uvm_km.c revision 1.54
1/*	$NetBSD: uvm_km.c,v 1.54 2001/11/07 08:43:32 chs Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70
71/*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75/*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps."   submaps can only appear in
83 * the kernel_map (user processes can't use them).   submaps "take over"
84 * the management of a sub-range of the kernel's address space.  submaps
85 * are typically allocated at boot time and are never released.   kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 *   kmem_map => contains only wired kernel memory for the kernel
95 *		malloc.   *** access to kmem_map must be protected
96 *		by splvm() because we are allowed to call malloc()
97 *		at interrupt time ***
98 *   mb_map => memory for large mbufs,  *** protected by splvm ***
99 *   pager_map => used to map "buf" structures into kernel space
100 *   exec_map => used during exec to handle exec args
101 *   etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die).   all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object.   the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splvm().  pages in these submaps are not assigned to an object.
113 *
114 * note that just because a kernel object spans the entire kernel virutal
115 * address space doesn't mean that it has to be mapped into the entire space.
116 * large chunks of a kernel object's space go unused either because
117 * that area of kernel VM is unmapped, or there is some other type of
118 * object mapped into that range (e.g. a vnode).    for submap's kernel
119 * objects, the only part of the object that can ever be populated is the
120 * offsets that are managed by the submap.
121 *
122 * note that the "offset" in a kernel object is always the kernel virtual
123 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
124 * example:
125 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
126 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
127 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
128 *   then that means that the page at offset 0x235000 in kernel_object is
129 *   mapped at 0xf8235000.
130 *
131 * kernel object have one other special property: when the kernel virtual
132 * memory mapping them is unmapped, the backing memory in the object is
133 * freed right away.   this is done with the uvm_km_pgremove() function.
134 * this has to be done because there is no backing store for kernel pages
135 * and no need to save them after they are no longer referenced.
136 */
137
138#include <sys/param.h>
139#include <sys/systm.h>
140#include <sys/proc.h>
141
142#include <uvm/uvm.h>
143
144/*
145 * global data structures
146 */
147
148struct vm_map *kernel_map = NULL;
149
150/*
151 * local data structues
152 */
153
154static struct vm_map		kernel_map_store;
155
156/*
157 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
158 * KVM already allocated for text, data, bss, and static data structures).
159 *
160 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
161 *    we assume that [min -> start] has already been allocated and that
162 *    "end" is the end.
163 */
164
165void
166uvm_km_init(start, end)
167	vaddr_t start, end;
168{
169	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
170
171	/*
172	 * next, init kernel memory objects.
173	 */
174
175	/* kernel_object: for pageable anonymous kernel memory */
176	uao_init();
177	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
178				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
179
180	/*
181	 * init the map and reserve already allocated kernel space
182	 * before installing.
183	 */
184
185	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
186	kernel_map_store.pmap = pmap_kernel();
187	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
188	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
189	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
190		panic("uvm_km_init: could not reserve space for kernel");
191
192	/*
193	 * install!
194	 */
195
196	kernel_map = &kernel_map_store;
197}
198
199/*
200 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
201 * is allocated all references to that area of VM must go through it.  this
202 * allows the locking of VAs in kernel_map to be broken up into regions.
203 *
204 * => if `fixed' is true, *min specifies where the region described
205 *      by the submap must start
206 * => if submap is non NULL we use that as the submap, otherwise we
207 *	alloc a new map
208 */
209struct vm_map *
210uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
211	struct vm_map *map;
212	vaddr_t *min, *max;		/* IN/OUT, OUT */
213	vsize_t size;
214	int flags;
215	boolean_t fixed;
216	struct vm_map *submap;
217{
218	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
219
220	size = round_page(size);	/* round up to pagesize */
221
222	/*
223	 * first allocate a blank spot in the parent map
224	 */
225
226	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
227	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
228	    UVM_ADV_RANDOM, mapflags)) != 0) {
229	       panic("uvm_km_suballoc: unable to allocate space in parent map");
230	}
231
232	/*
233	 * set VM bounds (min is filled in by uvm_map)
234	 */
235
236	*max = *min + size;
237
238	/*
239	 * add references to pmap and create or init the submap
240	 */
241
242	pmap_reference(vm_map_pmap(map));
243	if (submap == NULL) {
244		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
245		if (submap == NULL)
246			panic("uvm_km_suballoc: unable to create submap");
247	} else {
248		uvm_map_setup(submap, *min, *max, flags);
249		submap->pmap = vm_map_pmap(map);
250	}
251
252	/*
253	 * now let uvm_map_submap plug in it...
