uvm_km.c revision 1.67
1/*	$NetBSD: uvm_km.c,v 1.67 2004/01/29 12:06:02 yamt Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73/*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps."   submaps can only appear in
81 * the kernel_map (user processes can't use them).   submaps "take over"
82 * the management of a sub-range of the kernel's address space.  submaps
83 * are typically allocated at boot time and are never released.   kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 *   kmem_map => contains only wired kernel memory for the kernel
93 *		malloc.   *** access to kmem_map must be protected
94 *		by splvm() because we are allowed to call malloc()
95 *		at interrupt time ***
96 *   mb_map => memory for large mbufs,  *** protected by splvm ***
97 *   pager_map => used to map "buf" structures into kernel space
98 *   exec_map => used during exec to handle exec args
99 *   etc...
100 *
101 * the kernel allocates its private memory out of special uvm_objects whose
102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 * are "special" and never die).   all kernel objects should be thought of
104 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105 * object is equal to the size of kernel virtual address space (i.e. the
106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 *
108 * most kernel private memory lives in kernel_object.   the only exception
109 * to this is for memory that belongs to submaps that must be protected
110 * by splvm().  pages in these submaps are not assigned to an object.
111 *
112 * note that just because a kernel object spans the entire kernel virutal
113 * address space doesn't mean that it has to be mapped into the entire space.
114 * large chunks of a kernel object's space go unused either because
115 * that area of kernel VM is unmapped, or there is some other type of
116 * object mapped into that range (e.g. a vnode).    for submap's kernel
117 * objects, the only part of the object that can ever be populated is the
118 * offsets that are managed by the submap.
119 *
120 * note that the "offset" in a kernel object is always the kernel virtual
121 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 * example:
123 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
126 *   then that means that the page at offset 0x235000 in kernel_object is
127 *   mapped at 0xf8235000.
128 *
129 * kernel object have one other special property: when the kernel virtual
130 * memory mapping them is unmapped, the backing memory in the object is
131 * freed right away.   this is done with the uvm_km_pgremove() function.
132 * this has to be done because there is no backing store for kernel pages
133 * and no need to save them after they are no longer referenced.
134 */
135
136#include <sys/cdefs.h>
137__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.67 2004/01/29 12:06:02 yamt Exp $");
138
139#include "opt_uvmhist.h"
140
141#include <sys/param.h>
142#include <sys/systm.h>
143#include <sys/proc.h>
144
145#include <uvm/uvm.h>
146
147/*
148 * global data structures
149 */
150
151struct vm_map *kernel_map = NULL;
152
153/*
154 * local data structues
155 */
156
157static struct vm_map		kernel_map_store;
158static struct vm_map_entry	kernel_first_mapent_store;
159
160/*
161 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
162 * KVM already allocated for text, data, bss, and static data structures).
163 *
164 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
165 *    we assume that [min -> start] has already been allocated and that
166 *    "end" is the end.
167 */
168
169void
170uvm_km_init(start, end)
171	vaddr_t start, end;
172{
173	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
174
175	/*
176	 * next, init kernel memory objects.
177	 */
178
179	/* kernel_object: for pageable anonymous kernel memory */
180	uao_init();
181	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
182				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
183
184	/*
185	 * init the map and reserve any space that might already
186	 * have been allocated kernel space before installing.
187	 */
188
189	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
190	kernel_map_store.pmap = pmap_kernel();
191	if (start != base) {
192		int error;
193		struct uvm_map_args args;
194
195		error = uvm_map_prepare(&kernel_map_store, base, start - base,
196		    NULL, UVM_UNKNOWN_OFFSET, 0,
197		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
198		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
199		if (!error) {
200			struct vm_map_entry *entry = &kernel_first_mapent_store;
201
202			kernel_first_mapent_store.flags =
203			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
204			error = uvm_map_enter(&kernel_map_store, &args, &entry);
205			KASSERT(entry == NULL);
206		}
207
208		if (error)
209			panic(
210			    "uvm_km_init: could not reserve space for kernel");
211	}
212
213	/*
214	 * install!
215	 */
216
217	kernel_map = &kernel_map_store;
218}
219
220/*
221 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
222 * is allocated all references to that area of VM must go through it.  this
223 * allows the locking of VAs in kernel_map to be broken up into regions.
