uvm_km.c revision 1.88
1/*	$NetBSD: uvm_km.c,v 1.88 2006/05/25 14:27:28 yamt Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73/*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps."   submaps can only appear in
81 * the kernel_map (user processes can't use them).   submaps "take over"
82 * the management of a sub-range of the kernel's address space.  submaps
83 * are typically allocated at boot time and are never released.   kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 *   kmem_map => contains only wired kernel memory for the kernel
93 *		malloc.   *** access to kmem_map must be protected
94 *		by splvm() because we are allowed to call malloc()
95 *		at interrupt time ***
96 *   mb_map => memory for large mbufs,  *** protected by splvm ***
97 *   pager_map => used to map "buf" structures into kernel space
98 *   exec_map => used during exec to handle exec args
99 *   etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die).   all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode).    for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
122 *   then that means that the page at offset 0x235000 in kernel_object is
123 *   mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away.   this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132#include <sys/cdefs.h>
133__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.88 2006/05/25 14:27:28 yamt Exp $");
134
135#include "opt_uvmhist.h"
136
137#include <sys/param.h>
138#include <sys/malloc.h>
139#include <sys/systm.h>
140#include <sys/proc.h>
141#include <sys/pool.h>
142
143#include <uvm/uvm.h>
144
145/*
146 * global data structures
147 */
148
149struct vm_map *kernel_map = NULL;
150
151/*
152 * local data structues
153 */
154
155static struct vm_map_kernel	kernel_map_store;
156static struct vm_map_entry	kernel_first_mapent_store;
157
158#if !defined(PMAP_MAP_POOLPAGE)
159
160/*
161 * kva cache
162 *
163 * XXX maybe it's better to do this at the uvm_map layer.
164 */
165
166#define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
167
168static void *km_vacache_alloc(struct pool *, int);
169static void km_vacache_free(struct pool *, void *);
170static void km_vacache_init(struct vm_map *, const char *, size_t);
171
172/* XXX */
173#define	KM_VACACHE_POOL_TO_MAP(pp) \
174	((struct vm_map *)((char *)(pp) - \
175	    offsetof(struct vm_map_kernel, vmk_vacache)))
176
177static void *
178km_vacache_alloc(struct pool *pp, int flags)
179{
180	vaddr_t va;
181	size_t size;
182	struct vm_map *map;
183	size = pp->pr_alloc->pa_pagesz;
184
185	map = KM_VACACHE_POOL_TO_MAP(pp);
186
187	va = vm_map_min(map); /* hint */
188	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
192	    UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
193		return NULL;
194
195	return (void *)va;
196}
197
198static void
199km_vacache_free(struct pool *pp, void *v)
200{
201	vaddr_t va = (vaddr_t)v;
202	size_t size = pp->pr_alloc->pa_pagesz;
203	struct vm_map *map;
204
205	map = KM_VACACHE_POOL_TO_MAP(pp);
206	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
207}
208
209/*
210 * km_vacache_init: initialize kva cache.
211 */
212
213static void
214km_vacache_init(struct vm_map *map, const char *name, size_t size)
215{
216	struct vm_map_kernel *vmk;
217	struct pool *pp;
218	struct pool_allocator *pa;
219
220	KASSERT(VM_MAP_IS_KERNEL(map));
221	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
222
223	vmk = vm_map_to_kernel(map);
224	pp = &vmk->vmk_vacache;
225	pa = &vmk->vmk_vacache_allocator;
226	memset(pa, 0, sizeof(*pa));
227	pa->pa_alloc = km_vacache_alloc;
228	pa->pa_free = km_vacache_free;
229	pa->pa_pagesz = (unsigned int)size;
230	pa->pa_backingmap = map;
231	pa->pa_backingmapptr = NULL;
232	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
233}
234
235void
236uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
237{
238
239	map->flags |= VM_MAP_VACACHE;
240	if (size == 0)
241		size = KM_VACACHE_SIZE;
242	km_vacache_init(map, name, size);
243}
244
245#else /* !defined(PMAP_MAP_POOLPAGE) */
246
247void
248uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
249{
250
251	/* nothing */
252}
253
254#endif /* !defined(PMAP_MAP_POOLPAGE) */
255
256void
257uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
258{
259	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
260	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
261	int s = 0xdeadbeaf; /* XXX: gcc */
262
263	if (intrsafe) {
264		s = splvm();
265	}
266	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
267	if (intrsafe) {
268		splx(s);
269	}
270}
271
272/*
273 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
274 * KVM already allocated for text, data, bss, and static data structures).
