbr, gb, &sbr->data[0]);
973        read_sbr_invf(sbr, gb, &sbr->data[1]);
974        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
975        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
976        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
977        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
978    }
979
980    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
981        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
982    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
983        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
984
985    return 0;
986}
987
988static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
989                                  GetBitContext *gb, int id_aac)
990{
991    unsigned int cnt = get_bits_count(gb);
992
993    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
994        if (read_sbr_single_channel_element(ac, sbr, gb)) {
995            sbr->start = 0;
996            return get_bits_count(gb) - cnt;
997        }
998    } else if (id_aac == TYPE_CPE) {
999        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1000            sbr->start = 0;
1001            return get_bits_count(gb) - cnt;
1002        }
1003    } else {
1004        av_log(ac->avctx, AV_LOG_ERROR,
1005            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1006        sbr->start = 0;
1007        return get_bits_count(gb) - cnt;
1008    }
1009    if (get_bits1(gb)) { // bs_extended_data
1010        int num_bits_left = get_bits(gb, 4); // bs_extension_size
1011        if (num_bits_left == 15)
1012            num_bits_left += get_bits(gb, 8); // bs_esc_count
1013
1014        num_bits_left <<= 3;
1015        while (num_bits_left > 7) {
1016            num_bits_left -= 2;
1017            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1018        }
1019        if (num_bits_left < 0) {
1020            av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1021        }
1022        if (num_bits_left > 0)
1023            skip_bits(gb, num_bits_left);
1024    }
1025
1026    return get_bits_count(gb) - cnt;
1027}
1028
1029static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1030{
1031    int err;
1032    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1033    if (err >= 0)
1034        err = sbr_make_f_derived(ac, sbr);
1035    if (err < 0) {
1036        av_log(ac->avctx, AV_LOG_ERROR,
1037               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1038        sbr->start = 0;
1039    }
1040}
1041
1042/**
1043 * Decode Spectral Band Replication extension data; reference: table 4.55.
1044 *
1045 * @param   crc flag indicating the presence of CRC checksum
1046 * @param   cnt length of TYPE_FIL syntactic element in bytes
1047 *
1048 * @return  Returns number of bytes consumed from the TYPE_FIL element.
1049 */
1050int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1051                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
1052{
1053    unsigned int num_sbr_bits = 0, num_align_bits;
1054    unsigned bytes_read;
1055    GetBitContext gbc = *gb_host, *gb = &gbc;
1056    skip_bits_long(gb_host, cnt*8 - 4);
1057
1058    sbr->reset = 0;
1059
1060    if (!sbr->sample_rate)
1061        sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1062    if (!ac->m4ac.ext_sample_rate)
1063        ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1064
1065    if (crc) {
1066        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1067        num_sbr_bits += 10;
1068    }
1069
1070    //Save some state from the previous frame.
