uvm_km.c revision 1.71
1/*	$NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73/*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps."   submaps can only appear in
81 * the kernel_map (user processes can't use them).   submaps "take over"
82 * the management of a sub-range of the kernel's address space.  submaps
83 * are typically allocated at boot time and are never released.   kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 *   kmem_map => contains only wired kernel memory for the kernel
93 *		malloc.   *** access to kmem_map must be protected
94 *		by splvm() because we are allowed to call malloc()
95 *		at interrupt time ***
96 *   mb_map => memory for large mbufs,  *** protected by splvm ***
97 *   pager_map => used to map "buf" structures into kernel space
98 *   exec_map => used during exec to handle exec args
99 *   etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die).   all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object.   the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm().  pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode).    for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
126 *   then that means that the page at offset 0x235000 in kernel_object is
127 *   mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away.   this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136#include <sys/cdefs.h>
137__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $");
138
139#include "opt_uvmhist.h"
140
141#include <sys/param.h>
142#include <sys/malloc.h>
143#include <sys/systm.h>
144#include <sys/proc.h>
145
146#include <uvm/uvm.h>
147
148/*
149 * global data structures
150 */
151
152struct vm_map *kernel_map = NULL;
153
154/*
155 * local data structues
156 */
157
158static struct vm_map_kernel	kernel_map_store;
159static struct vm_map_entry	kernel_first_mapent_store;
160
161/*
162 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
163 * KVM already allocated for text, data, bss, and static data structures).
164 *
165 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
166 *    we assume that [min -> start] has already been allocated and that
167 *    "end" is the end.
168 */
169
170void
171uvm_km_init(start, end)
172	vaddr_t start, end;
173{
174	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
175
176	/*
177	 * next, init kernel memory objects.
178	 */
179
180	/* kernel_object: for pageable anonymous kernel memory */
181	uao_init();
182	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
183				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
184
185	/*
186	 * init the map and reserve any space that might already
187	 * have been allocated kernel space before installing.
188	 */
189
190	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
191	kernel_map_store.vmk_map.pmap = pmap_kernel();
192	if (start != base) {
193		int error;
194		struct uvm_map_args args;
195
196		error = uvm_map_prepare(&kernel_map_store.vmk_map,
197		    base, start - base,
198		    NULL, UVM_UNKNOWN_OFFSET, 0,
199		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
200		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
201		if (!error) {
202			kernel_first_mapent_store.flags =
203			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
204			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
205			    &kernel_first_mapent_store);
206		}
207
208		if (error)
209			panic(
210			    "uvm_km_init: could not reserve space for kernel");
211	}
212
213	/*
214	 * install!
215	 */
216
217	kernel_map = &kernel_map_store.vmk_map;
218}
219
220/*
221 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
222 * is allocated all references to that area of VM must go through it.  this
223 * allows the locking of VAs in kernel_map to be broken up into regions.
224 *
225 * => if `fixed' is true, *min specifies where the region described
226 *      by the submap must start
227 * => if submap is non NULL we use that as the submap, otherwise we
228 *	alloc a new map
229 */
230struct vm_map *
231uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
232	struct vm_map *map;
233	vaddr_t *min, *max;		/* IN/OUT, OUT */
234	vsize_t size;
235	int flags;
236	boolean_t fixed;
237	struct vm_map_kernel *submap;
238{
239	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
240
241	KASSERT(vm_map_pmap(map) == pmap_kernel());
242
243	size = round_page(size);	/* round up to pagesize */
244
245	/*
246	 * first allocate a blank spot in the parent map
247	 */
248
249	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
250	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
251	    UVM_ADV_RANDOM, mapflags)) != 0) {
252	       panic("uvm_km_suballoc: unable to allocate space in parent map");
253	}
254
255	/*
256	 * set VM bounds (min is filled in by uvm_map)
257	 */
258
259	*max = *min + size;
260
261	/*
262	 * add references to pmap and create or init the submap
263	 */
264
265	pmap_reference(vm_map_pmap(map));
266	if (submap == NULL) {
267		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
268		if (submap == NULL)
269			panic("uvm_km_suballoc: unable to create submap");
270	}
271	uvm_map_setup_kernel(submap, *min, *max, flags);
272	submap->vmk_map.pmap = vm_map_pmap(map);
273
274	/*
275	 * now let uvm_map_submap plug in it...
