uvm_km.c revision 1.84
1/*	$NetBSD: uvm_km.c,v 1.84 2005/12/11 12:25:29 christos Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73/*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps."   submaps can only appear in
81 * the kernel_map (user processes can't use them).   submaps "take over"
82 * the management of a sub-range of the kernel's address space.  submaps
83 * are typically allocated at boot time and are never released.   kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 *   kmem_map => contains only wired kernel memory for the kernel
93 *		malloc.   *** access to kmem_map must be protected
94 *		by splvm() because we are allowed to call malloc()
95 *		at interrupt time ***
96 *   mb_map => memory for large mbufs,  *** protected by splvm ***
97 *   pager_map => used to map "buf" structures into kernel space
98 *   exec_map => used during exec to handle exec args
99 *   etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die).   all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * note that just because a kernel object spans the entire kernel virutal
109 * address space doesn't mean that it has to be mapped into the entire space.
110 * large chunks of a kernel object's space go unused either because
111 * that area of kernel VM is unmapped, or there is some other type of
112 * object mapped into that range (e.g. a vnode).    for submap's kernel
113 * objects, the only part of the object that can ever be populated is the
114 * offsets that are managed by the submap.
115 *
116 * note that the "offset" in a kernel object is always the kernel virtual
117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 * example:
119 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
122 *   then that means that the page at offset 0x235000 in kernel_object is
123 *   mapped at 0xf8235000.
124 *
125 * kernel object have one other special property: when the kernel virtual
126 * memory mapping them is unmapped, the backing memory in the object is
127 * freed right away.   this is done with the uvm_km_pgremove() function.
128 * this has to be done because there is no backing store for kernel pages
129 * and no need to save them after they are no longer referenced.
130 */
131
132#include <sys/cdefs.h>
133__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.84 2005/12/11 12:25:29 christos Exp $");
134
135#include "opt_uvmhist.h"
136
137#include <sys/param.h>
138#include <sys/malloc.h>
139#include <sys/systm.h>
140#include <sys/proc.h>
141#include <sys/pool.h>
142
143#include <uvm/uvm.h>
144
145/*
146 * global data structures
147 */
148
149struct vm_map *kernel_map = NULL;
150
151/*
152 * local data structues
153 */
154
155static struct vm_map_kernel	kernel_map_store;
156static struct vm_map_entry	kernel_first_mapent_store;
157
158#if !defined(PMAP_MAP_POOLPAGE)
159
160/*
161 * kva cache
162 *
163 * XXX maybe it's better to do this at the uvm_map layer.
164 */
165
166#define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
167
168static void *km_vacache_alloc(struct pool *, int);
169static void km_vacache_free(struct pool *, void *);
170static void km_vacache_init(struct vm_map *, const char *, size_t);
171
172/* XXX */
173#define	KM_VACACHE_POOL_TO_MAP(pp) \
174	((struct vm_map *)((char *)(pp) - \
175	    offsetof(struct vm_map_kernel, vmk_vacache)))
176
177static void *
178km_vacache_alloc(struct pool *pp, int flags)
179{
180	vaddr_t va;
181	size_t size;
182	struct vm_map *map;
183	size = pp->pr_alloc->pa_pagesz;
184
185	map = KM_VACACHE_POOL_TO_MAP(pp);
186
187	va = vm_map_min(map); /* hint */
188	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191	    ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
192		return NULL;
193
194	return (void *)va;
195}
196
197static void
198km_vacache_free(struct pool *pp, void *v)
199{
200	vaddr_t va = (vaddr_t)v;
201	size_t size = pp->pr_alloc->pa_pagesz;
202	struct vm_map *map;
203
204	map = KM_VACACHE_POOL_TO_MAP(pp);
205	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
206}
207
208/*
209 * km_vacache_init: initialize kva cache.
210 */
211
212static void
213km_vacache_init(struct vm_map *map, const char *name, size_t size)
214{
215	struct vm_map_kernel *vmk;
216	struct pool *pp;
217	struct pool_allocator *pa;
218
219	KASSERT(VM_MAP_IS_KERNEL(map));
220	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
221
222	vmk = vm_map_to_kernel(map);
223	pp = &vmk->vmk_vacache;
224	pa = &vmk->vmk_vacache_allocator;
225	memset(pa, 0, sizeof(*pa));
226	pa->pa_alloc = km_vacache_alloc;
227	pa->pa_free = km_vacache_free;
228	pa->pa_pagesz = (unsigned int)size;
229	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
230
231	/* XXX for now.. */
232	pool_sethiwat(pp, 0);
233}
234
235void
236uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
237{
238
239	map->flags |= VM_MAP_VACACHE;
240	if (size == 0)
241		size = KM_VACACHE_SIZE;
242	km_vacache_init(map, name, size);
243}
244
245#else /* !defined(PMAP_MAP_POOLPAGE) */
246
247void
248uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
249{
250
251	/* nothing */
252}
253
254#endif /* !defined(PMAP_MAP_POOLPAGE) */
255
256/*
257 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
258 * KVM already allocated for text, data, bss, and static data structures).
