uvm_km.c revision 1.73
1/*	$NetBSD: uvm_km.c,v 1.73 2005/01/03 04:01:13 yamt Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73/*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps."   submaps can only appear in
81 * the kernel_map (user processes can't use them).   submaps "take over"
82 * the management of a sub-range of the kernel's address space.  submaps
83 * are typically allocated at boot time and are never released.   kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 *   kmem_map => contains only wired kernel memory for the kernel
93 *		malloc.   *** access to kmem_map must be protected
94 *		by splvm() because we are allowed to call malloc()
95 *		at interrupt time ***
96 *   mb_map => memory for large mbufs,  *** protected by splvm ***
97 *   pager_map => used to map "buf" structures into kernel space
98 *   exec_map => used during exec to handle exec args
99 *   etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die).   all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object.   the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm().  pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode).    for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
126 *   then that means that the page at offset 0x235000 in kernel_object is
127 *   mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away.   this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136#include <sys/cdefs.h>
137__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.73 2005/01/03 04:01:13 yamt Exp $");
138
139#include "opt_uvmhist.h"
140
141#include <sys/param.h>
142#include <sys/malloc.h>
143#include <sys/systm.h>
144#include <sys/proc.h>
145#include <sys/pool.h>
146
147#include <uvm/uvm.h>
148
149/*
150 * global data structures
151 */
152
153struct vm_map *kernel_map = NULL;
154
155/*
156 * local data structues
157 */
158
159static struct vm_map_kernel	kernel_map_store;
160static struct vm_map_entry	kernel_first_mapent_store;
161
162#if !defined(PMAP_MAP_POOLPAGE)
163
164/*
165 * kva cache
166 *
167 * XXX maybe it's better to do this at the uvm_map layer.
168 */
169
170#define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
171
172static void *km_vacache_alloc(struct pool *, int);
173static void km_vacache_free(struct pool *, void *);
174static void km_vacache_init(struct vm_map *, const char *, size_t);
175
176/* XXX */
177#define	KM_VACACHE_POOL_TO_MAP(pp) \
178	((struct vm_map *)((char *)(pp) - \
179	    offsetof(struct vm_map_kernel, vmk_vacache)))
180
181static void *
182km_vacache_alloc(struct pool *pp, int flags)
183{
184	vaddr_t va;
185	size_t size;
186	struct vm_map *map;
187#if defined(DEBUG)
188	vaddr_t loopva;
189#endif
190	size = pp->pr_alloc->pa_pagesz;
191
192	map = KM_VACACHE_POOL_TO_MAP(pp);
193
194	va = vm_map_min(map); /* hint */
195	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
196	    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
197	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
198	    ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
199		return NULL;
200
201#if defined(DEBUG)
202	for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
203		if (pmap_extract(pmap_kernel(), loopva, NULL))
204			panic("km_vacache_free: has mapping");
205	}
206#endif
207
208	return (void *)va;
209}
210
211static void
212km_vacache_free(struct pool *pp, void *v)
213{
214	vaddr_t va = (vaddr_t)v;
215	size_t size = pp->pr_alloc->pa_pagesz;
216	struct vm_map *map;
217#if defined(DEBUG)
218	vaddr_t loopva;
219
220	for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
221		if (pmap_extract(pmap_kernel(), loopva, NULL))
222			panic("km_vacache_free: has mapping");
223	}
224#endif
225	map = KM_VACACHE_POOL_TO_MAP(pp);
226	uvm_unmap(map, va, va + size);
227}
228
229/*
230 * km_vacache_init: initialize kva cache.
231 */
232
233static void
234km_vacache_init(struct vm_map *map, const char *name, size_t size)
235{
236	struct vm_map_kernel *vmk;
237	struct pool *pp;
238	struct pool_allocator *pa;
239
240	KASSERT(VM_MAP_IS_KERNEL(map));
241	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
242
243	vmk = vm_map_to_kernel(map);
244	pp = &vmk->vmk_vacache;
245	pa = &vmk->vmk_vacache_allocator;
246	memset(pa, 0, sizeof(*pa));
247	pa->pa_alloc = km_vacache_alloc;
248	pa->pa_free = km_vacache_free;
249	pa->pa_pagesz = (unsigned int)size;
250	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
251
252	/* XXX for now.. */
253	pool_sethiwat(pp, 0);
254}
255
256void
257uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
258{
259
260	map->flags |= VM_MAP_VACACHE;
261	if (size == 0)
262		size = KM_VACACHE_SIZE;
263	km_vacache_init(map, name, size);
264}
265
266#else /* !defined(PMAP_MAP_POOLPAGE) */
267
268void
269uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
270{
271
272	/* nothing */
273}
274
275#endif /* !defined(PMAP_MAP_POOLPAGE) */
276
277/*
278 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
279 * KVM already allocated for text, data, bss, and static data structures).