276	 */
277
278	if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
279		panic("uvm_km_suballoc: submap allocation failed");
280
281	return(&submap->vmk_map);
282}
283
284/*
285 * uvm_km_pgremove: remove pages from a kernel uvm_object.
286 *
287 * => when you unmap a part of anonymous kernel memory you want to toss
288 *    the pages right away.    (this gets called from uvm_unmap_...).
289 */
290
291void
292uvm_km_pgremove(uobj, start, end)
293	struct uvm_object *uobj;
294	vaddr_t start, end;
295{
296	struct vm_page *pg;
297	voff_t curoff, nextoff;
298	int swpgonlydelta = 0;
299	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
300
301	KASSERT(uobj->pgops == &aobj_pager);
302	simple_lock(&uobj->vmobjlock);
303
304	for (curoff = start; curoff < end; curoff = nextoff) {
305		nextoff = curoff + PAGE_SIZE;
306		pg = uvm_pagelookup(uobj, curoff);
307		if (pg != NULL && pg->flags & PG_BUSY) {
308			pg->flags |= PG_WANTED;
309			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
310				    "km_pgrm", 0);
311			simple_lock(&uobj->vmobjlock);
312			nextoff = curoff;
313			continue;
314		}
315
316		/*
317		 * free the swap slot, then the page.
318		 */
319
320		if (pg == NULL &&
321		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
322			swpgonlydelta++;
323		}
324		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
325		if (pg != NULL) {
326			uvm_lock_pageq();
327			uvm_pagefree(pg);
328			uvm_unlock_pageq();
329		}
330	}
331	simple_unlock(&uobj->vmobjlock);
332
333	if (swpgonlydelta > 0) {
334		simple_lock(&uvm.swap_data_lock);
335		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
336		uvmexp.swpgonly -= swpgonlydelta;
337		simple_unlock(&uvm.swap_data_lock);
338	}
339}
340
341
342/*
343 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
344 *    maps
345 *
346 * => when you unmap a part of anonymous kernel memory you want to toss
347 *    the pages right away.    (this is called from uvm_unmap_...).
348 * => none of the pages will ever be busy, and none of them will ever
349 *    be on the active or inactive queues (because they have no object).
350 */
351
352void
353uvm_km_pgremove_intrsafe(start, end)
354	vaddr_t start, end;
355{
356	struct vm_page *pg;
357	paddr_t pa;
358	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
359
360	for (; start < end; start += PAGE_SIZE) {
361		if (!pmap_extract(pmap_kernel(), start, &pa)) {
362			continue;
363		}
364		pg = PHYS_TO_VM_PAGE(pa);
365		KASSERT(pg);
366		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
367		uvm_pagefree(pg);
368	}
369}
370
371
372/*
373 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
374 *
375 * => we map wired memory into the specified map using the obj passed in
376 * => NOTE: we can return NULL even if we can wait if there is not enough
377 *	free VM space in the map... caller should be prepared to handle
378 *	this case.
379 * => we return KVA of memory allocated
380 * => align,prefer - passed on to uvm_map()
381 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
382 *	lock the map
383 */
384
385vaddr_t
386uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
387	struct vm_map *map;
388	struct uvm_object *obj;
389	vsize_t size;
390	vsize_t align;
391	voff_t prefer;
392	int flags;
393{
394	vaddr_t kva, loopva;
395	vaddr_t offset;
396	vsize_t loopsize;
397	struct vm_page *pg;
398	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
399
400	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
401		    map, obj, size, flags);
402	KASSERT(vm_map_pmap(map) == pmap_kernel());
403
404	/*
405	 * setup for call
406	 */
407
408	size = round_page(size);
409	kva = vm_map_min(map);	/* hint */
410
411	/*
412	 * allocate some virtual space
413	 */
414
415	if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
416		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
417			    UVM_ADV_RANDOM,
418			    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
419			    | UVM_FLAG_QUANTUM))
420			!= 0)) {
421		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
422		return(0);
423	}
424
425	/*
426	 * if all we wanted was VA, return now
427	 */
428
429	if (flags & UVM_KMF_VALLOC) {
430		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
431		return(kva);
432	}
433
434	/*
435	 * recover object offset from virtual address
436	 */
437
438	offset = kva - vm_map_min(kernel_map);
439	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
440
441	/*
442	 * now allocate and map in the memory... note that we are the only ones
443	 * whom should ever get a handle on this area of VM.
