npf_bpf_comp.c revision 1.9
1/*	$NetBSD: npf_bpf_comp.c,v 1.9 2016/12/26 23:05:05 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * BPF byte-code generation for NPF rules.
34 */
35
36#include <sys/cdefs.h>
37__RCSID("$NetBSD: npf_bpf_comp.c,v 1.9 2016/12/26 23:05:05 christos Exp $");
38
39#include <stdlib.h>
40#include <stdbool.h>
41#include <stddef.h>
42#include <string.h>
43#include <inttypes.h>
44#include <err.h>
45#include <assert.h>
46
47#include <netinet/in.h>
48#include <netinet/in_systm.h>
49#define	__FAVOR_BSD
50#include <netinet/ip.h>
51#include <netinet/ip6.h>
52#include <netinet/udp.h>
53#include <netinet/tcp.h>
54#include <netinet/ip_icmp.h>
55#include <netinet/icmp6.h>
56
57#include <net/bpf.h>
58
59#include "npfctl.h"
60
61/*
62 * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
63 * something other than L4 header offset.  Generally, when BPF_LDX is used.
64 */
65#define	FETCHED_L3		0x01
66#define	CHECKED_L4		0x02
67#define	X_EQ_L4OFF		0x04
68
69struct npf_bpf {
70	/*
71	 * BPF program code, the allocated length (in bytes), the number
72	 * of logical blocks and the flags.
73	 */
74	struct bpf_program	prog;
75	size_t			alen;
76	u_int			nblocks;
77	sa_family_t		af;
78	uint32_t		flags;
79
80	/* The current group offset and block number. */
81	bool			ingroup;
82	u_int			goff;
83	u_int			gblock;
84
85	/* BPF marks, allocated length and the real length. */
86	uint32_t *		marks;
87	size_t			malen;
88	size_t			mlen;
89};
90
91/*
92 * NPF success and failure values to be returned from BPF.
93 */
94#define	NPF_BPF_SUCCESS		((u_int)-1)
95#define	NPF_BPF_FAILURE		0
96
97/*
98 * Magic value to indicate the failure path, which is fixed up on completion.
99 * Note: this is the longest jump offset in BPF, since the offset is one byte.
100 */
101#define	JUMP_MAGIC		0xff
102
103/* Reduce re-allocations by expanding in 64 byte blocks. */
104#define	ALLOC_MASK		(64 - 1)
105#define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
106
107#ifndef IPV6_VERSION
108#define	IPV6_VERSION		0x60
109#endif
110
111npf_bpf_t *
112npfctl_bpf_create(void)
113{
114	return ecalloc(1, sizeof(npf_bpf_t));
115}
116
117static void
118fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
119{
120	struct bpf_program *bp = &ctx->prog;
121
122	for (u_int i = start; i < end; i++) {
123		struct bpf_insn *insn = &bp->bf_insns[i];
124		const u_int fail_off = end - i;
125
126		if (fail_off >= JUMP_MAGIC) {
127			errx(EXIT_FAILURE, "BPF generation error: "
128			    "the number of instructions is over the limit");
129		}
130		if (BPF_CLASS(insn->code) != BPF_JMP) {
131			continue;
132		}
133		if (swap) {
134			uint8_t jt = insn->jt;
135			insn->jt = insn->jf;
136			insn->jf = jt;
137		}
138		if (insn->jt == JUMP_MAGIC)
139			insn->jt = fail_off;
140		if (insn->jf == JUMP_MAGIC)
141			insn->jf = fail_off;
142	}
143}
144
145static void
146add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
147{
148	struct bpf_program *bp = &ctx->prog;
149	size_t offset, len, reqlen;
150
151	/* Note: bf_len is the count of instructions. */
152	offset = bp->bf_len * sizeof(struct bpf_insn);
153	len = count * sizeof(struct bpf_insn);
154
155	/* Ensure the memory buffer for the program. */
156	reqlen = ALLOC_ROUND(offset + len);
157	if (reqlen > ctx->alen) {
158		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
159		ctx->alen = reqlen;
160	}
161
162	/* Add the code block. */
163	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
164	bp->bf_len += count;
165}
166
167static void
168done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
169{
170	size_t reqlen, nargs = m[1];
171
172	if ((len / sizeof(uint32_t) - 2) != nargs) {