254	 */
255
256	if (uvm_map_submap(map, *min, *max, submap) != 0)
257		panic("uvm_km_suballoc: submap allocation failed");
258
259	return(submap);
260}
261
262/*
263 * uvm_km_pgremove: remove pages from a kernel uvm_object.
264 *
265 * => when you unmap a part of anonymous kernel memory you want to toss
266 *    the pages right away.    (this gets called from uvm_unmap_...).
267 */
268
269void
270uvm_km_pgremove(uobj, start, end)
271	struct uvm_object *uobj;
272	vaddr_t start, end;
273{
274	struct vm_page *pg;
275	voff_t curoff, nextoff;
276	int swpgonlydelta = 0;
277	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
278
279	KASSERT(uobj->pgops == &aobj_pager);
280	simple_lock(&uobj->vmobjlock);
281
282	for (curoff = start; curoff < end; curoff = nextoff) {
283		nextoff = curoff + PAGE_SIZE;
284		pg = uvm_pagelookup(uobj, curoff);
285		if (pg != NULL && pg->flags & PG_BUSY) {
286			pg->flags |= PG_WANTED;
287			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
288				    "km_pgrm", 0);
289			simple_lock(&uobj->vmobjlock);
290			nextoff = curoff;
291			continue;
292		}
293
294		/*
295		 * free the swap slot, then the page.
296		 */
297
298		if (pg == NULL &&
299		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
300			swpgonlydelta++;
301		}
302		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
303		if (pg != NULL) {
304			uvm_lock_pageq();
305			uvm_pagefree(pg);
306			uvm_unlock_pageq();
307		}
308	}
309	simple_unlock(&uobj->vmobjlock);
310
311	if (swpgonlydelta > 0) {
312		simple_lock(&uvm.swap_data_lock);
313		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
314		uvmexp.swpgonly -= swpgonlydelta;
315		simple_unlock(&uvm.swap_data_lock);
316	}
317}
318
319
320/*
321 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
322 *    maps
323 *
324 * => when you unmap a part of anonymous kernel memory you want to toss
325 *    the pages right away.    (this is called from uvm_unmap_...).
326 * => none of the pages will ever be busy, and none of them will ever
327 *    be on the active or inactive queues (because they have no object).
328 */
329
330void
331uvm_km_pgremove_intrsafe(start, end)
332	vaddr_t start, end;
333{
334	struct vm_page *pg;
335	paddr_t pa;
336	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
337
338	for (; start < end; start += PAGE_SIZE) {
339		if (!pmap_extract(pmap_kernel(), start, &pa)) {
340			continue;
341		}
342		pg = PHYS_TO_VM_PAGE(pa);
343		KASSERT(pg);
344		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
345		uvm_pagefree(pg);
346	}
347}
348
349
350/*
351 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
352 *
353 * => we map wired memory into the specified map using the obj passed in
354 * => NOTE: we can return NULL even if we can wait if there is not enough
355 *	free VM space in the map... caller should be prepared to handle
356 *	this case.
357 * => we return KVA of memory allocated
358 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
359 *	lock the map
360 */
361
362vaddr_t
363uvm_km_kmemalloc(map, obj, size, flags)
364	struct vm_map *map;
365	struct uvm_object *obj;
366	vsize_t size;
367	int flags;
368{
369	vaddr_t kva, loopva;
370	vaddr_t offset;
371	vsize_t loopsize;
372	struct vm_page *pg;
373	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
374
375	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
376		    map, obj, size, flags);
377	KASSERT(vm_map_pmap(map) == pmap_kernel());
378
379	/*
380	 * setup for call
381	 */
382
383	size = round_page(size);
384	kva = vm_map_min(map);	/* hint */
385
386	/*
387	 * allocate some virtual space
388	 */
389
390	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
391	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
392			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
393			!= 0)) {
394		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
395		return(0);
396	}
397
398	/*
399	 * if all we wanted was VA, return now
400	 */
401
402	if (flags & UVM_KMF_VALLOC) {
403		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
404		return(kva);
405	}
406
407	/*
408	 * recover object offset from virtual address
409	 */
410
411	offset = kva - vm_map_min(kernel_map);
412	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
413
414	/*
415	 * now allocate and map in the memory... note that we are the only ones
416	 * whom should ever get a handle on this area of VM.
