uvm_km.c revision 1.52
1/*	$NetBSD: uvm_km.c,v 1.52 2001/09/15 20:36:46 chs Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70
71/*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75/*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps."   submaps can only appear in
83 * the kernel_map (user processes can't use them).   submaps "take over"
84 * the management of a sub-range of the kernel's address space.  submaps
85 * are typically allocated at boot time and are never released.   kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 *   kmem_map => contains only wired kernel memory for the kernel
95 *		malloc.   *** access to kmem_map must be protected
96 *		by splvm() because we are allowed to call malloc()
97 *		at interrupt time ***
98 *   mb_map => memory for large mbufs,  *** protected by splvm ***
99 *   pager_map => used to map "buf" structures into kernel space
100 *   exec_map => used during exec to handle exec args
101 *   etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die).   all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object.   the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splvm().  pages in these submaps are not assigned to an object.
113 *
114 * note that just because a kernel object spans the entire kernel virutal
115 * address space doesn't mean that it has to be mapped into the entire space.
116 * large chunks of a kernel object's space go unused either because
117 * that area of kernel VM is unmapped, or there is some other type of
118 * object mapped into that range (e.g. a vnode).    for submap's kernel
119 * objects, the only part of the object that can ever be populated is the
120 * offsets that are managed by the submap.
121 *
122 * note that the "offset" in a kernel object is always the kernel virtual
123 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
124 * example:
125 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
126 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
127 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
128 *   then that means that the page at offset 0x235000 in kernel_object is
129 *   mapped at 0xf8235000.
130 *
131 * kernel object have one other special property: when the kernel virtual
132 * memory mapping them is unmapped, the backing memory in the object is
133 * freed right away.   this is done with the uvm_km_pgremove() function.
134 * this has to be done because there is no backing store for kernel pages
135 * and no need to save them after they are no longer referenced.
136 */
137
138#include <sys/param.h>
139#include <sys/systm.h>
140#include <sys/proc.h>
141
142#include <uvm/uvm.h>
143
144/*
145 * global data structures
146 */
147
148struct vm_map *kernel_map = NULL;
149
150/*
151 * local data structues
152 */
153
154static struct vm_map		kernel_map_store;
155
156/*
157 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
158 * KVM already allocated for text, data, bss, and static data structures).
159 *
160 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
161 *    we assume that [min -> start] has already been allocated and that
162 *    "end" is the end.
163 */
164
165void
166uvm_km_init(start, end)
167	vaddr_t start, end;
168{
169	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
170
171	/*
172	 * next, init kernel memory objects.
173	 */
174
175	/* kernel_object: for pageable anonymous kernel memory */
176	uao_init();
177	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
178				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
179
180	/*
181	 * init the map and reserve allready allocated kernel space
182	 * before installing.
183	 */
184
185	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
186	kernel_map_store.pmap = pmap_kernel();
187	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
188	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
189	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
190		panic("uvm_km_init: could not reserve space for kernel");
191
192	/*
193	 * install!
194	 */
195
196	kernel_map = &kernel_map_store;
197}
198
199/*
200 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
201 * is allocated all references to that area of VM must go through it.  this
202 * allows the locking of VAs in kernel_map to be broken up into regions.
203 *
204 * => if `fixed' is true, *min specifies where the region described
205 *      by the submap must start
206 * => if submap is non NULL we use that as the submap, otherwise we
207 *	alloc a new map
208 */
209struct vm_map *
210uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
211	struct vm_map *map;
212	vaddr_t *min, *max;		/* IN/OUT, OUT */
213	vsize_t size;
214	int flags;
215	boolean_t fixed;
216	struct vm_map *submap;
217{
218	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
219
220	size = round_page(size);	/* round up to pagesize */
221
222	/*
223	 * first allocate a blank spot in the parent map
224	 */
225
226	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
227	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
228	    UVM_ADV_RANDOM, mapflags)) != 0) {
229	       panic("uvm_km_suballoc: unable to allocate space in parent map");
230	}
231
232	/*
233	 * set VM bounds (min is filled in by uvm_map)
234	 */
235
236	*max = *min + size;
237
238	/*
239	 * add references to pmap and create or init the submap
240	 */
241
242	pmap_reference(vm_map_pmap(map));
243	if (submap == NULL) {
244		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
245		if (submap == NULL)
246			panic("uvm_km_suballoc: unable to create submap");
247	} else {
248		uvm_map_setup(submap, *min, *max, flags);
249		submap->pmap = vm_map_pmap(map);
250	}
251
252	/*
253	 * now let uvm_map_submap plug in it...