280 *
281 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
282 *    we assume that [min -> start] has already been allocated and that
283 *    "end" is the end.
284 */
285
286void
287uvm_km_init(start, end)
288	vaddr_t start, end;
289{
290	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
291
292	/*
293	 * next, init kernel memory objects.
294	 */
295
296	/* kernel_object: for pageable anonymous kernel memory */
297	uao_init();
298	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
299				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
300
301	/*
302	 * init the map and reserve any space that might already
303	 * have been allocated kernel space before installing.
304	 */
305
306	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
307	kernel_map_store.vmk_map.pmap = pmap_kernel();
308	if (start != base) {
309		int error;
310		struct uvm_map_args args;
311
312		error = uvm_map_prepare(&kernel_map_store.vmk_map,
313		    base, start - base,
314		    NULL, UVM_UNKNOWN_OFFSET, 0,
315		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
316		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
317		if (!error) {
318			kernel_first_mapent_store.flags =
319			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
320			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
321			    &kernel_first_mapent_store);
322		}
323
324		if (error)
325			panic(
326			    "uvm_km_init: could not reserve space for kernel");
327	}
328
329	/*
330	 * install!
331	 */
332
333	kernel_map = &kernel_map_store.vmk_map;
334	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
335}
336
337/*
338 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
339 * is allocated all references to that area of VM must go through it.  this
340 * allows the locking of VAs in kernel_map to be broken up into regions.
341 *
342 * => if `fixed' is true, *min specifies where the region described
343 *      by the submap must start
344 * => if submap is non NULL we use that as the submap, otherwise we
345 *	alloc a new map
346 */
347struct vm_map *
348uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
349	struct vm_map *map;
350	vaddr_t *min, *max;		/* IN/OUT, OUT */
351	vsize_t size;
352	int flags;
353	boolean_t fixed;
354	struct vm_map_kernel *submap;
355{
356	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
357
358	KASSERT(vm_map_pmap(map) == pmap_kernel());
359
360	size = round_page(size);	/* round up to pagesize */
361
362	/*
363	 * first allocate a blank spot in the parent map
364	 */
365
366	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
367	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
368	    UVM_ADV_RANDOM, mapflags)) != 0) {
369	       panic("uvm_km_suballoc: unable to allocate space in parent map");
370	}
371
372	/*
373	 * set VM bounds (min is filled in by uvm_map)
374	 */
375
376	*max = *min + size;
377
378	/*
379	 * add references to pmap and create or init the submap
380	 */
381
382	pmap_reference(vm_map_pmap(map));
383	if (submap == NULL) {
384		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
385		if (submap == NULL)
386			panic("uvm_km_suballoc: unable to create submap");
387	}
388	uvm_map_setup_kernel(submap, *min, *max, flags);
389	submap->vmk_map.pmap = vm_map_pmap(map);
390
391	/*
392	 * now let uvm_map_submap plug in it...
393	 */
394
395	if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
396		panic("uvm_km_suballoc: submap allocation failed");
397
398	return(&submap->vmk_map);
399}
400
401/*
402 * uvm_km_pgremove: remove pages from a kernel uvm_object.
403 *
404 * => when you unmap a part of anonymous kernel memory you want to toss
405 *    the pages right away.    (this gets called from uvm_unmap_...).
406 */
407
408void
409uvm_km_pgremove(uobj, start, end)
410	struct uvm_object *uobj;
411	vaddr_t start, end;
412{
413	struct vm_page *pg;
414	voff_t curoff, nextoff;
415	int swpgonlydelta = 0;
416	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
417
418	KASSERT(uobj->pgops == &aobj_pager);
419	simple_lock(&uobj->vmobjlock);
420
421	for (curoff = start; curoff < end; curoff = nextoff) {
422		nextoff = curoff + PAGE_SIZE;
423		pg = uvm_pagelookup(uobj, curoff);
424		if (pg != NULL && pg->flags & PG_BUSY) {
425			pg->flags |= PG_WANTED;
426			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
427				    "km_pgrm", 0);
428			simple_lock(&uobj->vmobjlock);
429			nextoff = curoff;
430			continue;
431		}
432
433		/*
434		 * free the swap slot, then the page.
