npf_bpf_comp.c revision 1.8
1/*	$NetBSD: npf_bpf_comp.c,v 1.8 2015/06/08 01:00:43 rmind Exp $	*/
2
3/*-
4 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * BPF byte-code generation for NPF rules.
34 */
35
36#include <sys/cdefs.h>
37__RCSID("$NetBSD: npf_bpf_comp.c,v 1.8 2015/06/08 01:00:43 rmind Exp $");
38
39#include <stdlib.h>
40#include <stdbool.h>
41#include <stddef.h>
42#include <string.h>
43#include <inttypes.h>
44#include <err.h>
45#include <assert.h>
46
47#include <netinet/in.h>
48#include <netinet/in_systm.h>
49#include <netinet/ip.h>
50#include <netinet/ip6.h>
51#include <netinet/udp.h>
52#include <netinet/tcp.h>
53#include <netinet/ip_icmp.h>
54#include <netinet/icmp6.h>
55
56#include <net/bpf.h>
57
58#include "npfctl.h"
59
60/*
61 * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
62 * something other than L4 header offset.  Generally, when BPF_LDX is used.
63 */
64#define	FETCHED_L3		0x01
65#define	CHECKED_L4		0x02
66#define	X_EQ_L4OFF		0x04
67
68struct npf_bpf {
69	/*
70	 * BPF program code, the allocated length (in bytes), the number
71	 * of logical blocks and the flags.
72	 */
73	struct bpf_program	prog;
74	size_t			alen;
75	u_int			nblocks;
76	sa_family_t		af;
77	uint32_t		flags;
78
79	/* The current group offset and block number. */
80	bool			ingroup;
81	u_int			goff;
82	u_int			gblock;
83
84	/* BPF marks, allocated length and the real length. */
85	uint32_t *		marks;
86	size_t			malen;
87	size_t			mlen;
88};
89
90/*
91 * NPF success and failure values to be returned from BPF.
92 */
93#define	NPF_BPF_SUCCESS		((u_int)-1)
94#define	NPF_BPF_FAILURE		0
95
96/*
97 * Magic value to indicate the failure path, which is fixed up on completion.
98 * Note: this is the longest jump offset in BPF, since the offset is one byte.
99 */
100#define	JUMP_MAGIC		0xff
101
102/* Reduce re-allocations by expanding in 64 byte blocks. */
103#define	ALLOC_MASK		(64 - 1)
104#define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
105
106npf_bpf_t *
107npfctl_bpf_create(void)
108{
109	return ecalloc(1, sizeof(npf_bpf_t));
110}
111
112static void
113fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
114{
115	struct bpf_program *bp = &ctx->prog;
116
117	for (u_int i = start; i < end; i++) {
118		struct bpf_insn *insn = &bp->bf_insns[i];
119		const u_int fail_off = end - i;
120
121		if (fail_off >= JUMP_MAGIC) {
122			errx(EXIT_FAILURE, "BPF generation error: "
123			    "the number of instructions is over the limit");
124		}
125		if (BPF_CLASS(insn->code) != BPF_JMP) {
126			continue;
127		}
128		if (swap) {
129			uint8_t jt = insn->jt;
130			insn->jt = insn->jf;
131			insn->jf = jt;
132		}
133		if (insn->jt == JUMP_MAGIC)
134			insn->jt = fail_off;
135		if (insn->jf == JUMP_MAGIC)
136			insn->jf = fail_off;
137	}
138}
139
140static void
141add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
142{
143	struct bpf_program *bp = &ctx->prog;
144	size_t offset, len, reqlen;
145
146	/* Note: bf_len is the count of instructions. */
147	offset = bp->bf_len * sizeof(struct bpf_insn);
148	len = count * sizeof(struct bpf_insn);
149
150	/* Ensure the memory buffer for the program. */
151	reqlen = ALLOC_ROUND(offset + len);
152	if (reqlen > ctx->alen) {
153		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
154		ctx->alen = reqlen;
155	}
156
157	/* Add the code block. */
158	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
159	bp->bf_len += count;
160}
161
162static void
163done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
164{
165	size_t reqlen, nargs = m[1];
166
167	if ((len / sizeof(uint32_t) - 2) != nargs) {