259 *
260 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
261 *    we assume that [vmin -> start] has already been allocated and that
262 *    "end" is the end.
263 */
264
265void
266uvm_km_init(vaddr_t start, vaddr_t end)
267{
268	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
269
270	/*
271	 * next, init kernel memory objects.
272	 */
273
274	/* kernel_object: for pageable anonymous kernel memory */
275	uao_init();
276	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
277				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
278
279	/*
280	 * init the map and reserve any space that might already
281	 * have been allocated kernel space before installing.
282	 */
283
284	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
285	kernel_map_store.vmk_map.pmap = pmap_kernel();
286	if (start != base) {
287		int error;
288		struct uvm_map_args args;
289
290		error = uvm_map_prepare(&kernel_map_store.vmk_map,
291		    base, start - base,
292		    NULL, UVM_UNKNOWN_OFFSET, 0,
293		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
294		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
295		if (!error) {
296			kernel_first_mapent_store.flags =
297			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
298			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
299			    &kernel_first_mapent_store);
300		}
301
302		if (error)
303			panic(
304			    "uvm_km_init: could not reserve space for kernel");
305	}
306
307	/*
308	 * install!
309	 */
310
311	kernel_map = &kernel_map_store.vmk_map;
312	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
313}
314
315/*
316 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
317 * is allocated all references to that area of VM must go through it.  this
318 * allows the locking of VAs in kernel_map to be broken up into regions.
319 *
320 * => if `fixed' is true, *vmin specifies where the region described
321 *      by the submap must start
322 * => if submap is non NULL we use that as the submap, otherwise we
323 *	alloc a new map
324 */
325
326struct vm_map *
327uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
328    vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
329    struct vm_map_kernel *submap)
330{
331	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
332
333	KASSERT(vm_map_pmap(map) == pmap_kernel());
334
335	size = round_page(size);	/* round up to pagesize */
336
337	/*
338	 * first allocate a blank spot in the parent map
339	 */
340
341	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
342	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
343	    UVM_ADV_RANDOM, mapflags)) != 0) {
344	       panic("uvm_km_suballoc: unable to allocate space in parent map");
345	}
346
347	/*
348	 * set VM bounds (vmin is filled in by uvm_map)
349	 */
350
351	*vmax = *vmin + size;
352
353	/*
354	 * add references to pmap and create or init the submap
355	 */
356
357	pmap_reference(vm_map_pmap(map));
358	if (submap == NULL) {
359		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
360		if (submap == NULL)
361			panic("uvm_km_suballoc: unable to create submap");
362	}
363	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
364	submap->vmk_map.pmap = vm_map_pmap(map);
365
366	/*
367	 * now let uvm_map_submap plug in it...
368	 */
369
370	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
371		panic("uvm_km_suballoc: submap allocation failed");
372
373	return(&submap->vmk_map);
374}
375
376/*
377 * uvm_km_pgremove: remove pages from a kernel uvm_object.
378 *
379 * => when you unmap a part of anonymous kernel memory you want to toss
380 *    the pages right away.    (this gets called from uvm_unmap_...).
381 */
382
383void
384uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
385{
386	struct uvm_object * const uobj = uvm.kernel_object;
387	const voff_t start = startva - vm_map_min(kernel_map);
388	const voff_t end = endva - vm_map_min(kernel_map);
389	struct vm_page *pg;
390	voff_t curoff, nextoff;
391	int swpgonlydelta = 0;
392	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
393
394	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
395	KASSERT(startva < endva);
396	KASSERT(endva < VM_MAX_KERNEL_ADDRESS);
397
398	simple_lock(&uobj->vmobjlock);
399
400	for (curoff = start; curoff < end; curoff = nextoff) {
401		nextoff = curoff + PAGE_SIZE;
402		pg = uvm_pagelookup(uobj, curoff);
403		if (pg != NULL && pg->flags & PG_BUSY) {
404			pg->flags |= PG_WANTED;
405			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
406				    "km_pgrm", 0);
407			simple_lock(&uobj->vmobjlock);
408			nextoff = curoff;
409			continue;
410		}
411
412		/*
413		 * free the swap slot, then the page.