435		 */
436
437		if (pg == NULL &&
438		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
439			swpgonlydelta++;
440		}
441		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
442		if (pg != NULL) {
443			uvm_lock_pageq();
444			uvm_pagefree(pg);
445			uvm_unlock_pageq();
446		}
447	}
448	simple_unlock(&uobj->vmobjlock);
449
450	if (swpgonlydelta > 0) {
451		simple_lock(&uvm.swap_data_lock);
452		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
453		uvmexp.swpgonly -= swpgonlydelta;
454		simple_unlock(&uvm.swap_data_lock);
455	}
456}
457
458
459/*
460 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
461 *    maps
462 *
463 * => when you unmap a part of anonymous kernel memory you want to toss
464 *    the pages right away.    (this is called from uvm_unmap_...).
465 * => none of the pages will ever be busy, and none of them will ever
466 *    be on the active or inactive queues (because they have no object).
467 */
468
469void
470uvm_km_pgremove_intrsafe(start, end)
471	vaddr_t start, end;
472{
473	struct vm_page *pg;
474	paddr_t pa;
475	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
476
477	for (; start < end; start += PAGE_SIZE) {
478		if (!pmap_extract(pmap_kernel(), start, &pa)) {
479			continue;
480		}
481		pg = PHYS_TO_VM_PAGE(pa);
482		KASSERT(pg);
483		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
484		uvm_pagefree(pg);
485	}
486}
487
488
489/*
490 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
491 *
492 * => we map wired memory into the specified map using the obj passed in
493 * => NOTE: we can return NULL even if we can wait if there is not enough
494 *	free VM space in the map... caller should be prepared to handle
495 *	this case.
496 * => we return KVA of memory allocated
497 * => align,prefer - passed on to uvm_map()
498 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
499 *	lock the map
500 */
501
502vaddr_t
503uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
504	struct vm_map *map;
505	struct uvm_object *obj;
506	vsize_t size;
507	vsize_t align;
508	voff_t prefer;
509	int flags;
510{
511	vaddr_t kva, loopva;
512	vaddr_t offset;
513	vsize_t loopsize;
514	struct vm_page *pg;
515	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
516
517	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
518		    map, obj, size, flags);
519	KASSERT(vm_map_pmap(map) == pmap_kernel());
520
521	/*
522	 * setup for call
523	 */
524
525	size = round_page(size);
526	kva = vm_map_min(map);	/* hint */
527
528	/*
529	 * allocate some virtual space
530	 */
531
532	if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
533		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
534			    UVM_ADV_RANDOM,
535			    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
536			    | UVM_FLAG_QUANTUM))
537			!= 0)) {
538		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
539		return(0);
540	}
541
542	/*
543	 * if all we wanted was VA, return now
544	 */
545
546	if (flags & UVM_KMF_VALLOC) {
547		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
548		return(kva);
549	}
550
551	/*
552	 * recover object offset from virtual address
553	 */
554
555	offset = kva - vm_map_min(kernel_map);
556	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
557
558	/*
559	 * now allocate and map in the memory... note that we are the only ones
560	 * whom should ever get a handle on this area of VM.
561	 */
562
563	loopva = kva;
564	loopsize = size;
565	while (loopsize) {
566		if (obj) {
567			simple_lock(&obj->vmobjlock);
568		}
569		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
570		if (__predict_true(pg != NULL)) {
571			pg->flags &= ~PG_BUSY;	/* new page */
572			UVM_PAGE_OWN(pg, NULL);
573		}
574		if (obj) {
575			simple_unlock(&obj->vmobjlock);
576		}
577
578		/*
579		 * out of memory?
580		 */
581
582		if (__predict_false(pg == NULL)) {
583			if ((flags & UVM_KMF_NOWAIT) ||
584			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
585				/* free everything! */
586				uvm_unmap(map, kva, kva + size);
587				return (0);
588			} else {
589				uvm_wait("km_getwait2");	/* sleep here */
590				continue;
591			}
592		}
593
594		/*
595		 * map it in
596		 */
597
598		if (obj == NULL) {
599			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
600			    VM_PROT_READ | VM_PROT_WRITE);
601		} else {
602			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
603			    UVM_PROT_ALL,
604			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
605		}
606		loopva += PAGE_SIZE;
607		offset += PAGE_SIZE;
608		loopsize -= PAGE_SIZE;
609	}
610
611       	pmap_update(pmap_kernel());
612
613	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
614	return(kva);
615}
616
617/*
618 * uvm_km_free: free an area of kernel memory
619 */
620
621void
622uvm_km_free(map, addr, size)
623	struct vm_map *map;
624	vaddr_t addr;
625	vsize_t size;
626{
627	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
628}
629
630/*
631 * uvm_km_free_wakeup: free an area of kernel memory and wake up
632 * anyone waiting for vm space.
