nbperf-bdz.c revision 1.7
1/*	$NetBSD: nbperf-bdz.c,v 1.7 2013/01/31 16:32:02 joerg Exp $	*/
2/*-
3 * Copyright (c) 2009, 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Joerg Sonnenberger.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#if HAVE_NBTOOL_CONFIG_H
35#include "nbtool_config.h"
36#endif
37
38#include <sys/cdefs.h>
39__RCSID("$NetBSD: nbperf-bdz.c,v 1.7 2013/01/31 16:32:02 joerg Exp $");
40
41#include <err.h>
42#include <inttypes.h>
43#include <stdlib.h>
44#include <stdio.h>
45#include <string.h>
46
47#include "nbperf.h"
48
49/*
50 * A full description of the algorithm can be found in:
51 * "Simple and Space-Efficient Minimal Perfect Hash Functions"
52 * by Botelho, Pagh and Ziviani, proceeedings of WADS 2007.
53 */
54
55/*
56 * The algorithm is based on random, acyclic 3-graphs.
57 *
58 * Each edge in the represents a key.  The vertices are the reminder of
59 * the hash function mod n.  n = cm with c > 1.23.  This ensures that
60 * an acyclic graph can be found with a very high probality.
61 *
62 * An acyclic graph has an edge order, where at least one vertex of
63 * each edge hasn't been seen before.   It is declares the first unvisited
64 * vertex as authoritive for the edge and assigns a 2bit value to unvisited
65 * vertices, so that the sum of all vertices of the edge modulo 4 is
66 * the index of the authoritive vertex.
67 */
68
69#include "graph3.h"
70
71struct state {
72	struct graph3 graph;
73	uint32_t *visited;
74	uint32_t *holes64k;
75	uint16_t *holes64;
76	uint8_t *g;
77	uint32_t *result_map;
78};
79
80static void
81assign_nodes(struct state *state)
82{
83	struct edge3 *e;
84	size_t i, j;
85	uint32_t t, r, holes;
86
87	for (i = 0; i < state->graph.v; ++i)
88		state->g[i] = 3;
89
90	for (i = 0; i < state->graph.e; ++i) {
91		j = state->graph.output_order[i];
92		e = &state->graph.edges[j];
93		if (!state->visited[e->left]) {
94			r = 0;
95			t = e->left;
96		} else if (!state->visited[e->middle]) {
97			r = 1;
98			t = e->middle;
99		} else {
100			if (state->visited[e->right])
101				abort();
102			r = 2;
103			t = e->right;
104		}
105
106		state->visited[t] = 2 + j;
107		if (state->visited[e->left] == 0)
108			state->visited[e->left] = 1;
109		if (state->visited[e->middle] == 0)
110			state->visited[e->middle] = 1;
111		if (state->visited[e->right] == 0)
112			state->visited[e->right] = 1;
113
114		state->g[t] = (9 + r - state->g[e->left] - state->g[e->middle]
115		    - state->g[e->right]) % 3;
116	}
117
118	holes = 0;
119	for (i = 0; i < state->graph.v; ++i) {
120		if (i % 65536 == 0)
121			state->holes64k[i >> 16] = holes;
122
123		if (i % 64 == 0)
124			state->holes64[i >> 6] = holes - state->holes64k[i >> 16];
125
126		if (state->visited[i] > 1) {
127			j = state->visited[i] - 2;
128			state->result_map[j] = i - holes;
129		}
130
131		if (state->g[i] == 3)
132			++holes;
133	}
134}
135
136static void
137print_hash(struct nbperf *nbperf, struct state *state)
138{
139	uint64_t sum;
140	size_t i;
141
142	fprintf(nbperf->output, "#include <stdlib.h>\n");
143	fprintf(nbperf->output, "#include <strings.h>\n\n");
144
145	fprintf(nbperf->output, "%suint32_t\n",
146	    nbperf->static_hash ? "static " : "");
147	fprintf(nbperf->output,
148	    "%s(const void * __restrict key, size_t keylen)\n",
149	    nbperf->hash_name);
150	fprintf(nbperf->output, "{\n");
151
152	fprintf(nbperf->output,
153	    "\tstatic const uint64_t g1[%" PRId32 "] = {\n",
154	    (state->graph.v + 63) / 64);
155	sum = 0;
156	for (i = 0; i < state->graph.v; ++i) {
157		sum |= ((uint64_t)state->g[i] & 1) << (i & 63);
158		if (i % 64 == 63) {
159			fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
160			    (i / 64 % 2 == 0 ? "\t    " : " "),
161			    sum,
162			    (i / 64 % 2 == 1 ? "\n" : ""));
163			sum = 0;
164		}
165	}
166	if (i % 64 != 0) {
167		fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
168		    (i / 64 % 2 == 0 ? "\t    " : " "),
169		    sum,
170		    (i / 64 % 2 == 1 ? "\n" : ""));
171	}
172	fprintf(nbperf->output, "%s\t};\n", (i % 2 ? "\n" : ""));
173
174	fprintf(nbperf->output,
175	    "\tstatic const uint64_t g2[%" PRId32 "] = {\n",
176	    (state->graph.v + 63) / 64);
177	sum = 0;
178	for (i = 0; i < state->graph.v; ++i) {
