npf_bpf_comp.c revision 1.5
1/*	$NetBSD: npf_bpf_comp.c,v 1.5 2014/05/15 02:34:29 rmind Exp $	*/
2
3/*-
4 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * BPF byte-code generation for NPF rules.
34 */
35
36#include <sys/cdefs.h>
37__RCSID("$NetBSD: npf_bpf_comp.c,v 1.5 2014/05/15 02:34:29 rmind Exp $");
38
39#include <stdlib.h>
40#include <stdbool.h>
41#include <stddef.h>
42#include <string.h>
43#include <inttypes.h>
44#include <err.h>
45#include <assert.h>
46
47#include <netinet/in.h>
48#include <netinet/in_systm.h>
49#include <netinet/ip.h>
50#include <netinet/ip6.h>
51#include <netinet/udp.h>
52#include <netinet/tcp.h>
53#include <netinet/ip_icmp.h>
54#include <netinet/icmp6.h>
55
56#include <net/bpf.h>
57
58#include "npfctl.h"
59
60/*
61 * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
62 * something other than L4 header offset.  Generally, when BPF_LDX is used.
63 */
64#define	FETCHED_L3		0x01
65#define	X_EQ_L4OFF		0x02
66
67struct npf_bpf {
68	/*
69	 * BPF program code, the allocated length (in bytes), the number
70	 * of logical blocks and the flags.
71	 */
72	struct bpf_program	prog;
73	size_t			alen;
74	u_int			nblocks;
75	sa_family_t		af;
76	uint32_t		flags;
77
78	/* The current group offset and block number. */
79	bool			ingroup;
80	u_int			goff;
81	u_int			gblock;
82
83	/* BPF marks, allocated length and the real length. */
84	uint32_t *		marks;
85	size_t			malen;
86	size_t			mlen;
87};
88
89/*
90 * NPF success and failure values to be returned from BPF.
91 */
92#define	NPF_BPF_SUCCESS		((u_int)-1)
93#define	NPF_BPF_FAILURE		0
94
95/*
96 * Magic value to indicate the failure path, which is fixed up on completion.
97 * Note: this is the longest jump offset in BPF, since the offset is one byte.
98 */
99#define	JUMP_MAGIC		0xff
100
101/* Reduce re-allocations by expanding in 64 byte blocks. */
102#define	ALLOC_MASK		(64 - 1)
103#define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
104
105npf_bpf_t *
106npfctl_bpf_create(void)
107{
108	return ecalloc(1, sizeof(npf_bpf_t));
109}
110
111static void
112fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
113{
114	struct bpf_program *bp = &ctx->prog;
115
116	for (u_int i = start; i < end; i++) {
117		struct bpf_insn *insn = &bp->bf_insns[i];
118		const u_int fail_off = end - i;
119
120		if (fail_off >= JUMP_MAGIC) {
121			errx(EXIT_FAILURE, "BPF generation error: "
122			    "the number of instructions is over the limit");
123		}
124		if (BPF_CLASS(insn->code) != BPF_JMP) {
125			continue;
126		}
127		if (swap) {
128			uint8_t jt = insn->jt;
129			insn->jt = insn->jf;
130			insn->jf = jt;
131		}
132		if (insn->jt == JUMP_MAGIC)
133			insn->jt = fail_off;
134		if (insn->jf == JUMP_MAGIC)
135			insn->jf = fail_off;
136	}
137}
138
139static void
140add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
141{
142	struct bpf_program *bp = &ctx->prog;
143	size_t offset, len, reqlen;
144
145	/* Note: bf_len is the count of instructions. */
146	offset = bp->bf_len * sizeof(struct bpf_insn);
147	len = count * sizeof(struct bpf_insn);
148
149	/* Ensure the memory buffer for the program. */
150	reqlen = ALLOC_ROUND(offset + len);
151	if (reqlen > ctx->alen) {
152		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
153		ctx->alen = reqlen;
154	}
155
156	/* Add the code block. */
157	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
158	bp->bf_len += count;
159}
160
161static void
162done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
163{
164	size_t reqlen, nargs = m[1];
165
166	if ((len / sizeof(uint32_t) - 2) != nargs) {
167		errx(EXIT_FAILURE, "invalid BPF block description");