254	 */
255
256	if (uvm_map_submap(map, *min, *max, submap) != 0)
257		panic("uvm_km_suballoc: submap allocation failed");
258
259	return(submap);
260}
261
262/*
263 * uvm_km_pgremove: remove pages from a kernel uvm_object.
264 *
265 * => when you unmap a part of anonymous kernel memory you want to toss
266 *    the pages right away.    (this gets called from uvm_unmap_...).
267 */
268
269void
270uvm_km_pgremove(uobj, start, end)
271	struct uvm_object *uobj;
272	vaddr_t start, end;
273{
274	boolean_t by_list;
275	struct vm_page *pg, *nextpg;
276	voff_t curoff, nextoff;
277	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
278
279	KASSERT(uobj->pgops == &aobj_pager);
280	simple_lock(&uobj->vmobjlock);
281
282	/* choose cheapest traversal */
283	by_list = (uobj->uo_npages <=
284	     ((end - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
285	if (by_list)
286		goto loop_by_list;
287
288	for (curoff = start; curoff < end; curoff = nextoff) {
289		nextoff = curoff + PAGE_SIZE;
290		pg = uvm_pagelookup(uobj, curoff);
291		if (pg == NULL) {
292			continue;
293		}
294		if (pg->flags & PG_BUSY) {
295			pg->flags |= PG_WANTED;
296			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
297				    "km_pgrm", 0);
298			simple_lock(&uobj->vmobjlock);
299			nextoff = curoff;
300			continue;
301		}
302
303		/*
304		 * free the swap slot, then the page.
305		 */
306
307		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
308		uvm_lock_pageq();
309		uvm_pagefree(pg);
310		uvm_unlock_pageq();
311	}
312	simple_unlock(&uobj->vmobjlock);
313	return;
314
315loop_by_list:
316	for (pg = TAILQ_FIRST(&uobj->memq); pg != NULL; pg = nextpg) {
317		nextpg = TAILQ_NEXT(pg, listq);
318		if (pg->offset < start || pg->offset >= end) {
319			continue;
320		}
321		if (pg->flags & PG_BUSY) {
322			pg->flags |= PG_WANTED;
323			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
324				    "km_pgrm", 0);
325			simple_lock(&uobj->vmobjlock);
326			nextpg = TAILQ_FIRST(&uobj->memq);
327			continue;
328		}
329
330		/*
331		 * free the swap slot, then the page.
332		 */
333
334		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
335		uvm_lock_pageq();
336		uvm_pagefree(pg);
337		uvm_unlock_pageq();
338	}
339	simple_unlock(&uobj->vmobjlock);
340}
341
342
343/*
344 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
345 *    maps
346 *
347 * => when you unmap a part of anonymous kernel memory you want to toss
348 *    the pages right away.    (this is called from uvm_unmap_...).
349 * => none of the pages will ever be busy, and none of them will ever
350 *    be on the active or inactive queues (because they have no object).
351 */
352
353void
354uvm_km_pgremove_intrsafe(start, end)
355	vaddr_t start, end;
356{
357	struct vm_page *pg;
358	paddr_t pa;
359	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
360
361	for (; start < end; start += PAGE_SIZE) {
362		if (!pmap_extract(pmap_kernel(), start, &pa)) {
363			continue;
364		}
365		pg = PHYS_TO_VM_PAGE(pa);
366		KASSERT(pg);
367		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
368		uvm_pagefree(pg);
369	}
370}
371
372
373/*
374 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
375 *
376 * => we map wired memory into the specified map using the obj passed in
377 * => NOTE: we can return NULL even if we can wait if there is not enough
378 *	free VM space in the map... caller should be prepared to handle
379 *	this case.