179		sum |= (((uint64_t)state->g[i] & 2) >> 1) << (i & 63);
180		if (i % 64 == 63) {
181			fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
182			    (i / 64 % 2 == 0 ? "\t    " : " "),
183			    sum,
184			    (i / 64 % 2 == 1 ? "\n" : ""));
185			sum = 0;
186		}
187	}
188	if (i % 64 != 0) {
189		fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
190		    (i / 64 % 2 == 0 ? "\t    " : " "),
191		    sum,
192		    (i / 64 % 2 == 1 ? "\n" : ""));
193	}
194	fprintf(nbperf->output, "%s\t};\n", (i % 2 ? "\n" : ""));
195
196	fprintf(nbperf->output,
197	    "\tstatic const uint32_t holes64k[%" PRId32 "] = {\n",
198	    (state->graph.v + 65535) / 65536);
199	for (i = 0; i < state->graph.v; i += 65536)
200		fprintf(nbperf->output, "%s0x%08" PRIx32 ",%s",
201		    (i / 65536 % 4 == 0 ? "\t    " : " "),
202		    state->holes64k[i >> 16],
203		    (i / 65536 % 4 == 3 ? "\n" : ""));
204	fprintf(nbperf->output, "%s\t};\n", (i / 65536 % 4 ? "\n" : ""));
205
206	fprintf(nbperf->output,
207	    "\tstatic const uint16_t holes64[%" PRId32 "] = {\n",
208	    (state->graph.v + 63) / 64);
209	for (i = 0; i < state->graph.v; i += 64)
210		fprintf(nbperf->output, "%s0x%04" PRIx32 ",%s",
211		    (i / 64 % 4 == 0 ? "\t    " : " "),
212		    state->holes64[i >> 6],
213		    (i / 64 % 4 == 3 ? "\n" : ""));
214	fprintf(nbperf->output, "%s\t};\n", (i / 64 % 4 ? "\n" : ""));
215
216	fprintf(nbperf->output, "\tuint64_t m;\n");
217	fprintf(nbperf->output, "\tuint32_t idx, i, idx2;\n");
218	fprintf(nbperf->output, "\tuint32_t h[%zu];\n\n", nbperf->hash_size);
219
220	(*nbperf->print_hash)(nbperf, "\t", "key", "keylen", "h");
221
222	fprintf(nbperf->output, "\n\th[0] = h[0] %% %" PRIu32 ";\n",
223	    state->graph.v);
224	fprintf(nbperf->output, "\th[1] = h[1] %% %" PRIu32 ";\n",
225	    state->graph.v);
226	fprintf(nbperf->output, "\th[2] = h[2] %% %" PRIu32 ";\n",
227	    state->graph.v);
228
229	fprintf(nbperf->output,
230	    "\tidx = 9 + ((g1[h[0] >> 6] >> (h[0] & 63)) &1)\n"
231	    "\t      + ((g1[h[1] >> 6] >> (h[1] & 63)) & 1)\n"
232	    "\t      + ((g1[h[2] >> 6] >> (h[2] & 63)) & 1)\n"
233	    "\t      - ((g2[h[0] >> 6] >> (h[0] & 63)) & 1)\n"
234	    "\t      - ((g2[h[1] >> 6] >> (h[1] & 63)) & 1)\n"
235	    "\t      - ((g2[h[2] >> 6] >> (h[2] & 63)) & 1);\n"
236	    );
237
238	fprintf(nbperf->output,
239	    "\tidx = h[idx %% 3];\n");
240	fprintf(nbperf->output,
241	    "\tidx2 = idx - holes64[idx >> 6] - holes64k[idx >> 16];\n"
242	    "\tidx2 -= popcount64(g1[idx >> 6] & g2[idx >> 6]\n"
243	    "\t                   & (((uint64_t)1 << idx) - 1));\n"
244	    "\treturn idx2;");
245
246	fprintf(nbperf->output, "}\n");
247
248	if (nbperf->map_output != NULL) {
249		for (i = 0; i < state->graph.e; ++i)
250			fprintf(nbperf->map_output, "%" PRIu32 "\n",
251			    state->result_map[i]);
252	}
253}
254
255int
256bpz_compute(struct nbperf *nbperf)
257{
258	struct state state;
259	int retval = -1;
260	uint32_t v, e;
261
262	if (nbperf->c == 0)
263		nbperf->c = 1.24;
264	if (nbperf->c < 1.24)
265		errx(1, "The argument for option -c must be at least 1.24");
266	if (nbperf->hash_size < 3)
267		errx(1, "The hash function must generate at least 3 values");
268
269	(*nbperf->seed_hash)(nbperf);
270	e = nbperf->n;
271	v = nbperf->c * nbperf->n;
272	if (1.24 * nbperf->n > v)
273		++v;
274	if (v < 10)
275		v = 10;
276
277	graph3_setup(&state.graph, v, e);
278
279	state.holes64k = calloc(sizeof(uint32_t), (v + 65535) / 65536);
280	state.holes64 = calloc(sizeof(uint16_t), (v + 63) / 64 );
281	state.g = calloc(sizeof(uint32_t), v | 63);
282	state.visited = calloc(sizeof(uint32_t), v);
283	state.result_map = calloc(sizeof(uint32_t), e);
284
285	if (state.holes64k == NULL || state.holes64 == NULL ||
286	    state.g == NULL || state.visited == NULL ||
287	    state.result_map == NULL)
288		err(1, "malloc failed");
289
290	if (graph3_hash(nbperf, &state.graph))
291		goto failed;
292	if (graph3_output_order(&state.graph))
293		goto failed;
294	assign_nodes(&state);
295	print_hash(nbperf, &state);
296
297	retval = 0;
298
299failed:
300	graph3_free(&state.graph);
301	free(state.visited);
302	free(state.g);
303	free(state.holes64k);
304	free(state.holes64);
305	free(state.result_map);
306	return retval;
307}
308