168	}
169	reqlen = ALLOC_ROUND(ctx->mlen + len);
170	if (reqlen > ctx->malen) {
171		ctx->marks = erealloc(ctx->marks, reqlen);
172		ctx->malen = reqlen;
173	}
174	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
175	ctx->mlen += len;
176}
177
178static void
179done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
180{
181	done_raw_block(ctx, m, len);
182	ctx->nblocks++;
183}
184
185struct bpf_program *
186npfctl_bpf_complete(npf_bpf_t *ctx)
187{
188	struct bpf_program *bp = &ctx->prog;
189	const u_int retoff = bp->bf_len;
190
191	/* Add the return fragment (success and failure paths). */
192	struct bpf_insn insns_ret[] = {
193		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
194		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
195	};
196	add_insns(ctx, insns_ret, __arraycount(insns_ret));
197
198	/* Fixup all jumps to the main failure path. */
199	fixup_jumps(ctx, 0, retoff, false);
200
201	return &ctx->prog;
202}
203
204const void *
205npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
206{
207	*len = ctx->mlen;
208	return ctx->marks;
209}
210
211void
212npfctl_bpf_destroy(npf_bpf_t *ctx)
213{
214	free(ctx->prog.bf_insns);
215	free(ctx->marks);
216	free(ctx);
217}
218
219/*
220 * npfctl_bpf_group: begin a logical group.  It merely uses logical
221 * disjunction (OR) for compares within the group.
222 */
223void
224npfctl_bpf_group(npf_bpf_t *ctx)
225{
226	struct bpf_program *bp = &ctx->prog;
227
228	assert(ctx->goff == 0);
229	assert(ctx->gblock == 0);
230
231	ctx->goff = bp->bf_len;
232	ctx->gblock = ctx->nblocks;
233	ctx->ingroup = true;
234}
235
236void
237npfctl_bpf_endgroup(npf_bpf_t *ctx)
238{
239	struct bpf_program *bp = &ctx->prog;
240	const size_t curoff = bp->bf_len;
241
242	/* If there are no blocks or only one - nothing to do. */
243	if ((ctx->nblocks - ctx->gblock) <= 1) {
244		ctx->goff = ctx->gblock = 0;
245		return;
246	}
247
248	/*
249	 * Append a failure return as a fall-through i.e. if there is
250	 * no match within the group.
251	 */
252	struct bpf_insn insns_ret[] = {
253		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
254	};
255	add_insns(ctx, insns_ret, __arraycount(insns_ret));
256
257	/*
258	 * Adjust jump offsets: on match - jump outside the group i.e.
259	 * to the current offset.  Otherwise, jump to the next instruction
260	 * which would lead to the fall-through code above if none matches.
261	 */
262	fixup_jumps(ctx, ctx->goff, curoff, true);
263	ctx->goff = ctx->gblock = 0;
264}
265
266static void
267fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
268{
269	u_int ver;
270
271	switch (af) {
272	case AF_INET:
273		ver = IPVERSION;
274		break;
275	case AF_INET6:
276		ver = IPV6_VERSION >> 4;
277		break;
278	case AF_UNSPEC:
279		ver = 0;
280		break;
281	default:
282		abort();
283	}
284
285	/*
286	 * Fetch L3 information.  The coprocessor populates the following
287	 * words in the scratch memory store:
288	 * - BPF_MW_IPVER: IP version (4 or 6).
289	 * - BPF_MW_L4OFF: L4 header offset.
290	 * - BPF_MW_L4PROTO: L4 protocol.
291	 */
292	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
293		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
294		const uint8_t jf = ver ? JUMP_MAGIC : 0;
295		bool ingroup = ctx->ingroup;
296
297		/*
298		 * L3 block cannot be inserted in the middle of a group.
299		 * In fact, it never is.  Check and start the group after.
300		 */
301		if (ingroup) {
302			assert(ctx->nblocks == ctx->gblock);
303			npfctl_bpf_endgroup(ctx);
304		}
305
306		/*
307		 * A <- IP version; A == expected-version?
308		 * If no particular version specified, check for non-zero.