1071    sbr->kx[0] = sbr->kx[1];
1072    sbr->m[0] = sbr->m[1];
1073
1074    num_sbr_bits++;
1075    if (get_bits1(gb)) // bs_header_flag
1076        num_sbr_bits += read_sbr_header(sbr, gb);
1077
1078    if (sbr->reset)
1079        sbr_reset(ac, sbr);
1080
1081    if (sbr->start)
1082        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
1083
1084    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1085    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1086
1087    if (bytes_read > cnt) {
1088        av_log(ac->avctx, AV_LOG_ERROR,
1089               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1090    }
1091    return cnt;
1092}
1093
1094/// Dequantization and stereo decoding (14496-3 sp04 p203)
1095static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1096{
1097    int k, e;
1098    int ch;
1099
1100    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1101        float alpha      = sbr->data[0].bs_amp_res ?  1.0f :  0.5f;
1102        float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1103        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1104            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1105                float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1106                float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1107                float fac   = temp1 / (1.0f + temp2);
1108                sbr->data[0].env_facs[e][k] = fac;
1109                sbr->data[1].env_facs[e][k] = fac * temp2;
1110            }
1111        }
1112        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1113            for (k = 0; k < sbr->n_q; k++) {
1114                float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1115                float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1116                float fac   = temp1 / (1.0f + temp2);
1117                sbr->data[0].noise_facs[e][k] = fac;
1118                sbr->data[1].noise_facs[e][k] = fac * temp2;
1119            }
1120        }
1121    } else { // SCE or one non-coupled CPE
1122        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1123            float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1124            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1125                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1126                    sbr->data[ch].env_facs[e][k] =
1127                        exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1128            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1129                for (k = 0; k < sbr->n_q; k++)
1130                    sbr->data[ch].noise_facs[e][k] =
1131                        exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1132        }
1133    }
1134}
1135
1136/**
1137 * Analysis QMF Bank (14496-3 sp04 p206)
1138 *
1139 * @param   x       pointer to the beginning of the first sample window
1140 * @param   W       array of complex-valued samples split into subbands
1141 */
1142static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
1143                             float z[320], float W[2][32][32][2])
1144{
1145    int i, k;
1146    memcpy(W[0], W[1], sizeof(W[0]));
1147    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
1148    memcpy(x+288, in,         1024*sizeof(x[0]));
1149    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1150                               // are not supported
1151        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1152        for (k = 0; k < 64; k++) {
1153            float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1154            z[k] = f;
1155        }
1156        //Shuffle to IMDCT
1157        z[64] = z[0];
1158        for (k = 1; k < 32; k++) {
1159            z[64+2*k-1] =  z[   k];
1160            z[64+2*k  ] = -z[64-k];
1161        }
1162        z[64+63] = z[32];
1163
1164        mdct->imdct_half(mdct, z, z+64);
1165        for (k = 0; k < 32; k++) {
1166            W[1][i][k][0] = -z[63-k];
1167            W[1][i][k][1] = z[k];
1168        }
1169        x += 32;
1170    }
1171}
1172
1173/**
1174 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1175 * (14496-3 sp04 p206)
1176 */
1177static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1178                              float *out, float X[2][38][64],
1179                              float mdct_buf[2][64],
1180                              float *v0, int *v_off, const unsigned int div)
1181{
1182    int i, n;
1183    const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1184    const int step = 128 >> div;
1185    float *v;
1186    for (i = 0; i < 32; i++) {
1187        if (*v_off < step) {
1188            int saved_samples = (1280 - 128) >> div;
1189            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1190            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1191        } else {
1192            *v_off -= step;
1193        }
1194        v = v0 + *v_off;
1195        if (div) {
1196            for (n = 0; n < 32; n++) {
1197                X[0][i][   n] = -X[0][i][n];
1198                X[0][i][32+n] =  X[1][i][31-n];
1199            }
1200            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1201            for (n = 0; n < 32; n++) {
1202                v[     n] =  mdct_buf[0][63 - 2*n];
1203                v[63 - n] = -mdct_buf[0][62 - 2*n];
1204            }
1205        } else {
1206            for (n = 1; n < 64; n+=2) {
1207                X[1][i][n] = -X[1][i][n];
1208            }
1209            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1210            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1211            for (n = 0; n < 64; n++) {
1212                v[      n] = -mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
1213                v[127 - n] =  mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
1214            }
1215        }
1216        dsp->vector_fmul_add(out, v                , sbr_qmf_window               , zero64, 64 >> div);
1217        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
1218        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
1219        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
1220        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
1221        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
1222        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
1223        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
1224        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
1225        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
1226        out += 64 >> div;
1227    }
1228}
1229
1230static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1231{
1232    int i;
1233    float real_sum = 0.0f;
1234    float imag_sum = 0.0f;
1235    if (lag) {
1236        for (i = 1; i < 38; i++) {
1237            real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1238            imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1239        }
1240        phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1241        phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1242        if (lag == 1) {
1243            phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1244            phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1245        }
1246    } else {
1247        for (i = 1; i < 38; i++) {
1248            real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1249        }
1250        phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1251        phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1252    }
1253}
1254
1255/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1256 * (14496-3 sp04 p214)
1257 * Warning: This routine does not seem numerically stable.