275 *
276 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
277 *    we assume that [vmin -> start] has already been allocated and that
278 *    "end" is the end.
279 */
280
281void
282uvm_km_init(vaddr_t start, vaddr_t end)
283{
284	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
285
286	/*
287	 * next, init kernel memory objects.
288	 */
289
290	/* kernel_object: for pageable anonymous kernel memory */
291	uao_init();
292	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
293				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
294
295	/*
296	 * init the map and reserve any space that might already
297	 * have been allocated kernel space before installing.
298	 */
299
300	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
301	kernel_map_store.vmk_map.pmap = pmap_kernel();
302	if (start != base) {
303		int error;
304		struct uvm_map_args args;
305
306		error = uvm_map_prepare(&kernel_map_store.vmk_map,
307		    base, start - base,
308		    NULL, UVM_UNKNOWN_OFFSET, 0,
309		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
310		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
311		if (!error) {
312			kernel_first_mapent_store.flags =
313			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
314			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
315			    &kernel_first_mapent_store);
316		}
317
318		if (error)
319			panic(
320			    "uvm_km_init: could not reserve space for kernel");
321	}
322
323	/*
324	 * install!
325	 */
326
327	kernel_map = &kernel_map_store.vmk_map;
328	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
329}
330
331/*
332 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
333 * is allocated all references to that area of VM must go through it.  this
334 * allows the locking of VAs in kernel_map to be broken up into regions.
335 *
336 * => if `fixed' is true, *vmin specifies where the region described
337 *      by the submap must start
338 * => if submap is non NULL we use that as the submap, otherwise we
339 *	alloc a new map
340 */
341
342struct vm_map *
343uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
344    vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
345    struct vm_map_kernel *submap)
346{
347	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
348
349	KASSERT(vm_map_pmap(map) == pmap_kernel());
350
351	size = round_page(size);	/* round up to pagesize */
352	size += uvm_mapent_overhead(size, flags);
353
354	/*
355	 * first allocate a blank spot in the parent map
356	 */
357
358	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
359	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
360	    UVM_ADV_RANDOM, mapflags)) != 0) {
361	       panic("uvm_km_suballoc: unable to allocate space in parent map");
362	}
363
364	/*
365	 * set VM bounds (vmin is filled in by uvm_map)
366	 */
367
368	*vmax = *vmin + size;
369
370	/*
371	 * add references to pmap and create or init the submap
372	 */
373
374	pmap_reference(vm_map_pmap(map));
375	if (submap == NULL) {
376		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
377		if (submap == NULL)
378			panic("uvm_km_suballoc: unable to create submap");
379	}
380	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
381	submap->vmk_map.pmap = vm_map_pmap(map);
382
383	/*
384	 * now let uvm_map_submap plug in it...
385	 */
386
387	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
388		panic("uvm_km_suballoc: submap allocation failed");
389
390	return(&submap->vmk_map);
391}
392
393/*
394 * uvm_km_pgremove: remove pages from a kernel uvm_object.
395 *
396 * => when you unmap a part of anonymous kernel memory you want to toss
397 *    the pages right away.    (this gets called from uvm_unmap_...).
398 */
399
400void
401uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
402{
403	struct uvm_object * const uobj = uvm.kernel_object;
404	const voff_t start = startva - vm_map_min(kernel_map);
405	const voff_t end = endva - vm_map_min(kernel_map);
406	struct vm_page *pg;
407	voff_t curoff, nextoff;
408	int swpgonlydelta = 0;
409	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
410
411	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
412	KASSERT(startva < endva);
413	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
414
415	simple_lock(&uobj->vmobjlock);
416
417	for (curoff = start; curoff < end; curoff = nextoff) {
418		nextoff = curoff + PAGE_SIZE;
419		pg = uvm_pagelookup(uobj, curoff);
420		if (pg != NULL && pg->flags & PG_BUSY) {
421			pg->flags |= PG_WANTED;
422			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
423				    "km_pgrm", 0);
424			simple_lock(&uobj->vmobjlock);
425			nextoff = curoff;
426			continue;
427		}
428
429		/*
430		 * free the swap slot, then the page.
431		 */
432
433		if (pg == NULL &&
434		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
435			swpgonlydelta++;
436		}
437		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
438		if (pg != NULL) {
439			uvm_lock_pageq();
440			uvm_pagefree(pg);
441			uvm_unlock_pageq();
442		}
443	}
444	simple_unlock(&uobj->vmobjlock);
445
446	if (swpgonlydelta > 0) {
447		simple_lock(&uvm.swap_data_lock);
448		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
449		uvmexp.swpgonly -= swpgonlydelta;
450		simple_unlock(&uvm.swap_data_lock);
451	}
452}
453
454
455/*
456 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
457 *    regions.
