npf_bpf_comp.c revision 1.7
1/*	$NetBSD: npf_bpf_comp.c,v 1.7 2014/06/29 00:05:24 rmind Exp $	*/
2
3/*-
4 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * BPF byte-code generation for NPF rules.
34 */
35
36#include <sys/cdefs.h>
37__RCSID("$NetBSD: npf_bpf_comp.c,v 1.7 2014/06/29 00:05:24 rmind Exp $");
38
39#include <stdlib.h>
40#include <stdbool.h>
41#include <stddef.h>
42#include <string.h>
43#include <inttypes.h>
44#include <err.h>
45#include <assert.h>
46
47#include <netinet/in.h>
48#include <netinet/in_systm.h>
49#include <netinet/ip.h>
50#include <netinet/ip6.h>
51#include <netinet/udp.h>
52#include <netinet/tcp.h>
53#include <netinet/ip_icmp.h>
54#include <netinet/icmp6.h>
55
56#include <net/bpf.h>
57
58#include "npfctl.h"
59
60/*
61 * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
62 * something other than L4 header offset.  Generally, when BPF_LDX is used.
63 */
64#define	FETCHED_L3		0x01
65#define	CHECKED_L4		0x02
66#define	X_EQ_L4OFF		0x04
67
68struct npf_bpf {
69	/*
70	 * BPF program code, the allocated length (in bytes), the number
71	 * of logical blocks and the flags.
72	 */
73	struct bpf_program	prog;
74	size_t			alen;
75	u_int			nblocks;
76	sa_family_t		af;
77	uint32_t		flags;
78
79	/* The current group offset and block number. */
80	bool			ingroup;
81	u_int			goff;
82	u_int			gblock;
83
84	/* BPF marks, allocated length and the real length. */
85	uint32_t *		marks;
86	size_t			malen;
87	size_t			mlen;
88};
89
90/*
91 * NPF success and failure values to be returned from BPF.
92 */
93#define	NPF_BPF_SUCCESS		((u_int)-1)
94#define	NPF_BPF_FAILURE		0
95
96/*
97 * Magic value to indicate the failure path, which is fixed up on completion.
98 * Note: this is the longest jump offset in BPF, since the offset is one byte.
99 */
100#define	JUMP_MAGIC		0xff
101
102/* Reduce re-allocations by expanding in 64 byte blocks. */
103#define	ALLOC_MASK		(64 - 1)
104#define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
105
106npf_bpf_t *
107npfctl_bpf_create(void)
108{
109	return ecalloc(1, sizeof(npf_bpf_t));
110}
111
112static void
113fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
114{
115	struct bpf_program *bp = &ctx->prog;
116
117	for (u_int i = start; i < end; i++) {
118		struct bpf_insn *insn = &bp->bf_insns[i];
119		const u_int fail_off = end - i;
120
121		if (fail_off >= JUMP_MAGIC) {
122			errx(EXIT_FAILURE, "BPF generation error: "
123			    "the number of instructions is over the limit");
124		}
125		if (BPF_CLASS(insn->code) != BPF_JMP) {
126			continue;
127		}
128		if (swap) {
129			uint8_t jt = insn->jt;
130			insn->jt = insn->jf;
131			insn->jf = jt;
132		}
133		if (insn->jt == JUMP_MAGIC)
134			insn->jt = fail_off;
135		if (insn->jf == JUMP_MAGIC)
136			insn->jf = fail_off;
137	}
138}
139
140static void
141add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
142{
143	struct bpf_program *bp = &ctx->prog;
144	size_t offset, len, reqlen;
145
146	/* Note: bf_len is the count of instructions. */
147	offset = bp->bf_len * sizeof(struct bpf_insn);
148	len = count * sizeof(struct bpf_insn);
149
150	/* Ensure the memory buffer for the program. */
151	reqlen = ALLOC_ROUND(offset + len);
152	if (reqlen > ctx->alen) {
153		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
154		ctx->alen = reqlen;
155	}
156
157	/* Add the code block. */
158	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
159	bp->bf_len += count;
160}
161
162static void
163done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
164{
165	size_t reqlen, nargs = m[1];
166
167	if ((len / sizeof(uint32_t) - 2) != nargs) {