168		errx(EXIT_FAILURE, "invalid BPF block description");
169	}
170	reqlen = ALLOC_ROUND(ctx->mlen + len);
171	if (reqlen > ctx->malen) {
172		ctx->marks = erealloc(ctx->marks, reqlen);
173		ctx->malen = reqlen;
174	}
175	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
176	ctx->mlen += len;
177}
178
179static void
180done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
181{
182	done_raw_block(ctx, m, len);
183	ctx->nblocks++;
184}
185
186struct bpf_program *
187npfctl_bpf_complete(npf_bpf_t *ctx)
188{
189	struct bpf_program *bp = &ctx->prog;
190	const u_int retoff = bp->bf_len;
191
192	/* No instructions (optimised out). */
193	if (!bp->bf_len)
194		return NULL;
195
196	/* Add the return fragment (success and failure paths). */
197	struct bpf_insn insns_ret[] = {
198		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
199		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
200	};
201	add_insns(ctx, insns_ret, __arraycount(insns_ret));
202
203	/* Fixup all jumps to the main failure path. */
204	fixup_jumps(ctx, 0, retoff, false);
205
206	return &ctx->prog;
207}
208
209const void *
210npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
211{
212	*len = ctx->mlen;
213	return ctx->marks;
214}
215
216void
217npfctl_bpf_destroy(npf_bpf_t *ctx)
218{
219	free(ctx->prog.bf_insns);
220	free(ctx->marks);
221	free(ctx);
222}
223
224/*
225 * npfctl_bpf_group: begin a logical group.  It merely uses logical
226 * disjunction (OR) for compares within the group.
227 */
228void
229npfctl_bpf_group(npf_bpf_t *ctx)
230{
231	struct bpf_program *bp = &ctx->prog;
232
233	assert(ctx->goff == 0);
234	assert(ctx->gblock == 0);
235
236	ctx->goff = bp->bf_len;
237	ctx->gblock = ctx->nblocks;
238	ctx->ingroup = true;
239}
240
241void
242npfctl_bpf_endgroup(npf_bpf_t *ctx)
243{
244	struct bpf_program *bp = &ctx->prog;
245	const size_t curoff = bp->bf_len;
246
247	/* If there are no blocks or only one - nothing to do. */
248	if ((ctx->nblocks - ctx->gblock) <= 1) {
249		ctx->goff = ctx->gblock = 0;
250		return;
251	}
252
253	/*
254	 * Append a failure return as a fall-through i.e. if there is
255	 * no match within the group.
256	 */
257	struct bpf_insn insns_ret[] = {
258		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
259	};
260	add_insns(ctx, insns_ret, __arraycount(insns_ret));
261
262	/*
263	 * Adjust jump offsets: on match - jump outside the group i.e.
264	 * to the current offset.  Otherwise, jump to the next instruction
265	 * which would lead to the fall-through code above if none matches.
266	 */
267	fixup_jumps(ctx, ctx->goff, curoff, true);
268	ctx->goff = ctx->gblock = 0;
269}
270
271static void
272fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
273{
274	u_int ver;
275
276	switch (af) {
277	case AF_INET:
278		ver = IPVERSION;
279		break;
280	case AF_INET6:
281		ver = IPV6_VERSION >> 4;
282		break;
283	case AF_UNSPEC:
284		ver = 0;
285		break;
286	default:
287		abort();
288	}
289
290	/*
291	 * The memory store is populated with:
292	 * - BPF_MW_IPVER: IP version (4 or 6).
293	 * - BPF_MW_L4OFF: L4 header offset.
294	 * - BPF_MW_L4PROTO: L4 protocol.
295	 */
296	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
297		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
298		const uint8_t jf = ver ? JUMP_MAGIC : 0;
299		bool ingroup = ctx->ingroup;
300
301		/*
302		 * L3 block cannot be inserted in the middle of a group.
303		 * In fact, it never is.  Check and start the group after.
304		 */
305		if (ingroup) {
306			assert(ctx->nblocks == ctx->gblock);
307			npfctl_bpf_endgroup(ctx);
308		}
309
310		/*
311		 * A <- IP version; A == expected-version?