444	 */
445
446	loopva = kva;
447	loopsize = size;
448	while (loopsize) {
449		if (obj) {
450			simple_lock(&obj->vmobjlock);
451		}
452		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
453		if (__predict_true(pg != NULL)) {
454			pg->flags &= ~PG_BUSY;	/* new page */
455			UVM_PAGE_OWN(pg, NULL);
456		}
457		if (obj) {
458			simple_unlock(&obj->vmobjlock);
459		}
460
461		/*
462		 * out of memory?
463		 */
464
465		if (__predict_false(pg == NULL)) {
466			if ((flags & UVM_KMF_NOWAIT) ||
467			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
468				/* free everything! */
469				uvm_unmap(map, kva, kva + size);
470				return (0);
471			} else {
472				uvm_wait("km_getwait2");	/* sleep here */
473				continue;
474			}
475		}
476
477		/*
478		 * map it in
479		 */
480
481		if (obj == NULL) {
482			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
483			    VM_PROT_READ | VM_PROT_WRITE);
484		} else {
485			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
486			    UVM_PROT_ALL,
487			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
488		}
489		loopva += PAGE_SIZE;
490		offset += PAGE_SIZE;
491		loopsize -= PAGE_SIZE;
492	}
493
494       	pmap_update(pmap_kernel());
495
496	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
497	return(kva);
498}
499
500/*
501 * uvm_km_free: free an area of kernel memory
502 */
503
504void
505uvm_km_free(map, addr, size)
506	struct vm_map *map;
507	vaddr_t addr;
508	vsize_t size;
509{
510	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
511}
512
513/*
514 * uvm_km_free_wakeup: free an area of kernel memory and wake up
515 * anyone waiting for vm space.
516 *
517 * => XXX: "wanted" bit + unlock&wait on other end?
518 */
519
520void
521uvm_km_free_wakeup(map, addr, size)
522	struct vm_map *map;
523	vaddr_t addr;
524	vsize_t size;
525{
526	struct vm_map_entry *dead_entries;
527
528	vm_map_lock(map);
529	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
530	    &dead_entries, NULL);
531	wakeup(map);
532	vm_map_unlock(map);
533	if (dead_entries != NULL)
534		uvm_unmap_detach(dead_entries, 0);
535}
536
537/*
538 * uvm_km_alloc1: allocate wired down memory in the kernel map.
539 *
540 * => we can sleep if needed
541 */
542
543vaddr_t
544uvm_km_alloc1(map, size, zeroit)
545	struct vm_map *map;
546	vsize_t size;
547	boolean_t zeroit;
548{
549	vaddr_t kva, loopva, offset;
550	struct vm_page *pg;
551	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
552
553	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
554	KASSERT(vm_map_pmap(map) == pmap_kernel());
555
556	size = round_page(size);
557	kva = vm_map_min(map);		/* hint */
558
559	/*
560	 * allocate some virtual space
561	 */
562
563	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
564	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
565					      UVM_INH_NONE, UVM_ADV_RANDOM,
566					      UVM_FLAG_QUANTUM)) != 0)) {
567		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
568		return(0);
569	}
570
571	/*
572	 * recover object offset from virtual address
573	 */
574
575	offset = kva - vm_map_min(kernel_map);
576	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
577
578	/*
579	 * now allocate the memory.
580	 */
581
582	loopva = kva;
583	while (size) {
584		simple_lock(&uvm.kernel_object->vmobjlock);
585		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
586		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
587		if (pg) {
588			pg->flags &= ~PG_BUSY;
589			UVM_PAGE_OWN(pg, NULL);
590		}
591		simple_unlock(&uvm.kernel_object->vmobjlock);
592		if (pg == NULL) {
593			uvm_wait("km_alloc1w");
594			continue;
595		}
596		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
597		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
598		loopva += PAGE_SIZE;
599		offset += PAGE_SIZE;
600		size -= PAGE_SIZE;
601	}
602	pmap_update(map->pmap);
603
604	/*
605	 * zero on request (note that "size" is now zero due to the above loop
606	 * so we need to subtract kva from loopva to reconstruct the size).
607	 */
608
609	if (zeroit)
610		memset((caddr_t)kva, 0, loopva - kva);
611	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
612	return(kva);
613}
614
615/*
616 * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
617 *
618 * => memory is not allocated until fault time
619 * => the align, prefer and flags parameters are passed on to uvm_map().