417	 */
418
419	loopva = kva;
420	loopsize = size;
421	while (loopsize) {
422		if (obj) {
423			simple_lock(&obj->vmobjlock);
424		}
425		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
426		if (__predict_true(pg != NULL)) {
427			pg->flags &= ~PG_BUSY;	/* new page */
428			UVM_PAGE_OWN(pg, NULL);
429		}
430		if (obj) {
431			simple_unlock(&obj->vmobjlock);
432		}
433
434		/*
435		 * out of memory?
436		 */
437
438		if (__predict_false(pg == NULL)) {
439			if (flags & UVM_KMF_NOWAIT) {
440				/* free everything! */
441				uvm_unmap(map, kva, kva + size);
442				return(0);
443			} else {
444				uvm_wait("km_getwait2");	/* sleep here */
445				continue;
446			}
447		}
448
449		/*
450		 * map it in
451		 */
452
453		if (obj == NULL) {
454			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
455			    VM_PROT_ALL);
456		} else {
457			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
458			    UVM_PROT_ALL,
459			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
460		}
461		loopva += PAGE_SIZE;
462		offset += PAGE_SIZE;
463		loopsize -= PAGE_SIZE;
464	}
465
466       	pmap_update(pmap_kernel());
467
468	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
469	return(kva);
470}
471
472/*
473 * uvm_km_free: free an area of kernel memory
474 */
475
476void
477uvm_km_free(map, addr, size)
478	struct vm_map *map;
479	vaddr_t addr;
480	vsize_t size;
481{
482	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
483}
484
485/*
486 * uvm_km_free_wakeup: free an area of kernel memory and wake up
487 * anyone waiting for vm space.
488 *
489 * => XXX: "wanted" bit + unlock&wait on other end?
490 */
491
492void
493uvm_km_free_wakeup(map, addr, size)
494	struct vm_map *map;
495	vaddr_t addr;
496	vsize_t size;
497{
498	struct vm_map_entry *dead_entries;
499
500	vm_map_lock(map);
501	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
502	    &dead_entries);
503	wakeup(map);
504	vm_map_unlock(map);
505	if (dead_entries != NULL)
506		uvm_unmap_detach(dead_entries, 0);
507}
508
509/*
510 * uvm_km_alloc1: allocate wired down memory in the kernel map.
511 *
512 * => we can sleep if needed
513 */
514
515vaddr_t
516uvm_km_alloc1(map, size, zeroit)
517	struct vm_map *map;
518	vsize_t size;
519	boolean_t zeroit;
520{
521	vaddr_t kva, loopva, offset;
522	struct vm_page *pg;
523	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
524
525	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
526	KASSERT(vm_map_pmap(map) == pmap_kernel());
527
528	size = round_page(size);
529	kva = vm_map_min(map);		/* hint */
530
531	/*
532	 * allocate some virtual space
533	 */
534
535	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
536	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
537					      UVM_INH_NONE, UVM_ADV_RANDOM,
538					      0)) != 0)) {
539		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
540		return(0);
541	}
542
543	/*
544	 * recover object offset from virtual address
545	 */
546
547	offset = kva - vm_map_min(kernel_map);
548	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
549
550	/*
551	 * now allocate the memory.
552	 */
553
554	loopva = kva;
555	while (size) {
556		simple_lock(&uvm.kernel_object->vmobjlock);
557		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
558		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
559		if (pg) {
560			pg->flags &= ~PG_BUSY;
561			UVM_PAGE_OWN(pg, NULL);
562		}
563		simple_unlock(&uvm.kernel_object->vmobjlock);
564		if (pg == NULL) {
565			uvm_wait("km_alloc1w");
566			continue;
567		}
568		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
569		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
570		loopva += PAGE_SIZE;
571		offset += PAGE_SIZE;
572		size -= PAGE_SIZE;
573	}
574	pmap_update(map->pmap);
575
576	/*
577	 * zero on request (note that "size" is now zero due to the above loop
578	 * so we need to subtract kva from loopva to reconstruct the size).
579	 */
580
581	if (zeroit)
582		memset((caddr_t)kva, 0, loopva - kva);
583	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
584	return(kva);
585}
586
587/*
588 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
589 *
590 * => memory is not allocated until fault time
591 */
592
593vaddr_t
594uvm_km_valloc(map, size)
595	struct vm_map *map;
596	vsize_t size;
597{
598	return(uvm_km_valloc_align(map, size, 0));
599}
600
601vaddr_t
602uvm_km_valloc_align(map, size, align)
603	struct vm_map *map;
604	vsize_t size;
605	vsize_t align;
606{
607	vaddr_t kva;
608	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
609
610	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
611	KASSERT(vm_map_pmap(map) == pmap_kernel());
612
613	size = round_page(size);
614	kva = vm_map_min(map);		/* hint */
615
616	/*
617	 * allocate some virtual space.  will be demand filled by kernel_object.