312		 * If no particular version specified, check for non-zero.
313		 */
314		struct bpf_insn insns_af[] = {
315			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
316			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
317		};
318		add_insns(ctx, insns_af, __arraycount(insns_af));
319		ctx->flags |= FETCHED_L3;
320		ctx->af = af;
321
322		if (af) {
323			uint32_t mwords[] = { BM_IPVER, 1, af };
324			done_raw_block(ctx, mwords, sizeof(mwords));
325		}
326		if (ingroup) {
327			npfctl_bpf_group(ctx);
328		}
329
330	} else if (af && af != ctx->af) {
331		errx(EXIT_FAILURE, "address family mismatch");
332	}
333
334	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
335		/* X <- IP header length */
336		struct bpf_insn insns_hlen[] = {
337			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
338		};
339		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
340		ctx->flags |= X_EQ_L4OFF;
341	}
342}
343
344/*
345 * npfctl_bpf_proto: code block to match IP version and L4 protocol.
346 */
347void
348npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
349{
350	assert(af != AF_UNSPEC || proto != -1);
351
352	/* Note: fails if IP version does not match. */
353	fetch_l3(ctx, af, 0);
354	if (proto == -1) {
355		return;
356	}
357
358	struct bpf_insn insns_proto[] = {
359		/* A <- L4 protocol; A == expected-protocol? */
360		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
361		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
362	};
363	add_insns(ctx, insns_proto, __arraycount(insns_proto));
364
365	uint32_t mwords[] = { BM_PROTO, 1, proto };
366	done_block(ctx, mwords, sizeof(mwords));
367	ctx->flags |= CHECKED_L4;
368}
369
370/*
371 * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
372 *
373 * => IP address shall be in the network byte order.
374 */
375void
376npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
377    const npf_addr_t *addr, const npf_netmask_t mask)
378{
379	const uint32_t *awords = (const uint32_t *)addr;
380	u_int nwords, length, maxmask, off;
381
382	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
383	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
384
385	switch (af) {
386	case AF_INET:
387		maxmask = 32;
388		off = (opts & MATCH_SRC) ?
389		    offsetof(struct ip, ip_src) :
390		    offsetof(struct ip, ip_dst);
391		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
392		break;
393	case AF_INET6:
394		maxmask = 128;
395		off = (opts & MATCH_SRC) ?
396		    offsetof(struct ip6_hdr, ip6_src) :
397		    offsetof(struct ip6_hdr, ip6_dst);
398		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
399		break;
400	default:
401		abort();
402	}
403
404	/* Ensure address family. */
405	fetch_l3(ctx, af, 0);
406
407	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
408
409	/* CAUTION: BPF operates in host byte-order. */
410	for (u_int i = 0; i < nwords; i++) {
411		const u_int woff = i * sizeof(uint32_t);
412		uint32_t word = ntohl(awords[i]);
413		uint32_t wordmask;
414
415		if (length >= 32) {
416			/* The mask is a full word - do not apply it. */
417			wordmask = 0;
418			length -= 32;
419		} else if (length) {
420			wordmask = 0xffffffff << (32 - length);
421			length = 0;
422		} else {
423			/* The mask became zero - skip the rest. */
424			break;
425		}
426
427		/* A <- IP address (or one word of it) */
428		struct bpf_insn insns_ip[] = {
429			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
430		};
431		add_insns(ctx, insns_ip, __arraycount(insns_ip));
432
433		/* A <- (A & MASK) */
434		if (wordmask) {
435			struct bpf_insn insns_mask[] = {
436				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
437			};
438			add_insns(ctx, insns_mask, __arraycount(insns_mask));
439		}
440
441		/* A == expected-IP-word ? */
442		struct bpf_insn insns_cmp[] = {
443			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
444		};
445		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
446	}
447
448	uint32_t mwords[] = {
449		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
450		af, mask, awords[0], awords[1], awords[2], awords[3],
451	};
452	done_block(ctx, mwords, sizeof(mwords));
453}
454
455/*
456 * npfctl_bpf_ports: code block to match TCP/UDP port range.
457 *
458 * => Port numbers shall be in the network byte order.
