1/*	$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $	*/
2
3/*-
4 * Copyright (c) 1985, 1986, 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Diomidis Spinellis and James A. Woods, derived from original
9 * work by Spencer Thomas and Joseph Orost.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36#if defined(LIBC_SCCS) && !defined(lint)
37#if 0
38static char sccsid[] = "@(#)zopen.c	8.1 (Berkeley) 6/27/93";
39#else
40static char rcsid[] = "$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $";
41#endif
42#endif /* LIBC_SCCS and not lint */
43
44/*-
45 * fcompress.c - File compression ala IEEE Computer, June 1984.
46 *
47 * Compress authors:
48 *		Spencer W. Thomas	(decvax!utah-cs!thomas)
49 *		Jim McKie		(decvax!mcvax!jim)
50 *		Steve Davies		(decvax!vax135!petsd!peora!srd)
51 *		Ken Turkowski		(decvax!decwrl!turtlevax!ken)
52 *		James A. Woods		(decvax!ihnp4!ames!jaw)
53 *		Joe Orost		(decvax!vax135!petsd!joe)
54 *
55 * Cleaned up and converted to library returning I/O streams by
56 * Diomidis Spinellis <dds@doc.ic.ac.uk>.
57 *
58 * zopen(filename, mode, bits)
59 *	Returns a FILE * that can be used for read or write.  The modes
60 *	supported are only "r" and "w".  Seeking is not allowed.  On
61 *	reading the file is decompressed, on writing it is compressed.
62 *	The output is compatible with compress(1) with 16 bit tables.
63 *	Any file produced by compress(1) can be read.
64 */
65
66#include <sys/param.h>
67#include <sys/stat.h>
68
69#include <errno.h>
70#include <signal.h>
71#include <stdio.h>
72#include <stdlib.h>
73#include <string.h>
74#include <unistd.h>
75
76#define	BITS		16		/* Default bits. */
77#define	HSIZE		69001		/* 95% occupancy */
78
79/* A code_int must be able to hold 2**BITS values of type int, and also -1. */
80typedef long code_int;
81typedef long count_int;
82
83typedef u_char char_type;
84static char_type magic_header[] =
85	{'\037', '\235'};		/* 1F 9D */
86
87#define	BIT_MASK	0x1f		/* Defines for third byte of header. */
88#define	BLOCK_MASK	0x80
89
90/*
91 * Masks 0x40 and 0x20 are free.  I think 0x20 should mean that there is
92 * a fourth header byte (for expansion).
93 */
94#define	INIT_BITS 9			/* Initial number of bits/code. */
95
96#define	MAXCODE(n_bits)	((1 << (n_bits)) - 1)
97
98struct s_zstate {
99	FILE *zs_fp;			/* File stream for I/O */
100	char zs_mode;			/* r or w */
101	enum {
102		S_START, S_MIDDLE, S_EOF
103	} zs_state;			/* State of computation */
104	int zs_n_bits;			/* Number of bits/code. */
105	int zs_maxbits;			/* User settable max # bits/code. */
106	code_int zs_maxcode;		/* Maximum code, given n_bits. */
107	code_int zs_maxmaxcode;		/* Should NEVER generate this code. */
108	count_int zs_htab [HSIZE];
109	u_short zs_codetab [HSIZE];
110	code_int zs_hsize;		/* For dynamic table sizing. */
111	code_int zs_free_ent;		/* First unused entry. */
112	/*
113	 * Block compression parameters -- after all codes are used up,
114	 * and compression rate changes, start over.