224 *
225 * => if `fixed' is true, *min specifies where the region described
226 *      by the submap must start
227 * => if submap is non NULL we use that as the submap, otherwise we
228 *	alloc a new map
229 */
230struct vm_map *
231uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
232	struct vm_map *map;
233	vaddr_t *min, *max;		/* IN/OUT, OUT */
234	vsize_t size;
235	int flags;
236	boolean_t fixed;
237	struct vm_map *submap;
238{
239	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
240
241	size = round_page(size);	/* round up to pagesize */
242
243	/*
244	 * first allocate a blank spot in the parent map
245	 */
246
247	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
248	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
249	    UVM_ADV_RANDOM, mapflags)) != 0) {
250	       panic("uvm_km_suballoc: unable to allocate space in parent map");
251	}
252
253	/*
254	 * set VM bounds (min is filled in by uvm_map)
255	 */
256
257	*max = *min + size;
258
259	/*
260	 * add references to pmap and create or init the submap
261	 */
262
263	pmap_reference(vm_map_pmap(map));
264	if (submap == NULL) {
265		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
266		if (submap == NULL)
267			panic("uvm_km_suballoc: unable to create submap");
268	} else {
269		uvm_map_setup(submap, *min, *max, flags);
270		submap->pmap = vm_map_pmap(map);
271	}
272
273	/*
274	 * now let uvm_map_submap plug in it...
275	 */
276
277	if (uvm_map_submap(map, *min, *max, submap) != 0)
278		panic("uvm_km_suballoc: submap allocation failed");
279
280	return(submap);
281}
282
283/*
284 * uvm_km_pgremove: remove pages from a kernel uvm_object.
285 *
286 * => when you unmap a part of anonymous kernel memory you want to toss
287 *    the pages right away.    (this gets called from uvm_unmap_...).
288 */
289
290void
291uvm_km_pgremove(uobj, start, end)
292	struct uvm_object *uobj;
293	vaddr_t start, end;
294{
295	struct vm_page *pg;
296	voff_t curoff, nextoff;
297	int swpgonlydelta = 0;
298	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
299
300	KASSERT(uobj->pgops == &aobj_pager);
301	simple_lock(&uobj->vmobjlock);
302
303	for (curoff = start; curoff < end; curoff = nextoff) {
304		nextoff = curoff + PAGE_SIZE;
305		pg = uvm_pagelookup(uobj, curoff);
306		if (pg != NULL && pg->flags & PG_BUSY) {
307			pg->flags |= PG_WANTED;
308			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
309				    "km_pgrm", 0);
310			simple_lock(&uobj->vmobjlock);
311			nextoff = curoff;
312			continue;
313		}
314
315		/*
316		 * free the swap slot, then the page.
317		 */
318
319		if (pg == NULL &&
320		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
321			swpgonlydelta++;
322		}
323		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
324		if (pg != NULL) {
325			uvm_lock_pageq();
326			uvm_pagefree(pg);
327			uvm_unlock_pageq();
328		}
329	}
330	simple_unlock(&uobj->vmobjlock);
331
332	if (swpgonlydelta > 0) {
333		simple_lock(&uvm.swap_data_lock);
334		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
335		uvmexp.swpgonly -= swpgonlydelta;
336		simple_unlock(&uvm.swap_data_lock);
337	}
338}
339
340
341/*
342 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
343 *    maps
344 *
345 * => when you unmap a part of anonymous kernel memory you want to toss
346 *    the pages right away.    (this is called from uvm_unmap_...).
347 * => none of the pages will ever be busy, and none of them will ever
348 *    be on the active or inactive queues (because they have no object).
349 */
350
351void
352uvm_km_pgremove_intrsafe(start, end)
353	vaddr_t start, end;
354{
355	struct vm_page *pg;
356	paddr_t pa;
357	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
358
359	for (; start < end; start += PAGE_SIZE) {
360		if (!pmap_extract(pmap_kernel(), start, &pa)) {
361			continue;
362		}
363		pg = PHYS_TO_VM_PAGE(pa);
364		KASSERT(pg);
365		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
366		uvm_pagefree(pg);
367	}
368}
369
370
371/*
372 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
373 *
374 * => we map wired memory into the specified map using the obj passed in
375 * => NOTE: we can return NULL even if we can wait if there is not enough
376 *	free VM space in the map... caller should be prepared to handle
377 *	this case.
378 * => we return KVA of memory allocated
379 * => align,prefer - passed on to uvm_map()
380 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
381 *	lock the map
382 */
383
384vaddr_t
385uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
386	struct vm_map *map;
387	struct uvm_object *obj;
388	vsize_t size;
389	vsize_t align;
390	voff_t prefer;
391	int flags;
392{
393	vaddr_t kva, loopva;
394	vaddr_t offset;
395	vsize_t loopsize;
396	struct vm_page *pg;
397	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
398
399	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
400		    map, obj, size, flags);
401	KASSERT(vm_map_pmap(map) == pmap_kernel());
402
403	/*
404	 * setup for call
405	 */
406
407	size = round_page(size);
408	kva = vm_map_min(map);	/* hint */
409
410	/*
411	 * allocate some virtual space
412	 */
413
414	if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
415		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
416			    UVM_ADV_RANDOM,
417			    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
418			!= 0)) {
419		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
420		return(0);
421	}
422
423	/*
424	 * if all we wanted was VA, return now
425	 */
426
427	if (flags & UVM_KMF_VALLOC) {
428		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
429		return(kva);
430	}
431
432	/*
433	 * recover object offset from virtual address
434	 */
435
436	offset = kva - vm_map_min(kernel_map);
437	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
438
439	/*
440	 * now allocate and map in the memory... note that we are the only ones
441	 * whom should ever get a handle on this area of VM.