309		 */
310		if ((ctx->flags & FETCHED_L3) == 0) {
311			struct bpf_insn insns_l3[] = {
312				BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_L3),
313				BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
314			};
315			add_insns(ctx, insns_l3, __arraycount(insns_l3));
316			ctx->flags |= FETCHED_L3;
317		} else {
318			/* IP version is already fetched in BPF_MW_IPVER. */
319			struct bpf_insn insns_af[] = {
320				BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
321				BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
322			};
323			add_insns(ctx, insns_af, __arraycount(insns_af));
324		}
325		ctx->af = af;
326
327		if (af) {
328			uint32_t mwords[] = { BM_IPVER, 1, af };
329			done_raw_block(ctx, mwords, sizeof(mwords));
330		}
331		if (ingroup) {
332			npfctl_bpf_group(ctx);
333		}
334
335	} else if (af && af != ctx->af) {
336		errx(EXIT_FAILURE, "address family mismatch");
337	}
338
339	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
340		/* X <- IP header length */
341		struct bpf_insn insns_hlen[] = {
342			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
343		};
344		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
345		ctx->flags |= X_EQ_L4OFF;
346	}
347}
348
349/*
350 * npfctl_bpf_proto: code block to match IP version and L4 protocol.
351 */
352void
353npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
354{
355	assert(af != AF_UNSPEC || proto != -1);
356
357	/* Note: fails if IP version does not match. */
358	fetch_l3(ctx, af, 0);
359	if (proto == -1) {
360		return;
361	}
362
363	struct bpf_insn insns_proto[] = {
364		/* A <- L4 protocol; A == expected-protocol? */
365		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
366		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
367	};
368	add_insns(ctx, insns_proto, __arraycount(insns_proto));
369
370	uint32_t mwords[] = { BM_PROTO, 1, proto };
371	done_block(ctx, mwords, sizeof(mwords));
372}
373
374/*
375 * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
376 *
377 * => IP address shall be in the network byte order.
378 */
379void
380npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
381    const npf_addr_t *addr, const npf_netmask_t mask)
382{
383	const uint32_t *awords = (const uint32_t *)addr;
384	u_int nwords, length, maxmask, off;
385
386	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
387	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
388
389	switch (af) {
390	case AF_INET:
391		maxmask = 32;
392		off = (opts & MATCH_SRC) ?
393		    offsetof(struct ip, ip_src) :
394		    offsetof(struct ip, ip_dst);
395		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
396		break;
397	case AF_INET6:
398		maxmask = 128;
399		off = (opts & MATCH_SRC) ?
400		    offsetof(struct ip6_hdr, ip6_src) :
401		    offsetof(struct ip6_hdr, ip6_dst);
402		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
403		break;
404	default:
405		abort();
406	}
407
408	/* Ensure address family. */
409	fetch_l3(ctx, af, 0);
410
411	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
412
413	/* CAUTION: BPF operates in host byte-order. */
414	for (u_int i = 0; i < nwords; i++) {
415		const u_int woff = i * sizeof(uint32_t);
416		uint32_t word = ntohl(awords[i]);
417		uint32_t wordmask;
418
419		if (length >= 32) {
420			/* The mask is a full word - do not apply it. */
421			wordmask = 0;
422			length -= 32;
423		} else if (length) {
424			wordmask = 0xffffffff << (32 - length);
425			length = 0;
426		} else {
427			/* The mask became zero - skip the rest. */
428			break;
429		}
430
431		/* A <- IP address (or one word of it) */
432		struct bpf_insn insns_ip[] = {
433			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
434		};
435		add_insns(ctx, insns_ip, __arraycount(insns_ip));
436
437		/* A <- (A & MASK) */
438		if (wordmask) {
439			struct bpf_insn insns_mask[] = {
440				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
441			};
442			add_insns(ctx, insns_mask, __arraycount(insns_mask));
443		}
444
445		/* A == expected-IP-word ? */
446		struct bpf_insn insns_cmp[] = {
447			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
448		};
449		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
450	}
451
452	uint32_t mwords[] = {
453		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
454		af, mask, awords[0], awords[1], awords[2], awords[3],
455	};
456	done_block(ctx, mwords, sizeof(mwords));
457}
458
459/*
460 * npfctl_bpf_ports: code block to match TCP/UDP port range.