115	 */
116	int zs_block_compress;
117	int zs_clear_flg;
118	long zs_ratio;
119	count_int zs_checkpoint;
120	int zs_offset;
121	long zs_in_count;		/* Length of input. */
122	long zs_bytes_out;		/* Length of compressed output. */
123	long zs_out_count;		/* # of codes output (for debugging). */
124	char_type zs_buf[BITS];
125	union {
126		struct {
127			long zs_fcode;
128			code_int zs_ent;
129			code_int zs_hsize_reg;
130			int zs_hshift;
131		} w;			/* Write parameters */
132		struct {
133			char_type *zs_stackp;
134			int zs_finchar;
135			code_int zs_code, zs_oldcode, zs_incode;
136			int zs_roffset, zs_size;
137			char_type zs_gbuf[BITS];
138		} r;			/* Read parameters */
139	} u;
140};
141
142/* Definitions to retain old variable names */
143#define	fp		zs->zs_fp
144#define	zmode		zs->zs_mode
145#define	state		zs->zs_state
146#define	n_bits		zs->zs_n_bits
147#define	maxbits		zs->zs_maxbits
148#define	maxcode		zs->zs_maxcode
149#define	maxmaxcode	zs->zs_maxmaxcode
150#define	htab		zs->zs_htab
151#define	codetab		zs->zs_codetab
152#define	hsize		zs->zs_hsize
153#define	free_ent	zs->zs_free_ent
154#define	block_compress	zs->zs_block_compress
155#define	clear_flg	zs->zs_clear_flg
156#define	ratio		zs->zs_ratio
157#define	checkpoint	zs->zs_checkpoint
158#define	offset		zs->zs_offset
159#define	in_count	zs->zs_in_count
160#define	bytes_out	zs->zs_bytes_out
161#define	out_count	zs->zs_out_count
162#define	buf		zs->zs_buf
163#define	fcode		zs->u.w.zs_fcode
164#define	hsize_reg	zs->u.w.zs_hsize_reg
165#define	ent		zs->u.w.zs_ent
166#define	hshift		zs->u.w.zs_hshift
167#define	stackp		zs->u.r.zs_stackp
168#define	finchar		zs->u.r.zs_finchar
169#define	code		zs->u.r.zs_code
170#define	oldcode		zs->u.r.zs_oldcode
171#define	incode		zs->u.r.zs_incode
172#define	roffset		zs->u.r.zs_roffset
173#define	size		zs->u.r.zs_size
174#define	gbuf		zs->u.r.zs_gbuf
175
176/*
177 * To save much memory, we overlay the table used by compress() with those
178 * used by decompress().  The tab_prefix table is the same size and type as
179 * the codetab.  The tab_suffix table needs 2**BITS characters.  We get this
180 * from the beginning of htab.  The output stack uses the rest of htab, and
181 * contains characters.  There is plenty of room for any possible stack
182 * (stack used to be 8000 characters).
183 */
184
185#define	htabof(i)	htab[i]
186#define	codetabof(i)	codetab[i]
187
188#define	tab_prefixof(i)	codetabof(i)
189#define	tab_suffixof(i)	((char_type *)(htab))[i]
190#define	de_stack	((char_type *)&tab_suffixof(1 << BITS))
191
192#define	CHECK_GAP 10000		/* Ratio check interval. */
193
194/*
195 * the next two codes should not be changed lightly, as they must not
196 * lie within the contiguous general code space.
197 */
198#define	FIRST	257		/* First free entry. */
199#define	CLEAR	256		/* Table clear output code. */
200
201static int	cl_block(struct s_zstate *);
202static code_int	getcode(struct s_zstate *);
203static int	output(struct s_zstate *, code_int);
204static int	zclose(void *);
205FILE	       *zopen(const char *, const char *, int);
206static int	zread(void *, char *, int);
207static int	zwrite(void *, const char *, int);
208
209/*-
210 * Algorithm from "A Technique for High Performance Data Compression",
211 * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
212 *
213 * Algorithm:
214 * 	Modified Lempel-Ziv method (LZW).  Basically finds common
215 * substrings and replaces them with a variable size code.  This is
216 * deterministic, and can be done on the fly.  Thus, the decompression
217 * procedure needs no input table, but tracks the way the table was built.
218 */
219
220/*-
221 * compress write
222 *
223 * Algorithm:  use open addressing double hashing (no chaining) on the
224 * prefix code / next character combination.  We do a variant of Knuth's
225 * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
226 * secondary probe.  Here, the modular division first probe is gives way
227 * to a faster exclusive-or manipulation.  Also do block compression with
228 * an adaptive reset, whereby the code table is cleared when the compression
229 * ratio decreases, but after the table fills.  The variable-length output
230 * codes are re-sized at this point, and a special CLEAR code is generated
231 * for the decompressor.  Late addition:  construct the table according to
232 * file size for noticeable speed improvement on small files.  Please direct
233 * questions about this implementation to ames!jaw.