168		errx(EXIT_FAILURE, "invalid BPF block description");
169	}
170	reqlen = ALLOC_ROUND(ctx->mlen + len);
171	if (reqlen > ctx->malen) {
172		ctx->marks = erealloc(ctx->marks, reqlen);
173		ctx->malen = reqlen;
174	}
175	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
176	ctx->mlen += len;
177}
178
179static void
180done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
181{
182	done_raw_block(ctx, m, len);
183	ctx->nblocks++;
184}
185
186struct bpf_program *
187npfctl_bpf_complete(npf_bpf_t *ctx)
188{
189	struct bpf_program *bp = &ctx->prog;
190	const u_int retoff = bp->bf_len;
191
192	/* Add the return fragment (success and failure paths). */
193	struct bpf_insn insns_ret[] = {
194		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
195		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
196	};
197	add_insns(ctx, insns_ret, __arraycount(insns_ret));
198
199	/* Fixup all jumps to the main failure path. */
200	fixup_jumps(ctx, 0, retoff, false);
201
202	return &ctx->prog;
203}
204
205const void *
206npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
207{
208	*len = ctx->mlen;
209	return ctx->marks;
210}
211
212void
213npfctl_bpf_destroy(npf_bpf_t *ctx)
214{
215	free(ctx->prog.bf_insns);
216	free(ctx->marks);
217	free(ctx);
218}
219
220/*
221 * npfctl_bpf_group: begin a logical group.  It merely uses logical
222 * disjunction (OR) for compares within the group.
223 */
224void
225npfctl_bpf_group(npf_bpf_t *ctx)
226{
227	struct bpf_program *bp = &ctx->prog;
228
229	assert(ctx->goff == 0);
230	assert(ctx->gblock == 0);
231
232	ctx->goff = bp->bf_len;
233	ctx->gblock = ctx->nblocks;
234	ctx->ingroup = true;
235}
236
237void
238npfctl_bpf_endgroup(npf_bpf_t *ctx)
239{
240	struct bpf_program *bp = &ctx->prog;
241	const size_t curoff = bp->bf_len;
242
243	/* If there are no blocks or only one - nothing to do. */
244	if ((ctx->nblocks - ctx->gblock) <= 1) {
245		ctx->goff = ctx->gblock = 0;
246		return;
247	}
248
249	/*
250	 * Append a failure return as a fall-through i.e. if there is
251	 * no match within the group.
252	 */
253	struct bpf_insn insns_ret[] = {
254		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
255	};
256	add_insns(ctx, insns_ret, __arraycount(insns_ret));
257
258	/*
259	 * Adjust jump offsets: on match - jump outside the group i.e.
260	 * to the current offset.  Otherwise, jump to the next instruction
261	 * which would lead to the fall-through code above if none matches.
262	 */
263	fixup_jumps(ctx, ctx->goff, curoff, true);
264	ctx->goff = ctx->gblock = 0;
265}
266
267static void
268fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
269{
270	u_int ver;
271
272	switch (af) {
273	case AF_INET:
274		ver = IPVERSION;
275		break;
276	case AF_INET6:
277		ver = IPV6_VERSION >> 4;
278		break;
279	case AF_UNSPEC:
280		ver = 0;
281		break;
282	default:
283		abort();
284	}
285
286	/*
287	 * The memory store is populated with:
288	 * - BPF_MW_IPVER: IP version (4 or 6).
289	 * - BPF_MW_L4OFF: L4 header offset.
290	 * - BPF_MW_L4PROTO: L4 protocol.
291	 */
292	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
293		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
294		const uint8_t jf = ver ? JUMP_MAGIC : 0;
295		bool ingroup = ctx->ingroup;
296
297		/*
298		 * L3 block cannot be inserted in the middle of a group.
299		 * In fact, it never is.  Check and start the group after.
300		 */
301		if (ingroup) {
302			assert(ctx->nblocks == ctx->gblock);
303			npfctl_bpf_endgroup(ctx);
304		}
305
306		/*
307		 * A <- IP version; A == expected-version?
308		 * If no particular version specified, check for non-zero.