1258 */
1259static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1260                                  const float X_low[32][40][2], int k0)
1261{
1262    int k;
1263    for (k = 0; k < k0; k++) {
1264        float phi[3][2][2], dk;
1265
1266        autocorrelate(X_low[k], phi, 0);
1267        autocorrelate(X_low[k], phi, 1);
1268        autocorrelate(X_low[k], phi, 2);
1269
1270        dk =  phi[2][1][0] * phi[1][0][0] -
1271             (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1272
1273        if (!dk) {
1274            alpha1[k][0] = 0;
1275            alpha1[k][1] = 0;
1276        } else {
1277            float temp_real, temp_im;
1278            temp_real = phi[0][0][0] * phi[1][1][0] -
1279                        phi[0][0][1] * phi[1][1][1] -
1280                        phi[0][1][0] * phi[1][0][0];
1281            temp_im   = phi[0][0][0] * phi[1][1][1] +
1282                        phi[0][0][1] * phi[1][1][0] -
1283                        phi[0][1][1] * phi[1][0][0];
1284
1285            alpha1[k][0] = temp_real / dk;
1286            alpha1[k][1] = temp_im   / dk;
1287        }
1288
1289        if (!phi[1][0][0]) {
1290            alpha0[k][0] = 0;
1291            alpha0[k][1] = 0;
1292        } else {
1293            float temp_real, temp_im;
1294            temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1295                                       alpha1[k][1] * phi[1][1][1];
1296            temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1297                                       alpha1[k][0] * phi[1][1][1];
1298
1299            alpha0[k][0] = -temp_real / phi[1][0][0];
1300            alpha0[k][1] = -temp_im   / phi[1][0][0];
1301        }
1302
1303        if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1304           alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1305            alpha1[k][0] = 0;
1306            alpha1[k][1] = 0;
1307            alpha0[k][0] = 0;
1308            alpha0[k][1] = 0;
1309        }
1310    }
1311}
1312
1313/// Chirp Factors (14496-3 sp04 p214)
1314static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1315{
1316    int i;
1317    float new_bw;
1318    static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1319
1320    for (i = 0; i < sbr->n_q; i++) {
1321        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1322            new_bw = 0.6f;
1323        } else
1324            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1325
1326        if (new_bw < ch_data->bw_array[i]) {
1327            new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
1328        } else
1329            new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1330        ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1331    }
1332}
1333
1334/// Generate the subband filtered lowband
1335static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1336                      float X_low[32][40][2], const float W[2][32][32][2])
1337{
1338    int i, k;
1339    const int t_HFGen = 8;
1340    const int i_f = 32;
1341    memset(X_low, 0, 32*sizeof(*X_low));
1342    for (k = 0; k < sbr->kx[1]; k++) {
1343        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1344            X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1345            X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1346        }
1347    }
1348    for (k = 0; k < sbr->kx[0]; k++) {
1349        for (i = 0; i < t_HFGen; i++) {
1350            X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1351            X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1352        }
1353    }
1354    return 0;
1355}
1356
1357/// High Frequency Generator (14496-3 sp04 p215)
1358static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1359                      float X_high[64][40][2], const float X_low[32][40][2],
1360                      const float (*alpha0)[2], const float (*alpha1)[2],
1361                      const float bw_array[5], const uint8_t *t_env,
1362                      int bs_num_env)
1363{
1364    int i, j, x;
1365    int g = 0;
1366    int k = sbr->kx[1];
1367    for (j = 0; j < sbr->num_patches; j++) {
1368        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1369            float alpha[4];
1370            const int p = sbr->patch_start_subband[j] + x;
1371            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1372                g++;
1373            g--;
1374
1375            if (g < 0) {
1376                av_log(ac->avctx, AV_LOG_ERROR,
1377                       "ERROR : no subband found for frequency %d\n", k);
1378                return -1;
1379            }
1380
1381            alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1382            alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1383            alpha[2] = alpha0[p][0] * bw_array[g];
1384            alpha[3] = alpha0[p][1] * bw_array[g];
1385
1386            for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1387                const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1388                X_high[k][idx][0] =
1389                    X_low[p][idx - 2][0] * alpha[0] -
1390                    X_low[p][idx - 2][1] * alpha[1] +
1391                    X_low[p][idx - 1][0] * alpha[2] -
1392                    X_low[p][idx - 1][1] * alpha[3] +