234 */
235static int
236zwrite(void *cookie, const char *wbp, int num)
237{
238	code_int i;
239	int c, disp;
240	struct s_zstate *zs;
241	const u_char *bp;
242	u_char tmp;
243	int count;
244
245	if (num == 0)
246		return (0);
247
248	zs = cookie;
249	count = num;
250	bp = (const u_char *)wbp;
251	if (state == S_MIDDLE)
252		goto middle;
253	state = S_MIDDLE;
254
255	maxmaxcode = 1L << maxbits;
256	if (fwrite(magic_header,
257	    sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
258		return (-1);
259	tmp = (u_char)(maxbits | block_compress);
260	if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
261		return (-1);
262
263	offset = 0;
264	bytes_out = 3;		/* Includes 3-byte header mojo. */
265	out_count = 0;
266	clear_flg = 0;
267	ratio = 0;
268	in_count = 1;
269	checkpoint = CHECK_GAP;
270	maxcode = MAXCODE(n_bits = INIT_BITS);
271	free_ent = ((block_compress) ? FIRST : 256);
272
273	ent = *bp++;
274	--count;
275
276	hshift = 0;
277	for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
278		hshift++;
279	hshift = 8 - hshift;	/* Set hash code range bound. */
280
281	hsize_reg = hsize;
282	memset(htab, 0xff, hsize_reg * sizeof(count_int));
283
284middle:	while (count--) {
285		c = *bp++;
286		in_count++;
287		fcode = (long)(((long)c << maxbits) + ent);
288		i = ((c << hshift) ^ ent);	/* Xor hashing. */
289
290		if (htabof(i) == fcode) {
291			ent = codetabof(i);
292			continue;
293		} else if ((long)htabof(i) < 0)	/* Empty slot. */
294			goto nomatch;
295		disp = hsize_reg - i;	/* Secondary hash (after G. Knott). */
296		if (i == 0)
297			disp = 1;
298probe:		if ((i -= disp) < 0)
299			i += hsize_reg;
300
301		if (htabof(i) == fcode) {
302			ent = codetabof(i);
303			continue;
304		}
305		if ((long)htabof(i) >= 0)
306			goto probe;
307nomatch:	if (output(zs, (code_int) ent) == -1)
308			return (-1);
309		out_count++;
310		ent = c;
311		if (free_ent < maxmaxcode) {
312			codetabof(i) = free_ent++;	/* code -> hashtable */
313			htabof(i) = fcode;
314		} else if ((count_int)in_count >=
315		    checkpoint && block_compress) {
316			if (cl_block(zs) == -1)
317				return (-1);
318		}
319	}
320	return (num);
321}
322
323static int
324zclose(void *cookie)
325{
326	struct s_zstate *zs;
327	int rval;
328
329	zs = cookie;
330	if (zmode == 'w') {		/* Put out the final code. */
331		if (output(zs, (code_int) ent) == -1) {
332			(void)fclose(fp);
333			free(zs);
334			return (-1);
335		}
336		out_count++;
337		if (output(zs, (code_int) - 1) == -1) {
338			(void)fclose(fp);
339			free(zs);
340			return (-1);
341		}
342	}
343	rval = fclose(fp) == EOF ? -1 : 0;
344	free(zs);
345	return (rval);
346}
347
348/*-
349 * Output the given code.
350 * Inputs:
351 * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
352 *		that n_bits =< (long)wordsize - 1.
353 * Outputs:
354 * 	Outputs code to the file.
355 * Assumptions:
356 *	Chars are 8 bits long.
357 * Algorithm:
358 * 	Maintain a BITS character long buffer (so that 8 codes will
359 * fit in it exactly).  Use the VAX insv instruction to insert each
360 * code in turn.  When the buffer fills up empty it and start over.
361 */
362
363static char_type lmask[9] =
364	{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
365static char_type rmask[9] =
366	{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
367
368static int
369output(struct s_zstate *zs, code_int ocode)
370{
371	int bits, r_off;
372	char_type *bp;
373
374	r_off = offset;
375	bits = n_bits;
376	bp = buf;
377	if (ocode >= 0) {
378		/* Get to the first byte. */
379		bp += (r_off >> 3);
380		r_off &= 7;
381		/*
382		 * Since ocode is always >= 8 bits, only need to mask the first
383		 * hunk on the left.
384		 */
385		*bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
386		bp++;
387		bits -= (8 - r_off);
388		ocode >>= 8 - r_off;
389		/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
390		if (bits >= 8) {
391			*bp++ = ocode;
392			ocode >>= 8;
393			bits -= 8;
394		}
395		/* Last bits. */
396		if (bits)
397			*bp = ocode;
398		offset += n_bits;
399		if (offset == (n_bits << 3)) {
400			bp = buf;
401			bits = n_bits;
402			bytes_out += bits;
403			if (fwrite(bp, sizeof(char), bits, fp) != (size_t)bits)
404				return (-1);
405			bp += bits;
406			bits = 0;
407			offset = 0;
408		}
409		/*
410		 * If the next entry is going to be too big for the ocode size,
411		 * then increase it, if possible.