173		errx(EXIT_FAILURE, "invalid BPF block description");
174	}
175	reqlen = ALLOC_ROUND(ctx->mlen + len);
176	if (reqlen > ctx->malen) {
177		ctx->marks = erealloc(ctx->marks, reqlen);
178		ctx->malen = reqlen;
179	}
180	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
181	ctx->mlen += len;
182}
183
184static void
185done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
186{
187	done_raw_block(ctx, m, len);
188	ctx->nblocks++;
189}
190
191struct bpf_program *
192npfctl_bpf_complete(npf_bpf_t *ctx)
193{
194	struct bpf_program *bp = &ctx->prog;
195	const u_int retoff = bp->bf_len;
196
197	/* No instructions (optimised out). */
198	if (!bp->bf_len)
199		return NULL;
200
201	/* Add the return fragment (success and failure paths). */
202	struct bpf_insn insns_ret[] = {
203		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
204		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
205	};
206	add_insns(ctx, insns_ret, __arraycount(insns_ret));
207
208	/* Fixup all jumps to the main failure path. */
209	fixup_jumps(ctx, 0, retoff, false);
210
211	return &ctx->prog;
212}
213
214const void *
215npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
216{
217	*len = ctx->mlen;
218	return ctx->marks;
219}
220
221void
222npfctl_bpf_destroy(npf_bpf_t *ctx)
223{
224	free(ctx->prog.bf_insns);
225	free(ctx->marks);
226	free(ctx);
227}
228
229/*
230 * npfctl_bpf_group: begin a logical group.  It merely uses logical
231 * disjunction (OR) for compares within the group.
232 */
233void
234npfctl_bpf_group(npf_bpf_t *ctx)
235{
236	struct bpf_program *bp = &ctx->prog;
237
238	assert(ctx->goff == 0);
239	assert(ctx->gblock == 0);
240
241	ctx->goff = bp->bf_len;
242	ctx->gblock = ctx->nblocks;
243	ctx->ingroup = true;
244}
245
246void
247npfctl_bpf_endgroup(npf_bpf_t *ctx)
248{
249	struct bpf_program *bp = &ctx->prog;
250	const size_t curoff = bp->bf_len;
251
252	/* If there are no blocks or only one - nothing to do. */
253	if ((ctx->nblocks - ctx->gblock) <= 1) {
254		ctx->goff = ctx->gblock = 0;
255		return;
256	}
257
258	/*
259	 * Append a failure return as a fall-through i.e. if there is
260	 * no match within the group.
261	 */
262	struct bpf_insn insns_ret[] = {
263		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
264	};
265	add_insns(ctx, insns_ret, __arraycount(insns_ret));
266
267	/*
268	 * Adjust jump offsets: on match - jump outside the group i.e.
269	 * to the current offset.  Otherwise, jump to the next instruction
270	 * which would lead to the fall-through code above if none matches.
271	 */
272	fixup_jumps(ctx, ctx->goff, curoff, true);
273	ctx->goff = ctx->gblock = 0;
274}
275
276static void
277fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
278{
279	u_int ver;
280
281	switch (af) {
282	case AF_INET:
283		ver = IPVERSION;
284		break;
285	case AF_INET6:
286		ver = IPV6_VERSION >> 4;
287		break;
288	case AF_UNSPEC:
289		ver = 0;
290		break;
291	default:
292		abort();
293	}
294
295	/*
296	 * The memory store is populated with:
297	 * - BPF_MW_IPVER: IP version (4 or 6).
298	 * - BPF_MW_L4OFF: L4 header offset.
299	 * - BPF_MW_L4PROTO: L4 protocol.
300	 */
301	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
302		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
303		const uint8_t jf = ver ? JUMP_MAGIC : 0;
304		bool ingroup = ctx->ingroup;
305
306		/*
307		 * L3 block cannot be inserted in the middle of a group.
308		 * In fact, it never is.  Check and start the group after.
309		 */
310		if (ingroup) {
311			assert(ctx->nblocks == ctx->gblock);
312			npfctl_bpf_endgroup(ctx);
313		}
314
315		/*
316		 * A <- IP version; A == expected-version?