458 *
459 * => when you unmap a part of anonymous kernel memory you want to toss
460 *    the pages right away.    (this is called from uvm_unmap_...).
461 * => none of the pages will ever be busy, and none of them will ever
462 *    be on the active or inactive queues (because they have no object).
463 */
464
465void
466uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
467{
468	struct vm_page *pg;
469	paddr_t pa;
470	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
471
472	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
473	KASSERT(start < end);
474	KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
475
476	for (; start < end; start += PAGE_SIZE) {
477		if (!pmap_extract(pmap_kernel(), start, &pa)) {
478			continue;
479		}
480		pg = PHYS_TO_VM_PAGE(pa);
481		KASSERT(pg);
482		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
483		uvm_pagefree(pg);
484	}
485}
486
487#if defined(DEBUG)
488void
489uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
490{
491	vaddr_t va;
492	paddr_t pa;
493
494	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
495	KDASSERT(start < end);
496	KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
497
498	for (va = start; va < end; va += PAGE_SIZE) {
499		if (pmap_extract(pmap_kernel(), va, &pa)) {
500			panic("uvm_km_check_empty: va %p has pa 0x%llx",
501			    (void *)va, (long long)pa);
502		}
503		if (!intrsafe) {
504			const struct vm_page *pg;
505
506			simple_lock(&uvm.kernel_object->vmobjlock);
507			pg = uvm_pagelookup(uvm.kernel_object,
508			    va - vm_map_min(kernel_map));
509			simple_unlock(&uvm.kernel_object->vmobjlock);
510			if (pg) {
511				panic("uvm_km_check_empty: "
512				    "has page hashed at %p", (const void *)va);
513			}
514		}
515	}
516}
517#endif /* defined(DEBUG) */
518
519/*
520 * uvm_km_alloc: allocate an area of kernel memory.
521 *
522 * => NOTE: we can return 0 even if we can wait if there is not enough
523 *	free VM space in the map... caller should be prepared to handle
524 *	this case.
525 * => we return KVA of memory allocated
526 */
527
528vaddr_t
529uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
530{
531	vaddr_t kva, loopva;
532	vaddr_t offset;
533	vsize_t loopsize;
534	struct vm_page *pg;
535	struct uvm_object *obj;
536	int pgaflags;
537	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
538
539	KASSERT(vm_map_pmap(map) == pmap_kernel());
540	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
541		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
542		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
543
544	/*
545	 * setup for call
546	 */
547
548	kva = vm_map_min(map);	/* hint */
549	size = round_page(size);
550	obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
551	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
552		    map, obj, size, flags);
553
554	/*
555	 * allocate some virtual space
556	 */
557
558	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
559	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
560	    UVM_ADV_RANDOM,
561	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
562	    | UVM_FLAG_QUANTUM)) != 0)) {
563		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
564		return(0);
565	}
566
567	/*
568	 * if all we wanted was VA, return now
569	 */
570
571	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
572		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
573		return(kva);
574	}
575
576	/*
577	 * recover object offset from virtual address
578	 */
579
580	offset = kva - vm_map_min(kernel_map);
581	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
582
583	/*
584	 * now allocate and map in the memory... note that we are the only ones
585	 * whom should ever get a handle on this area of VM.
586	 */
587
588	loopva = kva;
589	loopsize = size;
590
591	pgaflags = UVM_PGA_USERESERVE;
592	if (flags & UVM_KMF_ZERO)
593		pgaflags |= UVM_PGA_ZERO;
594	while (loopsize) {
595		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
596
597		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
598
599		/*
600		 * out of memory?