414		 */
415
416		if (pg == NULL &&
417		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
418			swpgonlydelta++;
419		}
420		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
421		if (pg != NULL) {
422			uvm_lock_pageq();
423			uvm_pagefree(pg);
424			uvm_unlock_pageq();
425		}
426	}
427	simple_unlock(&uobj->vmobjlock);
428
429	if (swpgonlydelta > 0) {
430		simple_lock(&uvm.swap_data_lock);
431		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
432		uvmexp.swpgonly -= swpgonlydelta;
433		simple_unlock(&uvm.swap_data_lock);
434	}
435}
436
437
438/*
439 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
440 *    regions.
441 *
442 * => when you unmap a part of anonymous kernel memory you want to toss
443 *    the pages right away.    (this is called from uvm_unmap_...).
444 * => none of the pages will ever be busy, and none of them will ever
445 *    be on the active or inactive queues (because they have no object).
446 */
447
448void
449uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
450{
451	struct vm_page *pg;
452	paddr_t pa;
453	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
454
455	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
456	KASSERT(start < end);
457	KASSERT(end < VM_MAX_KERNEL_ADDRESS);
458
459	for (; start < end; start += PAGE_SIZE) {
460		if (!pmap_extract(pmap_kernel(), start, &pa)) {
461			continue;
462		}
463		pg = PHYS_TO_VM_PAGE(pa);
464		KASSERT(pg);
465		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
466		uvm_pagefree(pg);
467	}
468}
469
470#if defined(DEBUG)
471void
472uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
473{
474	vaddr_t va;
475	paddr_t pa;
476
477	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
478	KDASSERT(start < end);
479	KDASSERT(end < VM_MAX_KERNEL_ADDRESS);
480
481	for (va = start; va < end; va += PAGE_SIZE) {
482		if (pmap_extract(pmap_kernel(), va, &pa)) {
483			panic("uvm_km_check_empty: va %p has pa 0x%llx",
484			    (void *)va, (long long)pa);
485		}
486		if (!intrsafe) {
487			const struct vm_page *pg;
488
489			simple_lock(&uvm.kernel_object->vmobjlock);
490			pg = uvm_pagelookup(uvm.kernel_object,
491			    va - vm_map_min(kernel_map));
492			simple_unlock(&uvm.kernel_object->vmobjlock);
493			if (pg) {
494				panic("uvm_km_check_empty: "
495				    "has page hashed at %p", (const void *)va);
496			}
497		}
498	}
499}
500#endif /* defined(DEBUG) */
501
502/*
503 * uvm_km_alloc: allocate an area of kernel memory.
504 *
505 * => NOTE: we can return 0 even if we can wait if there is not enough
506 *	free VM space in the map... caller should be prepared to handle
507 *	this case.
508 * => we return KVA of memory allocated
509 */
510
511vaddr_t
512uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
513{
514	vaddr_t kva, loopva;
515	vaddr_t offset;
516	vsize_t loopsize;
517	struct vm_page *pg;
518	struct uvm_object *obj;
519	int pgaflags;
520	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
521
522	KASSERT(vm_map_pmap(map) == pmap_kernel());
523	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
524		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
525		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
526
527	/*
528	 * setup for call
529	 */
530
531	kva = vm_map_min(map);	/* hint */
532	size = round_page(size);
533	obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
534	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
535		    map, obj, size, flags);
536
537	/*
538	 * allocate some virtual space
539	 */
540
541	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
542	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
543	    UVM_ADV_RANDOM,
544	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
545	    | UVM_FLAG_QUANTUM)) != 0)) {
546		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
547		return(0);
548	}
549
550	/*
551	 * if all we wanted was VA, return now
552	 */
553
554	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
555		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
556		return(kva);
557	}
558
559	/*
560	 * recover object offset from virtual address
561	 */
562
563	offset = kva - vm_map_min(kernel_map);
564	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
565
566	/*
567	 * now allocate and map in the memory... note that we are the only ones
568	 * whom should ever get a handle on this area of VM.
569	 */
570
571	loopva = kva;
572	loopsize = size;
573
574	pgaflags = UVM_PGA_USERESERVE;
575	if (flags & UVM_KMF_ZERO)
576		pgaflags |= UVM_PGA_ZERO;
577	while (loopsize) {
578		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
579
580		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
581
582		/*
583		 * out of memory?