1393                    X_low[p][idx][0];
1394                X_high[k][idx][1] =
1395                    X_low[p][idx - 2][1] * alpha[0] +
1396                    X_low[p][idx - 2][0] * alpha[1] +
1397                    X_low[p][idx - 1][1] * alpha[2] +
1398                    X_low[p][idx - 1][0] * alpha[3] +
1399                    X_low[p][idx][1];
1400            }
1401        }
1402    }
1403    if (k < sbr->m[1] + sbr->kx[1])
1404        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1405
1406    return 0;
1407}
1408
1409/// Generate the subband filtered lowband
1410static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1411                     const float X_low[32][40][2], const float Y[2][38][64][2],
1412                     int ch)
1413{
1414    int k, i;
1415    const int i_f = 32;
1416    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1417    memset(X, 0, 2*sizeof(*X));
1418    for (k = 0; k < sbr->kx[0]; k++) {
1419        for (i = 0; i < i_Temp; i++) {
1420            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1421            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1422        }
1423    }
1424    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1425        for (i = 0; i < i_Temp; i++) {
1426            X[0][i][k] = Y[0][i + i_f][k][0];
1427            X[1][i][k] = Y[0][i + i_f][k][1];
1428        }
1429    }
1430
1431    for (k = 0; k < sbr->kx[1]; k++) {
1432        for (i = i_Temp; i < 38; i++) {
1433            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1434            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1435        }
1436    }
1437    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1438        for (i = i_Temp; i < i_f; i++) {
1439            X[0][i][k] = Y[1][i][k][0];
1440            X[1][i][k] = Y[1][i][k][1];
1441        }
1442    }
1443    return 0;
1444}
1445
1446/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1447 * (14496-3 sp04 p217)
1448 */
1449static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1450                        SBRData *ch_data, int e_a[2])
1451{
1452    int e, i, m;
1453
1454    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1455    for (e = 0; e < ch_data->bs_num_env; e++) {
1456        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1457        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1458        int k;
1459
1460        for (i = 0; i < ilim; i++)
1461            for (m = table[i]; m < table[i + 1]; m++)
1462                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1463
1464        // ch_data->bs_num_noise > 1 => 2 noise floors
1465        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1466        for (i = 0; i < sbr->n_q; i++)
1467            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1468                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1469
1470        for (i = 0; i < sbr->n[1]; i++) {
1471            if (ch_data->bs_add_harmonic_flag) {
1472                const unsigned int m_midpoint =
1473                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1474
1475                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1476                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1477            }
1478        }
1479
1480        for (i = 0; i < ilim; i++) {
1481            int additional_sinusoid_present = 0;
1482            for (m = table[i]; m < table[i + 1]; m++) {
1483                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1484                    additional_sinusoid_present = 1;
1485                    break;
1486                }
1487            }
1488            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1489                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1490        }
1491    }
1492
1493    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1494}
1495
1496/// Estimation of current envelope (14496-3 sp04 p218)
1497static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1498                             SpectralBandReplication *sbr, SBRData *ch_data)
1499{
1500    int e, i, m;
1501
1502    if (sbr->bs_interpol_freq) {
1503        for (e = 0; e < ch_data->bs_num_env; e++) {
1504            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1505            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1506            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1507
1508            for (m = 0; m < sbr->m[1]; m++) {
1509                float sum = 0.0f;
1510
1511                for (i = ilb; i < iub; i++) {
1512                    sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1513                           X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1514                }
1515                e_curr[e][m] = sum * recip_env_size;
1516            }
1517        }
1518    } else {
1519        int k, p;
1520
1521        for (e = 0; e < ch_data->bs_num_env; e++) {
1522            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1523            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1524            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1525            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1526
1527            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1528                float sum = 0.0f;