601		 */
602
603		if (__predict_false(pg == NULL)) {
604			if ((flags & UVM_KMF_NOWAIT) ||
605			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
606				/* free everything! */
607				uvm_km_free(map, kva, size,
608				    flags & UVM_KMF_TYPEMASK);
609				return (0);
610			} else {
611				uvm_wait("km_getwait2");	/* sleep here */
612				continue;
613			}
614		}
615
616		pg->flags &= ~PG_BUSY;	/* new page */
617		UVM_PAGE_OWN(pg, NULL);
618
619		/*
620		 * map it in
621		 */
622
623		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
624		    VM_PROT_READ | VM_PROT_WRITE);
625		loopva += PAGE_SIZE;
626		offset += PAGE_SIZE;
627		loopsize -= PAGE_SIZE;
628	}
629
630       	pmap_update(pmap_kernel());
631
632	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
633	return(kva);
634}
635
636/*
637 * uvm_km_free: free an area of kernel memory
638 */
639
640void
641uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
642{
643
644	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
645		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
646		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
647	KASSERT((addr & PAGE_MASK) == 0);
648	KASSERT(vm_map_pmap(map) == pmap_kernel());
649
650	size = round_page(size);
651
652	if (flags & UVM_KMF_PAGEABLE) {
653		uvm_km_pgremove(addr, addr + size);
654		pmap_remove(pmap_kernel(), addr, addr + size);
655	} else if (flags & UVM_KMF_WIRED) {
656		uvm_km_pgremove_intrsafe(addr, addr + size);
657		pmap_kremove(addr, size);
658	}
659
660	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
661}
662
663/* Sanity; must specify both or none. */
664#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
665    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
666#error Must specify MAP and UNMAP together.
667#endif
668
669/*
670 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
671 *
672 * => if the pmap specifies an alternate mapping method, we use it.
673 */
674
675/* ARGSUSED */
676vaddr_t
677uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
678{
679#if defined(PMAP_MAP_POOLPAGE)
680	return uvm_km_alloc_poolpage(map, waitok);
681#else
682	struct vm_page *pg;
683	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
684	vaddr_t va;
685	int s = 0xdeadbeaf; /* XXX: gcc */
686	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
687
688	if ((map->flags & VM_MAP_VACACHE) == 0)
689		return uvm_km_alloc_poolpage(map, waitok);
690
691	if (intrsafe)
692		s = splvm();
693	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
694	if (intrsafe)
695		splx(s);
696	if (va == 0)
697		return 0;
698	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
699again:
700	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
701	if (__predict_false(pg == NULL)) {
702		if (waitok) {
703			uvm_wait("plpg");
704			goto again;
705		} else {
706			if (intrsafe)
707				s = splvm();
708			pool_put(pp, (void *)va);
709			if (intrsafe)
710				splx(s);
711			return 0;
712		}
713	}
714	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
715	pmap_update(pmap_kernel());
716
717	return va;
718#endif /* PMAP_MAP_POOLPAGE */
719}
720
721vaddr_t
722uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
723{
724#if defined(PMAP_MAP_POOLPAGE)
725	struct vm_page *pg;
726	vaddr_t va;
727
728 again:
729	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
730	if (__predict_false(pg == NULL)) {
731		if (waitok) {
732			uvm_wait("plpg");
733			goto again;
734		} else
735			return (0);
736	}
737	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
738	if (__predict_false(va == 0))
739		uvm_pagefree(pg);
740	return (va);
741#else
742	vaddr_t va;
743	int s = 0xdeadbeaf; /* XXX: gcc */
744	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
745
746	if (intrsafe)
747		s = splvm();
748	va = uvm_km_alloc(map, PAGE_SIZE, 0,
749	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
750	if (intrsafe)
751		splx(s);
752	return (va);
753#endif /* PMAP_MAP_POOLPAGE */
754}
755
756/*
757 * uvm_km_free_poolpage: free a previously allocated pool page
758 *
759 * => if the pmap specifies an alternate unmapping method, we use it.
760 */
761
762/* ARGSUSED */
763void
764uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
765{
766#if defined(PMAP_UNMAP_POOLPAGE)
767	uvm_km_free_poolpage(map, addr);
768#else
769	struct pool *pp;
770	int s = 0xdeadbeaf; /* XXX: gcc */
771	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
772
773	if ((map->flags & VM_MAP_VACACHE) == 0) {
774		uvm_km_free_poolpage(map, addr);
775		return;
776	}
777
778	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
779	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
780	pmap_kremove(addr, PAGE_SIZE);
781#if defined(DEBUG)
782	pmap_update(pmap_kernel());
783#endif
784	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
785	pp = &vm_map_to_kernel(map)->vmk_vacache;
786	if (intrsafe)
787		s = splvm();
788	pool_put(pp, (void *)addr);
789	if (intrsafe)
790		splx(s);
791#endif
792}
793
794/* ARGSUSED */
795void
796uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
797{
798#if defined(PMAP_UNMAP_POOLPAGE)
799	paddr_t pa;
800
801	pa = PMAP_UNMAP_POOLPAGE(addr);
802	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
803#else
804	int s = 0xdeadbeaf; /* XXX: gcc */
805	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
806
807	if (intrsafe)
808		s = splvm();
809	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
810	if (intrsafe)
811		splx(s);
812#endif /* PMAP_UNMAP_POOLPAGE */
813}
814