442	 */
443
444	loopva = kva;
445	loopsize = size;
446	while (loopsize) {
447		if (obj) {
448			simple_lock(&obj->vmobjlock);
449		}
450		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
451		if (__predict_true(pg != NULL)) {
452			pg->flags &= ~PG_BUSY;	/* new page */
453			UVM_PAGE_OWN(pg, NULL);
454		}
455		if (obj) {
456			simple_unlock(&obj->vmobjlock);
457		}
458
459		/*
460		 * out of memory?
461		 */
462
463		if (__predict_false(pg == NULL)) {
464			if ((flags & UVM_KMF_NOWAIT) ||
465			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
466				/* free everything! */
467				uvm_unmap(map, kva, kva + size);
468				return (0);
469			} else {
470				uvm_wait("km_getwait2");	/* sleep here */
471				continue;
472			}
473		}
474
475		/*
476		 * map it in
477		 */
478
479		if (obj == NULL) {
480			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
481			    VM_PROT_READ | VM_PROT_WRITE);
482		} else {
483			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
484			    UVM_PROT_ALL,
485			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
486		}
487		loopva += PAGE_SIZE;
488		offset += PAGE_SIZE;
489		loopsize -= PAGE_SIZE;
490	}
491
492       	pmap_update(pmap_kernel());
493
494	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
495	return(kva);
496}
497
498/*
499 * uvm_km_free: free an area of kernel memory
500 */
501
502void
503uvm_km_free(map, addr, size)
504	struct vm_map *map;
505	vaddr_t addr;
506	vsize_t size;
507{
508	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
509}
510
511/*
512 * uvm_km_free_wakeup: free an area of kernel memory and wake up
513 * anyone waiting for vm space.
514 *
515 * => XXX: "wanted" bit + unlock&wait on other end?
516 */
517
518void
519uvm_km_free_wakeup(map, addr, size)
520	struct vm_map *map;
521	vaddr_t addr;
522	vsize_t size;
523{
524	struct vm_map_entry *dead_entries;
525
526	vm_map_lock(map);
527	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
528	    &dead_entries);
529	wakeup(map);
530	vm_map_unlock(map);
531	if (dead_entries != NULL)
532		uvm_unmap_detach(dead_entries, 0);
533}
534
535/*
536 * uvm_km_alloc1: allocate wired down memory in the kernel map.
537 *
538 * => we can sleep if needed
539 */
540
541vaddr_t
542uvm_km_alloc1(map, size, zeroit)
543	struct vm_map *map;
544	vsize_t size;
545	boolean_t zeroit;
546{
547	vaddr_t kva, loopva, offset;
548	struct vm_page *pg;
549	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
550
551	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
552	KASSERT(vm_map_pmap(map) == pmap_kernel());
553
554	size = round_page(size);
555	kva = vm_map_min(map);		/* hint */
556
557	/*
558	 * allocate some virtual space
559	 */
560
561	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
562	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
563					      UVM_INH_NONE, UVM_ADV_RANDOM,
564					      0)) != 0)) {
565		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
566		return(0);
567	}
568
569	/*
570	 * recover object offset from virtual address
571	 */
572
573	offset = kva - vm_map_min(kernel_map);
574	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
575
576	/*
577	 * now allocate the memory.
578	 */
579
580	loopva = kva;
581	while (size) {
582		simple_lock(&uvm.kernel_object->vmobjlock);
583		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
584		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
585		if (pg) {
586			pg->flags &= ~PG_BUSY;
587			UVM_PAGE_OWN(pg, NULL);
588		}
589		simple_unlock(&uvm.kernel_object->vmobjlock);
590		if (pg == NULL) {
591			uvm_wait("km_alloc1w");
592			continue;
593		}
594		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
595		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
596		loopva += PAGE_SIZE;
597		offset += PAGE_SIZE;
598		size -= PAGE_SIZE;
599	}
600	pmap_update(map->pmap);
601
602	/*
603	 * zero on request (note that "size" is now zero due to the above loop
604	 * so we need to subtract kva from loopva to reconstruct the size).