620 *
621 * Note: this function is also the backend for these macros:
622 *	uvm_km_valloc
623 *	uvm_km_valloc_wait
624 *	uvm_km_valloc_prefer
625 *	uvm_km_valloc_prefer_wait
626 *	uvm_km_valloc_align
627 */
628
629vaddr_t
630uvm_km_valloc1(map, size, align, prefer, flags)
631	struct vm_map *map;
632	vsize_t size;
633	vsize_t align;
634	voff_t prefer;
635	uvm_flag_t flags;
636{
637	vaddr_t kva;
638	UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
639
640	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
641		    map, size, align, prefer);
642
643	KASSERT(vm_map_pmap(map) == pmap_kernel());
644
645	size = round_page(size);
646	/*
647	 * Check if requested size is larger than the map, in which
648	 * case we can't succeed.
649	 */
650	if (size > vm_map_max(map) - vm_map_min(map))
651		return (0);
652
653	flags |= UVM_FLAG_QUANTUM;
654	for (;;) {
655		kva = vm_map_min(map);		/* hint */
656
657		/*
658		 * allocate some virtual space.   will be demand filled
659		 * by kernel_object.
660		 */
661
662		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
663		    prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
664		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
665		    == 0)) {
666			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
667			return (kva);
668		}
669
670		/*
671		 * failed.  sleep for a while (on map)
672		 */
673		if ((flags & UVM_KMF_NOWAIT) != 0)
674			return (0);
675
676		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
677		tsleep((caddr_t)map, PVM, "vallocwait", 0);
678	}
679	/*NOTREACHED*/
680}
681
682/* Function definitions for binary compatibility */
683vaddr_t
684uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
685		 vsize_t sz, int flags)
686{
687	return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
688}
689
690vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
691{
692	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
693}
694
695vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
696{
697	return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
698}
699
700vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
701{
702	return uvm_km_valloc1(map, sz, 0, prefer, 0);
703}
704
705vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
706{
707	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
708}
709
710/* Sanity; must specify both or none. */
711#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
712    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
713#error Must specify MAP and UNMAP together.
714#endif
715
716/*
717 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
718 *
719 * => if the pmap specifies an alternate mapping method, we use it.
720 */
721
722/* ARGSUSED */
723vaddr_t
724uvm_km_alloc_poolpage1(map, obj, waitok)
725	struct vm_map *map;
726	struct uvm_object *obj;
727	boolean_t waitok;
728{
729#if defined(PMAP_MAP_POOLPAGE)
730	struct vm_page *pg;
731	vaddr_t va;
732
733 again:
734	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
735	if (__predict_false(pg == NULL)) {
736		if (waitok) {
737			uvm_wait("plpg");
738			goto again;
739		} else
740			return (0);
741	}
742	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
743	if (__predict_false(va == 0))
744		uvm_pagefree(pg);
745	return (va);
746#else
747	vaddr_t va;
748	int s;
749
750	/*
751	 * NOTE: We may be called with a map that doens't require splvm
752	 * protection (e.g. kernel_map).  However, it does not hurt to
753	 * go to splvm in this case (since unprocted maps will never be
754	 * accessed in interrupt context).
755	 *
756	 * XXX We may want to consider changing the interface to this
757	 * XXX function.
758	 */
759
760	s = splvm();
761	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
762	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
763	splx(s);
764	return (va);
765#endif /* PMAP_MAP_POOLPAGE */
766}
767
768/*
769 * uvm_km_free_poolpage: free a previously allocated pool page
770 *
771 * => if the pmap specifies an alternate unmapping method, we use it.
772 */
773
774/* ARGSUSED */
775void
776uvm_km_free_poolpage1(map, addr)
777	struct vm_map *map;
778	vaddr_t addr;
779{
780#if defined(PMAP_UNMAP_POOLPAGE)
781	paddr_t pa;
782
783	pa = PMAP_UNMAP_POOLPAGE(addr);
784	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
785#else
786	int s;
787
788	/*
789	 * NOTE: We may be called with a map that doens't require splvm
790	 * protection (e.g. kernel_map).  However, it does not hurt to
791	 * go to splvm in this case (since unprocted maps will never be
792	 * accessed in interrupt context).
793	 *
794	 * XXX We may want to consider changing the interface to this
795	 * XXX function.
796	 */
797
798	s = splvm();
799	uvm_km_free(map, addr, PAGE_SIZE);
800	splx(s);
801#endif /* PMAP_UNMAP_POOLPAGE */
802}
803