309		 */
310		struct bpf_insn insns_af[] = {
311			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
312			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
313		};
314		add_insns(ctx, insns_af, __arraycount(insns_af));
315		ctx->flags |= FETCHED_L3;
316		ctx->af = af;
317
318		if (af) {
319			uint32_t mwords[] = { BM_IPVER, 1, af };
320			done_raw_block(ctx, mwords, sizeof(mwords));
321		}
322		if (ingroup) {
323			npfctl_bpf_group(ctx);
324		}
325
326	} else if (af && af != ctx->af) {
327		errx(EXIT_FAILURE, "address family mismatch");
328	}
329
330	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
331		/* X <- IP header length */
332		struct bpf_insn insns_hlen[] = {
333			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
334		};
335		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
336		ctx->flags |= X_EQ_L4OFF;
337	}
338}
339
340/*
341 * npfctl_bpf_proto: code block to match IP version and L4 protocol.
342 */
343void
344npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
345{
346	assert(af != AF_UNSPEC || proto != -1);
347
348	/* Note: fails if IP version does not match. */
349	fetch_l3(ctx, af, 0);
350	if (proto == -1) {
351		return;
352	}
353
354	struct bpf_insn insns_proto[] = {
355		/* A <- L4 protocol; A == expected-protocol? */
356		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
357		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
358	};
359	add_insns(ctx, insns_proto, __arraycount(insns_proto));
360
361	uint32_t mwords[] = { BM_PROTO, 1, proto };
362	done_block(ctx, mwords, sizeof(mwords));
363	ctx->flags |= CHECKED_L4;
364}
365
366/*
367 * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
368 *
369 * => IP address shall be in the network byte order.
370 */
371void
372npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
373    const npf_addr_t *addr, const npf_netmask_t mask)
374{
375	const uint32_t *awords = (const uint32_t *)addr;
376	u_int nwords, length, maxmask, off;
377
378	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
379	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
380
381	switch (af) {
382	case AF_INET:
383		maxmask = 32;
384		off = (opts & MATCH_SRC) ?
385		    offsetof(struct ip, ip_src) :
386		    offsetof(struct ip, ip_dst);
387		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
388		break;
389	case AF_INET6:
390		maxmask = 128;
391		off = (opts & MATCH_SRC) ?
392		    offsetof(struct ip6_hdr, ip6_src) :
393		    offsetof(struct ip6_hdr, ip6_dst);
394		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
395		break;
396	default:
397		abort();
398	}
399
400	/* Ensure address family. */
401	fetch_l3(ctx, af, 0);
402
403	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
404
405	/* CAUTION: BPF operates in host byte-order. */
406	for (u_int i = 0; i < nwords; i++) {
407		const u_int woff = i * sizeof(uint32_t);
408		uint32_t word = ntohl(awords[i]);
409		uint32_t wordmask;
410
411		if (length >= 32) {
412			/* The mask is a full word - do not apply it. */
413			wordmask = 0;
414			length -= 32;
415		} else if (length) {
416			wordmask = 0xffffffff << (32 - length);
417			length = 0;
418		} else {
419			/* The mask became zero - skip the rest. */
420			break;
421		}
422
423		/* A <- IP address (or one word of it) */
424		struct bpf_insn insns_ip[] = {
425			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
426		};
427		add_insns(ctx, insns_ip, __arraycount(insns_ip));
428
429		/* A <- (A & MASK) */
430		if (wordmask) {
431			struct bpf_insn insns_mask[] = {
432				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
433			};
434			add_insns(ctx, insns_mask, __arraycount(insns_mask));
435		}
436
437		/* A == expected-IP-word ? */
438		struct bpf_insn insns_cmp[] = {
439			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
440		};
441		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
442	}
443
444	uint32_t mwords[] = {
445		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
446		af, mask, awords[0], awords[1], awords[2], awords[3],
447	};
448	done_block(ctx, mwords, sizeof(mwords));
449}
450
451/*
452 * npfctl_bpf_ports: code block to match TCP/UDP port range.
453 *
454 * => Port numbers shall be in the network byte order.