618	 */
619
620	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
621	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
622					    UVM_INH_NONE, UVM_ADV_RANDOM,
623					    0)) != 0)) {
624		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
625		return(0);
626	}
627
628	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
629	return(kva);
630}
631
632/*
633 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
634 *
635 * => memory is not allocated until fault time
636 * => if no room in map, wait for space to free, unless requested size
637 *    is larger than map (in which case we return 0)
638 */
639
640vaddr_t
641uvm_km_valloc_prefer_wait(map, size, prefer)
642	struct vm_map *map;
643	vsize_t size;
644	voff_t prefer;
645{
646	vaddr_t kva;
647	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
648
649	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
650	KASSERT(vm_map_pmap(map) == pmap_kernel());
651
652	size = round_page(size);
653	if (size > vm_map_max(map) - vm_map_min(map))
654		return(0);
655
656	for (;;) {
657		kva = vm_map_min(map);		/* hint */
658
659		/*
660		 * allocate some virtual space.   will be demand filled
661		 * by kernel_object.
662		 */
663
664		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
665		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
666		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
667		    == 0)) {
668			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
669			return(kva);
670		}
671
672		/*
673		 * failed.  sleep for a while (on map)
674		 */
675
676		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
677		tsleep((caddr_t)map, PVM, "vallocwait", 0);
678	}
679	/*NOTREACHED*/
680}
681
682vaddr_t
683uvm_km_valloc_wait(map, size)
684	struct vm_map *map;
685	vsize_t size;
686{
687	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
688}
689
690/* Sanity; must specify both or none. */
691#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
692    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
693#error Must specify MAP and UNMAP together.
694#endif
695
696/*
697 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
698 *
699 * => if the pmap specifies an alternate mapping method, we use it.
700 */
701
702/* ARGSUSED */
703vaddr_t
704uvm_km_alloc_poolpage1(map, obj, waitok)
705	struct vm_map *map;
706	struct uvm_object *obj;
707	boolean_t waitok;
708{
709#if defined(PMAP_MAP_POOLPAGE)
710	struct vm_page *pg;
711	vaddr_t va;
712
713 again:
714	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
715	if (__predict_false(pg == NULL)) {
716		if (waitok) {
717			uvm_wait("plpg");
718			goto again;
719		} else
720			return (0);
721	}
722	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
723	if (__predict_false(va == 0))
724		uvm_pagefree(pg);
725	return (va);
726#else
727	vaddr_t va;
728	int s;
729
730	/*
731	 * NOTE: We may be called with a map that doens't require splvm
732	 * protection (e.g. kernel_map).  However, it does not hurt to
733	 * go to splvm in this case (since unprocted maps will never be
734	 * accessed in interrupt context).
735	 *
736	 * XXX We may want to consider changing the interface to this
737	 * XXX function.
738	 */
739
740	s = splvm();
741	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
742	splx(s);
743	return (va);
744#endif /* PMAP_MAP_POOLPAGE */
745}
746
747/*
748 * uvm_km_free_poolpage: free a previously allocated pool page
749 *
750 * => if the pmap specifies an alternate unmapping method, we use it.
751 */
752
753/* ARGSUSED */
754void
755uvm_km_free_poolpage1(map, addr)
756	struct vm_map *map;
757	vaddr_t addr;
758{
759#if defined(PMAP_UNMAP_POOLPAGE)
760	paddr_t pa;
761
762	pa = PMAP_UNMAP_POOLPAGE(addr);
763	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
764#else
765	int s;
766
767	/*
768	 * NOTE: We may be called with a map that doens't require splvm
769	 * protection (e.g. kernel_map).  However, it does not hurt to
770	 * go to splvm in this case (since unprocted maps will never be
771	 * accessed in interrupt context).
772	 *
773	 * XXX We may want to consider changing the interface to this
774	 * XXX function.
775	 */
776
777	s = splvm();
778	uvm_km_free(map, addr, PAGE_SIZE);
779	splx(s);
780#endif /* PMAP_UNMAP_POOLPAGE */
781}
782