633 *
634 * => XXX: "wanted" bit + unlock&wait on other end?
635 */
636
637void
638uvm_km_free_wakeup(map, addr, size)
639	struct vm_map *map;
640	vaddr_t addr;
641	vsize_t size;
642{
643	struct vm_map_entry *dead_entries;
644
645	vm_map_lock(map);
646	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
647	    &dead_entries, NULL);
648	wakeup(map);
649	vm_map_unlock(map);
650	if (dead_entries != NULL)
651		uvm_unmap_detach(dead_entries, 0);
652}
653
654/*
655 * uvm_km_alloc1: allocate wired down memory in the kernel map.
656 *
657 * => we can sleep if needed
658 */
659
660vaddr_t
661uvm_km_alloc1(map, size, zeroit)
662	struct vm_map *map;
663	vsize_t size;
664	boolean_t zeroit;
665{
666	vaddr_t kva, loopva, offset;
667	struct vm_page *pg;
668	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
669
670	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
671	KASSERT(vm_map_pmap(map) == pmap_kernel());
672
673	size = round_page(size);
674	kva = vm_map_min(map);		/* hint */
675
676	/*
677	 * allocate some virtual space
678	 */
679
680	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
681	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
682					      UVM_INH_NONE, UVM_ADV_RANDOM,
683					      UVM_FLAG_QUANTUM)) != 0)) {
684		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
685		return(0);
686	}
687
688	/*
689	 * recover object offset from virtual address
690	 */
691
692	offset = kva - vm_map_min(kernel_map);
693	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
694
695	/*
696	 * now allocate the memory.
697	 */
698
699	loopva = kva;
700	while (size) {
701		simple_lock(&uvm.kernel_object->vmobjlock);
702		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
703		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
704		if (pg) {
705			pg->flags &= ~PG_BUSY;
706			UVM_PAGE_OWN(pg, NULL);
707		}
708		simple_unlock(&uvm.kernel_object->vmobjlock);
709		if (pg == NULL) {
710			uvm_wait("km_alloc1w");
711			continue;
712		}
713		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
714		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
715		loopva += PAGE_SIZE;
716		offset += PAGE_SIZE;
717		size -= PAGE_SIZE;
718	}
719	pmap_update(map->pmap);
720
721	/*
722	 * zero on request (note that "size" is now zero due to the above loop
723	 * so we need to subtract kva from loopva to reconstruct the size).
724	 */
725
726	if (zeroit)
727		memset((caddr_t)kva, 0, loopva - kva);
728	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
729	return(kva);
730}
731
732/*
733 * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
734 *
735 * => memory is not allocated until fault time
736 * => the align, prefer and flags parameters are passed on to uvm_map().
737 *
738 * Note: this function is also the backend for these macros:
739 *	uvm_km_valloc
740 *	uvm_km_valloc_wait
741 *	uvm_km_valloc_prefer
742 *	uvm_km_valloc_prefer_wait
743 *	uvm_km_valloc_align
744 */
745
746vaddr_t
747uvm_km_valloc1(map, size, align, prefer, flags)
748	struct vm_map *map;
749	vsize_t size;
750	vsize_t align;
751	voff_t prefer;
752	uvm_flag_t flags;
753{
754	vaddr_t kva;
755	UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
756
757	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
758		    map, size, align, prefer);
759
760	KASSERT(vm_map_pmap(map) == pmap_kernel());
761
762	size = round_page(size);
763	/*
764	 * Check if requested size is larger than the map, in which
765	 * case we can't succeed.
766	 */
767	if (size > vm_map_max(map) - vm_map_min(map))
768		return (0);
769
770	flags |= UVM_FLAG_QUANTUM;
771	for (;;) {
772		kva = vm_map_min(map);		/* hint */
773
774		/*
775		 * allocate some virtual space.   will be demand filled
776		 * by kernel_object.
777		 */
778
779		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
780		    prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
781		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
782		    == 0)) {
783			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
784			return (kva);
785		}
786
787		/*
788		 * failed.  sleep for a while (on map)
789		 */
790		if ((flags & UVM_KMF_NOWAIT) != 0)
791			return (0);
792
793		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
794		tsleep((caddr_t)map, PVM, "vallocwait", 0);
795	}
796	/*NOTREACHED*/
797}
798
799/* Function definitions for binary compatibility */
800vaddr_t
801uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
802		 vsize_t sz, int flags)
803{
804	return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
805}
806
807vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
808{
809	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
810}
811
812vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
813{
814	return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
815}
816
817vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
818{
819	return uvm_km_valloc1(map, sz, 0, prefer, 0);
820}
821
822vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
823{
824	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
825}
826
827/* Sanity; must specify both or none. */
828#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
829    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
830#error Must specify MAP and UNMAP together.