1529                const int den = env_size * (table[p + 1] - table[p]);
1530
1531                for (k = table[p]; k < table[p + 1]; k++) {
1532                    for (i = ilb; i < iub; i++) {
1533                        sum += X_high[k][i][0] * X_high[k][i][0] +
1534                               X_high[k][i][1] * X_high[k][i][1];
1535                    }
1536                }
1537                sum /= den;
1538                for (k = table[p]; k < table[p + 1]; k++) {
1539                    e_curr[e][k - sbr->kx[1]] = sum;
1540                }
1541            }
1542        }
1543    }
1544}
1545
1546/**
1547 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1548 * and Calculation of gain (14496-3 sp04 p219)
1549 */
1550static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1551                          SBRData *ch_data, const int e_a[2])
1552{
1553    int e, k, m;
1554    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1555    static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1556
1557    for (e = 0; e < ch_data->bs_num_env; e++) {
1558        int delta = !((e == e_a[1]) || (e == e_a[0]));
1559        for (k = 0; k < sbr->n_lim; k++) {
1560            float gain_boost, gain_max;
1561            float sum[2] = { 0.0f, 0.0f };
1562            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1563                const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1564                sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1565                sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1566                if (!sbr->s_mapped[e][m]) {
1567                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1568                                            ((1.0f + sbr->e_curr[e][m]) *
1569                                             (1.0f + sbr->q_mapped[e][m] * delta)));
1570                } else {
1571                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1572                                            ((1.0f + sbr->e_curr[e][m]) *
1573                                             (1.0f + sbr->q_mapped[e][m])));
1574                }
1575            }
1576            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1577                sum[0] += sbr->e_origmapped[e][m];
1578                sum[1] += sbr->e_curr[e][m];
1579            }
1580            gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1581            gain_max = FFMIN(100000.f, gain_max);
1582            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1583                float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1584                sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
1585                sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1586            }
1587            sum[0] = sum[1] = 0.0f;
1588            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1589                sum[0] += sbr->e_origmapped[e][m];
1590                sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1591                          + sbr->s_m[e][m] * sbr->s_m[e][m]
1592                          + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1593            }
1594            gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1595            gain_boost = FFMIN(1.584893192f, gain_boost);
1596            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1597                sbr->gain[e][m] *= gain_boost;
1598                sbr->q_m[e][m]  *= gain_boost;
1599                sbr->s_m[e][m]  *= gain_boost;
1600            }
1601        }
1602    }
1603}
1604
1605/// Assembling HF Signals (14496-3 sp04 p220)
1606static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1607                            SpectralBandReplication *sbr, SBRData *ch_data,
1608                            const int e_a[2])
1609{
1610    int e, i, j, m;
1611    const int h_SL = 4 * !sbr->bs_smoothing_mode;
1612    const int kx = sbr->kx[1];
1613    const int m_max = sbr->m[1];
1614    static const float h_smooth[5] = {
1615        0.33333333333333,
1616        0.30150283239582,
1617        0.21816949906249,
1618        0.11516383427084,
1619        0.03183050093751,
1620    };
1621    static const int8_t phi[2][4] = {
1622        {  1,  0, -1,  0}, // real
1623        {  0,  1,  0, -1}, // imaginary
1624    };
1625    float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1626    int indexnoise = ch_data->f_indexnoise;
1627    int indexsine  = ch_data->f_indexsine;
1628    memcpy(Y[0], Y[1], sizeof(Y[0]));
1629
1630    if (sbr->reset) {
1631        for (i = 0; i < h_SL; i++) {
1632            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1633            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
1634        }
1635    } else if (h_SL) {
1636        memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1637        memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1638    }
1639
1640    for (e = 0; e < ch_data->bs_num_env; e++) {
1641        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1642            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1643            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
1644        }
1645    }
1646
1647    for (e = 0; e < ch_data->bs_num_env; e++) {