455 */
456void
457npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
458{
459	const u_int sport_off = offsetof(struct udphdr, uh_sport);
460	const u_int dport_off = offsetof(struct udphdr, uh_dport);
461	u_int off;
462
463	/* TCP and UDP port offsets are the same. */
464	assert(sport_off == offsetof(struct tcphdr, th_sport));
465	assert(dport_off == offsetof(struct tcphdr, th_dport));
466	assert(ctx->flags & CHECKED_L4);
467
468	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
469	off = (opts & MATCH_SRC) ? sport_off : dport_off;
470
471	/* X <- IP header length */
472	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
473
474	struct bpf_insn insns_fetch[] = {
475		/* A <- port */
476		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
477	};
478	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
479
480	/* CAUTION: BPF operates in host byte-order. */
481	from = ntohs(from);
482	to = ntohs(to);
483
484	if (from == to) {
485		/* Single port case. */
486		struct bpf_insn insns_port[] = {
487			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
488		};
489		add_insns(ctx, insns_port, __arraycount(insns_port));
490	} else {
491		/* Port range case. */
492		struct bpf_insn insns_range[] = {
493			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
494			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
495		};
496		add_insns(ctx, insns_range, __arraycount(insns_range));
497	}
498
499	uint32_t mwords[] = {
500		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
501	};
502	done_block(ctx, mwords, sizeof(mwords));
503}
504
505/*
506 * npfctl_bpf_tcpfl: code block to match TCP flags.
507 */
508void
509npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
510{
511	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
512	const bool usingmask = tf_mask != tf;
513
514	/* X <- IP header length */
515	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
516	if (checktcp) {
517		const u_int jf = usingmask ? 3 : 2;
518		assert(ctx->ingroup == false);
519
520		/* A <- L4 protocol; A == TCP?  If not, jump out. */
521		struct bpf_insn insns_tcp[] = {
522			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
523			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
524		};
525		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
526	} else {
527		assert(ctx->flags & CHECKED_L4);
528	}
529
530	struct bpf_insn insns_tf[] = {
531		/* A <- TCP flags */
532		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
533	};
534	add_insns(ctx, insns_tf, __arraycount(insns_tf));
535
536	if (usingmask) {
537		/* A <- (A & mask) */
538		struct bpf_insn insns_mask[] = {
539			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
540		};
541		add_insns(ctx, insns_mask, __arraycount(insns_mask));
542	}
543
544	struct bpf_insn insns_cmp[] = {
545		/* A == expected-TCP-flags? */
546		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
547	};
548	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
549
550	if (!checktcp) {
551		uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
552		done_block(ctx, mwords, sizeof(mwords));
553	}
554}
555
556/*
557 * npfctl_bpf_icmp: code block to match ICMP type and/or code.
558 * Note: suitable both for the ICMPv4 and ICMPv6.
559 */
560void
561npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
562{
563	const u_int type_off = offsetof(struct icmp, icmp_type);
564	const u_int code_off = offsetof(struct icmp, icmp_code);
565
566	assert(ctx->flags & CHECKED_L4);
567	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
568	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
569	assert(type != -1 || code != -1);
570
571	/* X <- IP header length */
572	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
573
574	if (type != -1) {
575		struct bpf_insn insns_type[] = {
576			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
577			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
578		};
579		add_insns(ctx, insns_type, __arraycount(insns_type));
580
581		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
582		done_block(ctx, mwords, sizeof(mwords));
583	}
584
585	if (code != -1) {
586		struct bpf_insn insns_code[] = {
587			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
588			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
589		};
590		add_insns(ctx, insns_code, __arraycount(insns_code));
591
592		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
593		done_block(ctx, mwords, sizeof(mwords));
594	}
595}
596
597#define	SRC_FLAG_BIT	(1U << 31)
598
599/*
600 * npfctl_bpf_table: code block to match source/destination IP address
601 * against NPF table specified by ID.
602 */
603void
604npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
605{
606	const bool src = (opts & MATCH_SRC) != 0;
607
608	struct bpf_insn insns_table[] = {
609		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
610		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
611		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
612	};
613	add_insns(ctx, insns_table, __arraycount(insns_table));
614
615	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
616	done_block(ctx, mwords, sizeof(mwords));
617}
618