831#endif
832
833/*
834 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
835 *
836 * => if the pmap specifies an alternate mapping method, we use it.
837 */
838
839/* ARGSUSED */
840vaddr_t
841uvm_km_alloc_poolpage_cache(map, obj, waitok)
842	struct vm_map *map;
843	struct uvm_object *obj;
844	boolean_t waitok;
845{
846#if defined(PMAP_MAP_POOLPAGE)
847	return uvm_km_alloc_poolpage1(map, obj, waitok);
848#else
849	struct vm_page *pg;
850	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
851	vaddr_t va;
852	int s = 0xdeadbeaf; /* XXX: gcc */
853	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
854
855	if ((map->flags & VM_MAP_VACACHE) == 0)
856		return uvm_km_alloc_poolpage1(map, obj, waitok);
857
858	if (intrsafe)
859		s = splvm();
860	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
861	if (intrsafe)
862		splx(s);
863	if (va == 0)
864		return 0;
865	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
866again:
867	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
868	if (__predict_false(pg == NULL)) {
869		if (waitok) {
870			uvm_wait("plpg");
871			goto again;
872		} else {
873			if (intrsafe)
874				s = splvm();
875			pool_put(pp, (void *)va);
876			if (intrsafe)
877				splx(s);
878			return 0;
879		}
880	}
881	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
882	    VM_PROT_READ|VM_PROT_WRITE);
883	pmap_update(pmap_kernel());
884
885	return va;
886#endif /* PMAP_MAP_POOLPAGE */
887}
888
889vaddr_t
890uvm_km_alloc_poolpage1(map, obj, waitok)
891	struct vm_map *map;
892	struct uvm_object *obj;
893	boolean_t waitok;
894{
895#if defined(PMAP_MAP_POOLPAGE)
896	struct vm_page *pg;
897	vaddr_t va;
898
899 again:
900	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
901	if (__predict_false(pg == NULL)) {
902		if (waitok) {
903			uvm_wait("plpg");
904			goto again;
905		} else
906			return (0);
907	}
908	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
909	if (__predict_false(va == 0))
910		uvm_pagefree(pg);
911	return (va);
912#else
913	vaddr_t va;
914	int s = 0xdeadbeaf; /* XXX: gcc */
915	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
916
917	if (intrsafe)
918		s = splvm();
919	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
920	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
921	if (intrsafe)
922		splx(s);
923	return (va);
924#endif /* PMAP_MAP_POOLPAGE */
925}
926
927/*
928 * uvm_km_free_poolpage: free a previously allocated pool page
929 *
930 * => if the pmap specifies an alternate unmapping method, we use it.
931 */
932
933/* ARGSUSED */
934void
935uvm_km_free_poolpage_cache(map, addr)
936	struct vm_map *map;
937	vaddr_t addr;
938{
939#if defined(PMAP_UNMAP_POOLPAGE)
940	uvm_km_free_poolpage1(map, addr);
941#else
942	struct pool *pp;
943	int s = 0xdeadbeaf; /* XXX: gcc */
944	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
945
946	if ((map->flags & VM_MAP_VACACHE) == 0) {
947		uvm_km_free_poolpage1(map, addr);
948		return;
949	}
950
951	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
952	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
953	pmap_kremove(addr, PAGE_SIZE);
954#if defined(DEBUG)
955	pmap_update(pmap_kernel());
956#endif
957	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
958	pp = &vm_map_to_kernel(map)->vmk_vacache;
959	if (intrsafe)
960		s = splvm();
961	pool_put(pp, (void *)addr);
962	if (intrsafe)
963		splx(s);
964#endif
965}
966
967/* ARGSUSED */
968void
969uvm_km_free_poolpage1(map, addr)
970	struct vm_map *map;
971	vaddr_t addr;
972{
973#if defined(PMAP_UNMAP_POOLPAGE)
974	paddr_t pa;
975
976	pa = PMAP_UNMAP_POOLPAGE(addr);
977	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
978#else
979	int s = 0xdeadbeaf; /* XXX: gcc */
980	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
981
982	if (intrsafe)
983		s = splvm();
984	uvm_km_free(map, addr, PAGE_SIZE);
985	if (intrsafe)
986		splx(s);
987#endif /* PMAP_UNMAP_POOLPAGE */
988}
989