459 */
460void
461npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
462{
463	const u_int sport_off = offsetof(struct udphdr, uh_sport);
464	const u_int dport_off = offsetof(struct udphdr, uh_dport);
465	u_int off;
466
467	/* TCP and UDP port offsets are the same. */
468	assert(sport_off == offsetof(struct tcphdr, th_sport));
469	assert(dport_off == offsetof(struct tcphdr, th_dport));
470	assert(ctx->flags & CHECKED_L4);
471
472	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
473	off = (opts & MATCH_SRC) ? sport_off : dport_off;
474
475	/* X <- IP header length */
476	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
477
478	struct bpf_insn insns_fetch[] = {
479		/* A <- port */
480		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
481	};
482	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
483
484	/* CAUTION: BPF operates in host byte-order. */
485	from = ntohs(from);
486	to = ntohs(to);
487
488	if (from == to) {
489		/* Single port case. */
490		struct bpf_insn insns_port[] = {
491			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
492		};
493		add_insns(ctx, insns_port, __arraycount(insns_port));
494	} else {
495		/* Port range case. */
496		struct bpf_insn insns_range[] = {
497			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
498			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
499		};
500		add_insns(ctx, insns_range, __arraycount(insns_range));
501	}
502
503	uint32_t mwords[] = {
504		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
505	};
506	done_block(ctx, mwords, sizeof(mwords));
507}
508
509/*
510 * npfctl_bpf_tcpfl: code block to match TCP flags.
511 */
512void
513npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
514{
515	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
516	const bool usingmask = tf_mask != tf;
517
518	/* X <- IP header length */
519	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
520	if (checktcp) {
521		const u_int jf = usingmask ? 3 : 2;
522		assert(ctx->ingroup == false);
523
524		/* A <- L4 protocol; A == TCP?  If not, jump out. */
525		struct bpf_insn insns_tcp[] = {
526			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
527			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
528		};
529		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
530	} else {
531		assert(ctx->flags & CHECKED_L4);
532	}
533
534	struct bpf_insn insns_tf[] = {
535		/* A <- TCP flags */
536		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
537	};
538	add_insns(ctx, insns_tf, __arraycount(insns_tf));
539
540	if (usingmask) {
541		/* A <- (A & mask) */
542		struct bpf_insn insns_mask[] = {
543			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
544		};
545		add_insns(ctx, insns_mask, __arraycount(insns_mask));
546	}
547
548	struct bpf_insn insns_cmp[] = {
549		/* A == expected-TCP-flags? */
550		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
551	};
552	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
553
554	if (!checktcp) {
555		uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
556		done_block(ctx, mwords, sizeof(mwords));
557	}
558}
559
560/*
561 * npfctl_bpf_icmp: code block to match ICMP type and/or code.
562 * Note: suitable both for the ICMPv4 and ICMPv6.
563 */
564void
565npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
566{
567	const u_int type_off = offsetof(struct icmp, icmp_type);
568	const u_int code_off = offsetof(struct icmp, icmp_code);
569
570	assert(ctx->flags & CHECKED_L4);
571	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
572	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
573	assert(type != -1 || code != -1);
574
575	/* X <- IP header length */
576	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
577
578	if (type != -1) {
579		struct bpf_insn insns_type[] = {
580			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
581			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
582		};
583		add_insns(ctx, insns_type, __arraycount(insns_type));
584
585		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
586		done_block(ctx, mwords, sizeof(mwords));
587	}
588
589	if (code != -1) {
590		struct bpf_insn insns_code[] = {
591			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
592			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
593		};
594		add_insns(ctx, insns_code, __arraycount(insns_code));
595
596		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
597		done_block(ctx, mwords, sizeof(mwords));
598	}
599}
600
601#define	SRC_FLAG_BIT	(1U << 31)
602
603/*
604 * npfctl_bpf_table: code block to match source/destination IP address
605 * against NPF table specified by ID.
606 */
607void
608npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
609{
610	const bool src = (opts & MATCH_SRC) != 0;
611
612	struct bpf_insn insns_table[] = {
613		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
614		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
615		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
616	};
617	add_insns(ctx, insns_table, __arraycount(insns_table));
618
619	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
620	done_block(ctx, mwords, sizeof(mwords));
621}
622