1648        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1649            int phi_sign = (1 - 2*(kx & 1));
1650
1651            if (h_SL && e != e_a[0] && e != e_a[1]) {
1652                for (m = 0; m < m_max; m++) {
1653                    const int idx1 = i + h_SL;
1654                    float g_filt = 0.0f;
1655                    for (j = 0; j <= h_SL; j++)
1656                        g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1657                    Y[1][i][m + kx][0] =
1658                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1659                    Y[1][i][m + kx][1] =
1660                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1661                }
1662            } else {
1663                for (m = 0; m < m_max; m++) {
1664                    const float g_filt = g_temp[i + h_SL][m];
1665                    Y[1][i][m + kx][0] =
1666                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1667                    Y[1][i][m + kx][1] =
1668                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1669                }
1670            }
1671
1672            if (e != e_a[0] && e != e_a[1]) {
1673                for (m = 0; m < m_max; m++) {
1674                    indexnoise = (indexnoise + 1) & 0x1ff;
1675                    if (sbr->s_m[e][m]) {
1676                        Y[1][i][m + kx][0] +=
1677                            sbr->s_m[e][m] * phi[0][indexsine];
1678                        Y[1][i][m + kx][1] +=
1679                            sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1680                    } else {
1681                        float q_filt;
1682                        if (h_SL) {
1683                            const int idx1 = i + h_SL;
1684                            q_filt = 0.0f;
1685                            for (j = 0; j <= h_SL; j++)
1686                                q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1687                        } else {
1688                            q_filt = q_temp[i][m];
1689                        }
1690                        Y[1][i][m + kx][0] +=
1691                            q_filt * sbr_noise_table[indexnoise][0];
1692                        Y[1][i][m + kx][1] +=
1693                            q_filt * sbr_noise_table[indexnoise][1];
1694                    }
1695                    phi_sign = -phi_sign;
1696                }
1697            } else {
1698                indexnoise = (indexnoise + m_max) & 0x1ff;
1699                for (m = 0; m < m_max; m++) {
1700                    Y[1][i][m + kx][0] +=
1701                        sbr->s_m[e][m] * phi[0][indexsine];
1702                    Y[1][i][m + kx][1] +=
1703                        sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1704                    phi_sign = -phi_sign;
1705                }
1706            }
1707            indexsine = (indexsine + 1) & 3;
1708        }
1709    }
1710    ch_data->f_indexnoise = indexnoise;
1711    ch_data->f_indexsine  = indexsine;
1712}
1713
1714void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1715                  float* L, float* R)
1716{
1717    int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1718    int ch;
1719    int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1720
1721    if (sbr->start) {
1722        sbr_dequant(sbr, id_aac);
1723    }
1724    for (ch = 0; ch < nch; ch++) {
1725        /* decode channel */
1726        sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1727                         (float*)sbr->qmf_filter_scratch,
1728                         sbr->data[ch].W);
1729        sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1730        if (sbr->start) {
1731            sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1732            sbr_chirp(sbr, &sbr->data[ch]);
1733            sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1734                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
1735                       sbr->data[ch].bs_num_env);
1736
1737            // hf_adj
1738            sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1739            sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1740            sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1741            sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1742                            sbr->data[ch].e_a);
1743        }
1744
1745        /* synthesis */
1746        sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
1747    }
1748
1749    if (ac->m4ac.ps == 1) {
1750        if (sbr->ps.start) {
1751            ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1752        } else {
1753            memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1754        }
1755        nch = 2;
1756    }
1757
1758    sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
1759                      sbr->data[0].synthesis_filterbank_samples,
1760                      &sbr->data[0].synthesis_filterbank_samples_offset,
1761                      downsampled);
1762    if (nch == 2)
1763        sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
1764                          sbr->data[1].synthesis_filterbank_samples,
1765                          &sbr->data[1].synthesis_filterbank_samples_offset,
1766                          downsampled);
1767}
1768