412		 */
413		if (free_ent > maxcode || (clear_flg > 0)) {
414		       /*
415			* Write the whole buffer, because the input side won't
416			* discover the size increase until after it has read it.
417			*/
418			if (offset > 0) {
419				if (fwrite(buf, 1, n_bits, fp) != (size_t)n_bits)
420					return (-1);
421				bytes_out += n_bits;
422			}
423			offset = 0;
424
425			if (clear_flg) {
426				maxcode = MAXCODE(n_bits = INIT_BITS);
427				clear_flg = 0;
428			} else {
429				n_bits++;
430				if (n_bits == maxbits)
431					maxcode = maxmaxcode;
432				else
433					maxcode = MAXCODE(n_bits);
434			}
435		}
436	} else {
437		/* At EOF, write the rest of the buffer. */
438		if (offset > 0) {
439			offset = (offset + 7) / 8;
440			if (fwrite(buf, 1, offset, fp) != (size_t)offset)
441				return (-1);
442			bytes_out += offset;
443		}
444		offset = 0;
445	}
446	return (0);
447}
448
449/*
450 * Decompress read.  This routine adapts to the codes in the file building
451 * the "string" table on-the-fly; requiring no table to be stored in the
452 * compressed file.  The tables used herein are shared with those of the
453 * compress() routine.  See the definitions above.
454 */
455static int
456zread(void *cookie, char *rbp, int num)
457{
458	u_int count;
459	struct s_zstate *zs;
460	u_char *bp, header[3];
461
462	if (num == 0)
463		return (0);
464
465	zs = cookie;
466	count = num;
467	bp = (u_char *)rbp;
468	switch (state) {
469	case S_START:
470		state = S_MIDDLE;
471		break;
472	case S_MIDDLE:
473		goto middle;
474	case S_EOF:
475		goto eof;
476	}
477
478	/* Check the magic number */
479	if (fread(header,
480	    sizeof(char), sizeof(header), fp) != sizeof(header) ||
481	    memcmp(header, magic_header, sizeof(magic_header)) != 0) {
482		errno = EFTYPE;
483		return (-1);
484	}
485	maxbits = header[2];	/* Set -b from file. */
486	block_compress = maxbits & BLOCK_MASK;
487	maxbits &= BIT_MASK;
488	maxmaxcode = 1L << maxbits;
489	if (maxbits > BITS || maxbits < 12) {
490		errno = EFTYPE;
491		return (-1);
492	}
493	/* As above, initialize the first 256 entries in the table. */
494	maxcode = MAXCODE(n_bits = INIT_BITS);
495	for (code = 255; code >= 0; code--) {
496		tab_prefixof(code) = 0;
497		tab_suffixof(code) = (char_type) code;
498	}
499	free_ent = block_compress ? FIRST : 256;
500	oldcode = -1;
501	stackp = de_stack;
502
503	while ((code = getcode(zs)) > -1) {
504
505		if ((code == CLEAR) && block_compress) {
506			for (code = 255; code >= 0; code--)
507				tab_prefixof(code) = 0;
508			clear_flg = 1;
509			free_ent = FIRST;
510			oldcode = -1;
511			continue;
512		}
513		incode = code;
514
515		/* Special case for kWkWk string. */
516		if (code >= free_ent) {
517			if (code > free_ent || oldcode == -1) {
518				/* Bad stream. */
519				errno = EINVAL;
520				return (-1);
521			}
522			*stackp++ = finchar;
523			code = oldcode;
524		}
525		/*
526		 * The above condition ensures that code < free_ent.
527		 * The construction of tab_prefixof in turn guarantees that
528		 * each iteration decreases code and therefore stack usage is
529		 * bound by 1 << BITS - 256.
530		 */
531
532		/* Generate output characters in reverse order. */
533		while (code >= 256) {
534			*stackp++ = tab_suffixof(code);
535			code = tab_prefixof(code);
536		}
537		*stackp++ = finchar = tab_suffixof(code);
538
539		/* And put them out in forward order.  */
540middle:		do {
541			if (count-- == 0)
542				return (num);
543			*bp++ = *--stackp;
544		} while (stackp > de_stack);
545
546		/* Generate the new entry. */
547		if ((code = free_ent) < maxmaxcode && oldcode != -1) {
548			tab_prefixof(code) = (u_short) oldcode;
549			tab_suffixof(code) = finchar;
550			free_ent = code + 1;
551		}
552
553		/* Remember previous code. */
554		oldcode = incode;
555	}
556	state = S_EOF;
557eof:	return (num - count);
558}
559
560/*-
561 * Read one code from the standard input.  If EOF, return -1.