317		 * If no particular version specified, check for non-zero.
318		 */
319		struct bpf_insn insns_af[] = {
320			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
321			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
322		};
323		add_insns(ctx, insns_af, __arraycount(insns_af));
324		ctx->flags |= FETCHED_L3;
325		ctx->af = af;
326
327		if (af) {
328			uint32_t mwords[] = { BM_IPVER, 1, af };
329			done_raw_block(ctx, mwords, sizeof(mwords));
330		}
331		if (ingroup) {
332			npfctl_bpf_group(ctx);
333		}
334
335	} else if (af && af != ctx->af) {
336		errx(EXIT_FAILURE, "address family mismatch");
337	}
338
339	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
340		/* X <- IP header length */
341		struct bpf_insn insns_hlen[] = {
342			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
343		};
344		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
345		ctx->flags |= X_EQ_L4OFF;
346	}
347}
348
349/*
350 * npfctl_bpf_proto: code block to match IP version and L4 protocol.
351 */
352void
353npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
354{
355	assert(af != AF_UNSPEC || proto != -1);
356
357	/* Note: fails if IP version does not match. */
358	fetch_l3(ctx, af, 0);
359	if (proto == -1) {
360		return;
361	}
362
363	struct bpf_insn insns_proto[] = {
364		/* A <- L4 protocol; A == expected-protocol? */
365		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
366		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
367	};
368	add_insns(ctx, insns_proto, __arraycount(insns_proto));
369
370	uint32_t mwords[] = { BM_PROTO, 1, proto };
371	done_block(ctx, mwords, sizeof(mwords));
372	ctx->flags |= CHECKED_L4;
373}
374
375/*
376 * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
377 *
378 * => IP address shall be in the network byte order.
379 */
380void
381npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
382    const npf_addr_t *addr, const npf_netmask_t mask)
383{
384	const uint32_t *awords = (const uint32_t *)addr;
385	u_int nwords, length, maxmask, off;
386
387	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
388	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
389
390	switch (af) {
391	case AF_INET:
392		maxmask = 32;
393		off = (opts & MATCH_SRC) ?
394		    offsetof(struct ip, ip_src) :
395		    offsetof(struct ip, ip_dst);
396		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
397		break;
398	case AF_INET6:
399		maxmask = 128;
400		off = (opts & MATCH_SRC) ?
401		    offsetof(struct ip6_hdr, ip6_src) :
402		    offsetof(struct ip6_hdr, ip6_dst);
403		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
404		break;
405	default:
406		abort();
407	}
408
409	/* Ensure address family. */
410	fetch_l3(ctx, af, 0);
411
412	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
413
414	/* CAUTION: BPF operates in host byte-order. */
415	for (u_int i = 0; i < nwords; i++) {
416		const u_int woff = i * sizeof(uint32_t);
417		uint32_t word = ntohl(awords[i]);
418		uint32_t wordmask;
419
420		if (length >= 32) {
421			/* The mask is a full word - do not apply it. */
422			wordmask = 0;
423			length -= 32;
424		} else if (length) {
425			wordmask = 0xffffffff << (32 - length);
426			length = 0;
427		} else {
428			/* The mask became zero - skip the rest. */
429			break;
430		}
431
432		/* A <- IP address (or one word of it) */
433		struct bpf_insn insns_ip[] = {
434			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
435		};
436		add_insns(ctx, insns_ip, __arraycount(insns_ip));
437
438		/* A <- (A & MASK) */
439		if (wordmask) {
440			struct bpf_insn insns_mask[] = {
441				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
442			};
443			add_insns(ctx, insns_mask, __arraycount(insns_mask));
444		}
445
446		/* A == expected-IP-word ? */
447		struct bpf_insn insns_cmp[] = {
448			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
449		};
450		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
451	}
452
453	uint32_t mwords[] = {
454		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
455		af, mask, awords[0], awords[1], awords[2], awords[3],
456	};
457	done_block(ctx, mwords, sizeof(mwords));
458}
459
460/*
461 * npfctl_bpf_ports: code block to match TCP/UDP port range.
462 *
463 * => Port numbers shall be in the network byte order.