605	 */
606
607	if (zeroit)
608		memset((caddr_t)kva, 0, loopva - kva);
609	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
610	return(kva);
611}
612
613/*
614 * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
615 *
616 * => memory is not allocated until fault time
617 * => the align, prefer and flags parameters are passed on to uvm_map().
618 *
619 * Note: this function is also the backend for these macros:
620 *	uvm_km_valloc
621 *	uvm_km_valloc_wait
622 *	uvm_km_valloc_prefer
623 *	uvm_km_valloc_prefer_wait
624 *	uvm_km_valloc_align
625 */
626
627vaddr_t
628uvm_km_valloc1(map, size, align, prefer, flags)
629	struct vm_map *map;
630	vsize_t size;
631	vsize_t align;
632	voff_t prefer;
633	uvm_flag_t flags;
634{
635	vaddr_t kva;
636	UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
637
638	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
639		    map, size, align, prefer);
640
641	KASSERT(vm_map_pmap(map) == pmap_kernel());
642
643	size = round_page(size);
644	/*
645	 * Check if requested size is larger than the map, in which
646	 * case we can't succeed.
647	 */
648	if (size > vm_map_max(map) - vm_map_min(map))
649		return (0);
650
651	for (;;) {
652		kva = vm_map_min(map);		/* hint */
653
654		/*
655		 * allocate some virtual space.   will be demand filled
656		 * by kernel_object.
657		 */
658
659		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
660		    prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
661		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
662		    == 0)) {
663			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
664			return (kva);
665		}
666
667		/*
668		 * failed.  sleep for a while (on map)
669		 */
670		if ((flags & UVM_KMF_NOWAIT) != 0)
671			return (0);
672
673		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
674		tsleep((caddr_t)map, PVM, "vallocwait", 0);
675	}
676	/*NOTREACHED*/
677}
678
679/* Function definitions for binary compatibility */
680vaddr_t
681uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
682		 vsize_t sz, int flags)
683{
684	return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
685}
686
687vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
688{
689	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
690}
691
692vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
693{
694	return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
695}
696
697vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
698{
699	return uvm_km_valloc1(map, sz, 0, prefer, 0);
700}
701
702vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
703{
704	return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
705}
706
707/* Sanity; must specify both or none. */
708#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
709    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
710#error Must specify MAP and UNMAP together.
711#endif
712
713/*
714 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
715 *
716 * => if the pmap specifies an alternate mapping method, we use it.
717 */
718
719/* ARGSUSED */
720vaddr_t
721uvm_km_alloc_poolpage1(map, obj, waitok)
722	struct vm_map *map;
723	struct uvm_object *obj;
724	boolean_t waitok;
725{
726#if defined(PMAP_MAP_POOLPAGE)
727	struct vm_page *pg;
728	vaddr_t va;
729
730 again:
731	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
732	if (__predict_false(pg == NULL)) {
733		if (waitok) {
734			uvm_wait("plpg");
735			goto again;
736		} else
737			return (0);
738	}
739	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
740	if (__predict_false(va == 0))
741		uvm_pagefree(pg);
742	return (va);
743#else
744	vaddr_t va;
745	int s;
746
747	/*
748	 * NOTE: We may be called with a map that doens't require splvm
749	 * protection (e.g. kernel_map).  However, it does not hurt to
750	 * go to splvm in this case (since unprocted maps will never be
751	 * accessed in interrupt context).
752	 *
753	 * XXX We may want to consider changing the interface to this
754	 * XXX function.
755	 */
756
757	s = splvm();
758	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
759	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
760	splx(s);
761	return (va);
762#endif /* PMAP_MAP_POOLPAGE */
763}
764
765/*
766 * uvm_km_free_poolpage: free a previously allocated pool page
767 *
768 * => if the pmap specifies an alternate unmapping method, we use it.
769 */
770
771/* ARGSUSED */
772void
773uvm_km_free_poolpage1(map, addr)
774	struct vm_map *map;
775	vaddr_t addr;
776{
777#if defined(PMAP_UNMAP_POOLPAGE)
778	paddr_t pa;
779
780	pa = PMAP_UNMAP_POOLPAGE(addr);
781	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
782#else
783	int s;
784
785	/*
786	 * NOTE: We may be called with a map that doens't require splvm
787	 * protection (e.g. kernel_map).  However, it does not hurt to
788	 * go to splvm in this case (since unprocted maps will never be
789	 * accessed in interrupt context).
790	 *
791	 * XXX We may want to consider changing the interface to this
792	 * XXX function.
793	 */
794
795	s = splvm();
796	uvm_km_free(map, addr, PAGE_SIZE);
797	splx(s);
798#endif /* PMAP_UNMAP_POOLPAGE */
799}
800