584		 */
585
586		if (__predict_false(pg == NULL)) {
587			if ((flags & UVM_KMF_NOWAIT) ||
588			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
589				/* free everything! */
590				uvm_km_free(map, kva, size,
591				    flags & UVM_KMF_TYPEMASK);
592				return (0);
593			} else {
594				uvm_wait("km_getwait2");	/* sleep here */
595				continue;
596			}
597		}
598
599		pg->flags &= ~PG_BUSY;	/* new page */
600		UVM_PAGE_OWN(pg, NULL);
601
602		/*
603		 * map it in
604		 */
605
606		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
607		    VM_PROT_READ | VM_PROT_WRITE);
608		loopva += PAGE_SIZE;
609		offset += PAGE_SIZE;
610		loopsize -= PAGE_SIZE;
611	}
612
613       	pmap_update(pmap_kernel());
614
615	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
616	return(kva);
617}
618
619/*
620 * uvm_km_free: free an area of kernel memory
621 */
622
623void
624uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
625{
626
627	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
628		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
629		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
630	KASSERT((addr & PAGE_MASK) == 0);
631	KASSERT(vm_map_pmap(map) == pmap_kernel());
632
633	size = round_page(size);
634
635	if (flags & UVM_KMF_PAGEABLE) {
636		uvm_km_pgremove(addr, addr + size);
637		pmap_remove(pmap_kernel(), addr, addr + size);
638	} else if (flags & UVM_KMF_WIRED) {
639		uvm_km_pgremove_intrsafe(addr, addr + size);
640		pmap_kremove(addr, size);
641	}
642
643	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
644}
645
646/* Sanity; must specify both or none. */
647#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
648    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
649#error Must specify MAP and UNMAP together.
650#endif
651
652/*
653 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
654 *
655 * => if the pmap specifies an alternate mapping method, we use it.
656 */
657
658/* ARGSUSED */
659vaddr_t
660uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
661{
662#if defined(PMAP_MAP_POOLPAGE)
663	return uvm_km_alloc_poolpage(map, waitok);
664#else
665	struct vm_page *pg;
666	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
667	vaddr_t va;
668	int s = 0xdeadbeaf; /* XXX: gcc */
669	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
670
671	if ((map->flags & VM_MAP_VACACHE) == 0)
672		return uvm_km_alloc_poolpage(map, waitok);
673
674	if (intrsafe)
675		s = splvm();
676	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
677	if (intrsafe)
678		splx(s);
679	if (va == 0)
680		return 0;
681	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
682again:
683	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
684	if (__predict_false(pg == NULL)) {
685		if (waitok) {
686			uvm_wait("plpg");
687			goto again;
688		} else {
689			if (intrsafe)
690				s = splvm();
691			pool_put(pp, (void *)va);
692			if (intrsafe)
693				splx(s);
694			return 0;
695		}
696	}
697	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
698	pmap_update(pmap_kernel());
699
700	return va;
701#endif /* PMAP_MAP_POOLPAGE */
702}
703
704vaddr_t
705uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
706{
707#if defined(PMAP_MAP_POOLPAGE)
708	struct vm_page *pg;
709	vaddr_t va;
710
711 again:
712	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
713	if (__predict_false(pg == NULL)) {
714		if (waitok) {
715			uvm_wait("plpg");
716			goto again;
717		} else
718			return (0);
719	}
720	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
721	if (__predict_false(va == 0))
722		uvm_pagefree(pg);
723	return (va);
724#else
725	vaddr_t va;
726	int s = 0xdeadbeaf; /* XXX: gcc */
727	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
728
729	if (intrsafe)
730		s = splvm();
731	va = uvm_km_alloc(map, PAGE_SIZE, 0,
732	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
733	if (intrsafe)
734		splx(s);
735	return (va);
736#endif /* PMAP_MAP_POOLPAGE */
737}
738
739/*
740 * uvm_km_free_poolpage: free a previously allocated pool page
741 *
742 * => if the pmap specifies an alternate unmapping method, we use it.
743 */
744
745/* ARGSUSED */
746void
747uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
748{
749#if defined(PMAP_UNMAP_POOLPAGE)
750	uvm_km_free_poolpage(map, addr);
751#else
752	struct pool *pp;
753	int s = 0xdeadbeaf; /* XXX: gcc */
754	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
755
756	if ((map->flags & VM_MAP_VACACHE) == 0) {
757		uvm_km_free_poolpage(map, addr);
758		return;
759	}
760
761	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
762	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
763	pmap_kremove(addr, PAGE_SIZE);
764#if defined(DEBUG)
765	pmap_update(pmap_kernel());
766#endif
767	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
768	pp = &vm_map_to_kernel(map)->vmk_vacache;
769	if (intrsafe)
770		s = splvm();
771	pool_put(pp, (void *)addr);
772	if (intrsafe)
773		splx(s);
774#endif
775}
776
777/* ARGSUSED */
778void
779uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
780{
781#if defined(PMAP_UNMAP_POOLPAGE)
782	paddr_t pa;
783
784	pa = PMAP_UNMAP_POOLPAGE(addr);
785	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
786#else
787	int s = 0xdeadbeaf; /* XXX: gcc */
788	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
789
790	if (intrsafe)
791		s = splvm();
792	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
793	if (intrsafe)
794		splx(s);
795#endif /* PMAP_UNMAP_POOLPAGE */
796}
797