562 * Inputs:
563 * 	stdin
564 * Outputs:
565 * 	code or -1 is returned.
566 */
567static code_int
568getcode(struct s_zstate *zs)
569{
570	code_int gcode;
571	int r_off, bits;
572	char_type *bp;
573
574	bp = gbuf;
575	if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
576		/*
577		 * If the next entry will be too big for the current gcode
578		 * size, then we must increase the size.  This implies reading
579		 * a new buffer full, too.
580		 */
581		if (free_ent > maxcode) {
582			n_bits++;
583			if (n_bits == maxbits)	/* Won't get any bigger now. */
584				maxcode = maxmaxcode;
585			else
586				maxcode = MAXCODE(n_bits);
587		}
588		if (clear_flg > 0) {
589			maxcode = MAXCODE(n_bits = INIT_BITS);
590			clear_flg = 0;
591		}
592		size = fread(gbuf, 1, n_bits, fp);
593		if (size <= 0)			/* End of file. */
594			return (-1);
595		roffset = 0;
596		/* Round size down to integral number of codes. */
597		size = (size << 3) - (n_bits - 1);
598	}
599	r_off = roffset;
600	bits = n_bits;
601
602	/* Get to the first byte. */
603	bp += (r_off >> 3);
604	r_off &= 7;
605
606	/* Get first part (low order bits). */
607	gcode = (*bp++ >> r_off);
608	bits -= (8 - r_off);
609	r_off = 8 - r_off;	/* Now, roffset into gcode word. */
610
611	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
612	if (bits >= 8) {
613		gcode |= *bp++ << r_off;
614		r_off += 8;
615		bits -= 8;
616	}
617
618	/* High order bits. */
619	gcode |= (*bp & rmask[bits]) << r_off;
620	roffset += n_bits;
621
622	return (gcode);
623}
624
625static int
626cl_block(struct s_zstate *zs)		/* Table clear for block compress. */
627{
628	long rat;
629
630	checkpoint = in_count + CHECK_GAP;
631
632	if (in_count > 0x007fffff) {	/* Shift will overflow. */
633		rat = bytes_out >> 8;
634		if (rat == 0)		/* Don't divide by zero. */
635			rat = 0x7fffffff;
636		else
637			rat = in_count / rat;
638	} else
639		rat = (in_count << 8) / bytes_out;	/* 8 fractional bits. */
640	if (rat > ratio)
641		ratio = rat;
642	else {
643		ratio = 0;
644		memset(htab, 0xff, hsize * sizeof(count_int));
645		free_ent = FIRST;
646		clear_flg = 1;
647		if (output(zs, (code_int) CLEAR) == -1)
648			return (-1);
649	}
650	return (0);
651}
652
653FILE *
654zopen(const char *fname, const char *mode, int bits)
655{
656	struct s_zstate *zs;
657
658	if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
659	    bits < 0 || bits > BITS) {
660		errno = EINVAL;
661		return (NULL);
662	}
663
664	if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
665		return (NULL);
666
667	maxbits = bits ? bits : BITS;	/* User settable max # bits/code. */
668	maxmaxcode = 1 << maxbits;	/* Should NEVER generate this code. */
669	hsize = HSIZE;			/* For dynamic table sizing. */
670	free_ent = 0;			/* First unused entry. */
671	block_compress = BLOCK_MASK;
672	clear_flg = 0;
673	ratio = 0;
674	checkpoint = CHECK_GAP;
675	in_count = 1;			/* Length of input. */
676	out_count = 0;			/* # of codes output (for debugging). */
677	state = S_START;
678	roffset = 0;
679	size = 0;
680
681	/*
682	 * Layering compress on top of stdio in order to provide buffering,
683	 * and ensure that reads and write work with the data specified.
684	 */
685	if ((fp = fopen(fname, mode)) == NULL) {
686		free(zs);
687		return (NULL);
688	}
689	switch (*mode) {
690	case 'r':
691		zmode = 'r';
692		return (funopen(zs, zread, NULL, NULL, zclose));
693	case 'w':
694		zmode = 'w';
695		return (funopen(zs, NULL, zwrite, NULL, zclose));
696	}
697	/* NOTREACHED */
698	return (NULL);
699}
700