461 *
462 * => Port numbers shall be in the network byte order.
463 */
464void
465npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
466{
467	const u_int sport_off = offsetof(struct udphdr, uh_sport);
468	const u_int dport_off = offsetof(struct udphdr, uh_dport);
469	u_int off;
470
471	/* TCP and UDP port offsets are the same. */
472	assert(sport_off == offsetof(struct tcphdr, th_sport));
473	assert(dport_off == offsetof(struct tcphdr, th_dport));
474
475	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
476	off = (opts & MATCH_SRC) ? sport_off : dport_off;
477
478	/* X <- IP header length */
479	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
480
481	struct bpf_insn insns_fetch[] = {
482		/* A <- port */
483		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
484	};
485	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
486
487	/* CAUTION: BPF operates in host byte-order. */
488	from = ntohs(from);
489	to = ntohs(to);
490
491	if (from == to) {
492		/* Single port case. */
493		struct bpf_insn insns_port[] = {
494			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
495		};
496		add_insns(ctx, insns_port, __arraycount(insns_port));
497	} else {
498		/* Port range case. */
499		struct bpf_insn insns_range[] = {
500			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
501			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
502		};
503		add_insns(ctx, insns_range, __arraycount(insns_range));
504	}
505
506	uint32_t mwords[] = {
507		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
508	};
509	done_block(ctx, mwords, sizeof(mwords));
510}
511
512/*
513 * npfctl_bpf_tcpfl: code block to match TCP flags.
514 */
515void
516npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
517{
518	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
519
520	/* X <- IP header length */
521	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
522	if (checktcp) {
523		const u_int jf = (tf_mask != tf) ? 3 : 2;
524		assert(ctx->ingroup == false);
525
526		/* A <- L4 protocol; A == TCP?  If not, jump out. */
527		struct bpf_insn insns_tcp[] = {
528			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
529			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
530		};
531		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
532	}
533
534	struct bpf_insn insns_tf[] = {
535		/* A <- TCP flags */
536		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
537	};
538	add_insns(ctx, insns_tf, __arraycount(insns_tf));
539
540	if (tf_mask != tf) {
541		/* A <- (A & mask) */
542		struct bpf_insn insns_mask[] = {
543			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
544		};
545		add_insns(ctx, insns_mask, __arraycount(insns_mask));
546	}
547
548	struct bpf_insn insns_cmp[] = {
549		/* A == expected-TCP-flags? */
550		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
551	};
552	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
553
554	if (!checktcp) {
555		uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
556		done_block(ctx, mwords, sizeof(mwords));
557	}
558}
559
560/*
561 * npfctl_bpf_icmp: code block to match ICMP type and/or code.
562 * Note: suitable both for the ICMPv4 and ICMPv6.
563 */
564void
565npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
566{
567	const u_int type_off = offsetof(struct icmp, icmp_type);
568	const u_int code_off = offsetof(struct icmp, icmp_code);
569
570	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
571	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
572	assert(type != -1 || code != -1);
573
574	/* X <- IP header length */
575	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
576
577	if (type != -1) {
578		struct bpf_insn insns_type[] = {
579			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
580			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
581		};
582		add_insns(ctx, insns_type, __arraycount(insns_type));
583
584		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
585		done_block(ctx, mwords, sizeof(mwords));
586	}
587
588	if (code != -1) {
589		struct bpf_insn insns_code[] = {
590			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
591			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
592		};
593		add_insns(ctx, insns_code, __arraycount(insns_code));
594
595		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
596		done_block(ctx, mwords, sizeof(mwords));
597	}
598}
599
600#define	SRC_FLAG_BIT	(1U << 31)
601
602/*
603 * npfctl_bpf_table: code block to match source/destination IP address
604 * against NPF table specified by ID.
605 */
606void
607npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
608{
609	const bool src = (opts & MATCH_SRC) != 0;
610
611	struct bpf_insn insns_table[] = {
612		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
613		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
614		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
615	};
616	add_insns(ctx, insns_table, __arraycount(insns_table));
617
618	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
619	done_block(ctx, mwords, sizeof(mwords));
620}
621