464 */
465void
466npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
467{
468	const u_int sport_off = offsetof(struct udphdr, uh_sport);
469	const u_int dport_off = offsetof(struct udphdr, uh_dport);
470	u_int off;
471
472	/* TCP and UDP port offsets are the same. */
473	assert(sport_off == offsetof(struct tcphdr, th_sport));
474	assert(dport_off == offsetof(struct tcphdr, th_dport));
475	assert(ctx->flags & CHECKED_L4);
476
477	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
478	off = (opts & MATCH_SRC) ? sport_off : dport_off;
479
480	/* X <- IP header length */
481	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
482
483	struct bpf_insn insns_fetch[] = {
484		/* A <- port */
485		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
486	};
487	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
488
489	/* CAUTION: BPF operates in host byte-order. */
490	from = ntohs(from);
491	to = ntohs(to);
492
493	if (from == to) {
494		/* Single port case. */
495		struct bpf_insn insns_port[] = {
496			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
497		};
498		add_insns(ctx, insns_port, __arraycount(insns_port));
499	} else {
500		/* Port range case. */
501		struct bpf_insn insns_range[] = {
502			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
503			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
504		};
505		add_insns(ctx, insns_range, __arraycount(insns_range));
506	}
507
508	uint32_t mwords[] = {
509		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
510	};
511	done_block(ctx, mwords, sizeof(mwords));
512}
513
514/*
515 * npfctl_bpf_tcpfl: code block to match TCP flags.
516 */
517void
518npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
519{
520	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
521	const bool usingmask = tf_mask != tf;
522
523	/* X <- IP header length */
524	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
525	if (checktcp) {
526		const u_int jf = usingmask ? 3 : 2;
527		assert(ctx->ingroup == false);
528
529		/* A <- L4 protocol; A == TCP?  If not, jump out. */
530		struct bpf_insn insns_tcp[] = {
531			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
532			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
533		};
534		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
535	} else {
536		assert(ctx->flags & CHECKED_L4);
537	}
538
539	struct bpf_insn insns_tf[] = {
540		/* A <- TCP flags */
541		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
542	};
543	add_insns(ctx, insns_tf, __arraycount(insns_tf));
544
545	if (usingmask) {
546		/* A <- (A & mask) */
547		struct bpf_insn insns_mask[] = {
548			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
549		};
550		add_insns(ctx, insns_mask, __arraycount(insns_mask));
551	}
552
553	struct bpf_insn insns_cmp[] = {
554		/* A == expected-TCP-flags? */
555		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
556	};
557	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
558
559	if (!checktcp) {
560		uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
561		done_block(ctx, mwords, sizeof(mwords));
562	}
563}
564
565/*
566 * npfctl_bpf_icmp: code block to match ICMP type and/or code.
567 * Note: suitable both for the ICMPv4 and ICMPv6.
568 */
569void
570npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
571{
572	const u_int type_off = offsetof(struct icmp, icmp_type);
573	const u_int code_off = offsetof(struct icmp, icmp_code);
574
575	assert(ctx->flags & CHECKED_L4);
576	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
577	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
578	assert(type != -1 || code != -1);
579
580	/* X <- IP header length */
581	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
582
583	if (type != -1) {
584		struct bpf_insn insns_type[] = {
585			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
586			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
587		};
588		add_insns(ctx, insns_type, __arraycount(insns_type));
589
590		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
591		done_block(ctx, mwords, sizeof(mwords));
592	}
593
594	if (code != -1) {
595		struct bpf_insn insns_code[] = {
596			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
597			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
598		};
599		add_insns(ctx, insns_code, __arraycount(insns_code));
600
601		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
602		done_block(ctx, mwords, sizeof(mwords));
603	}
604}
605
606#define	SRC_FLAG_BIT	(1U << 31)
607
608/*
609 * npfctl_bpf_table: code block to match source/destination IP address
610 * against NPF table specified by ID.
611 */
612void
613npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
614{
615	const bool src = (opts & MATCH_SRC) != 0;
616
617	struct bpf_insn insns_table[] = {
618		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
619		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
620		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
621	};
622	add_insns(ctx, insns_table, __arraycount(insns_table));
623
624	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
625	done_block(ctx, mwords, sizeof(mwords));
626}
627