380 * => we return KVA of memory allocated
381 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
382 *	lock the map
383 */
384
385vaddr_t
386uvm_km_kmemalloc(map, obj, size, flags)
387	struct vm_map *map;
388	struct uvm_object *obj;
389	vsize_t size;
390	int flags;
391{
392	vaddr_t kva, loopva;
393	vaddr_t offset;
394	vsize_t loopsize;
395	struct vm_page *pg;
396	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
397
398	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
399		    map, obj, size, flags);
400	KASSERT(vm_map_pmap(map) == pmap_kernel());
401
402	/*
403	 * setup for call
404	 */
405
406	size = round_page(size);
407	kva = vm_map_min(map);	/* hint */
408
409	/*
410	 * allocate some virtual space
411	 */
412
413	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
414	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
415			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
416			!= 0)) {
417		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
418		return(0);
419	}
420
421	/*
422	 * if all we wanted was VA, return now
423	 */
424
425	if (flags & UVM_KMF_VALLOC) {
426		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
427		return(kva);
428	}
429
430	/*
431	 * recover object offset from virtual address
432	 */
433
434	offset = kva - vm_map_min(kernel_map);
435	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
436
437	/*
438	 * now allocate and map in the memory... note that we are the only ones
439	 * whom should ever get a handle on this area of VM.
440	 */
441
442	loopva = kva;
443	loopsize = size;
444	while (loopsize) {
445		if (obj) {
446			simple_lock(&obj->vmobjlock);
447		}
448		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
449		if (__predict_true(pg != NULL)) {
450			pg->flags &= ~PG_BUSY;	/* new page */
451			UVM_PAGE_OWN(pg, NULL);
452		}
453		if (obj) {
454			simple_unlock(&obj->vmobjlock);
455		}
456
457		/*
458		 * out of memory?
459		 */
460
461		if (__predict_false(pg == NULL)) {
462			if (flags & UVM_KMF_NOWAIT) {
463				/* free everything! */
464				uvm_unmap(map, kva, kva + size);
465				return(0);
466			} else {
467				uvm_wait("km_getwait2");	/* sleep here */
468				continue;
469			}
470		}
471
472		/*
473		 * map it in
474		 */
475
476		if (obj == NULL) {
477			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
478			    VM_PROT_ALL);
479		} else {
480			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
481			    UVM_PROT_ALL,
482			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
483		}
484		loopva += PAGE_SIZE;
485		offset += PAGE_SIZE;
486		loopsize -= PAGE_SIZE;
487	}
488
489       	pmap_update(pmap_kernel());
490
491	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
492	return(kva);
493}
494
495/*
496 * uvm_km_free: free an area of kernel memory
497 */
498
499void
500uvm_km_free(map, addr, size)
501	struct vm_map *map;
502	vaddr_t addr;
503	vsize_t size;
504{
505	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
506}
507
508/*
509 * uvm_km_free_wakeup: free an area of kernel memory and wake up
510 * anyone waiting for vm space.
511 *
512 * => XXX: "wanted" bit + unlock&wait on other end?
513 */
514
515void
516uvm_km_free_wakeup(map, addr, size)
517	struct vm_map *map;
518	vaddr_t addr;
519	vsize_t size;
520{
521	struct vm_map_entry *dead_entries;
522
523	vm_map_lock(map);
524	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
525	    &dead_entries);
526	wakeup(map);
527	vm_map_unlock(map);
528	if (dead_entries != NULL)
529		uvm_unmap_detach(dead_entries, 0);
530}
531
532/*
533 * uvm_km_alloc1: allocate wired down memory in the kernel map.
534 *
535 * => we can sleep if needed
536 */
537
538vaddr_t
539uvm_km_alloc1(map, size, zeroit)
540	struct vm_map *map;
541	vsize_t size;
542	boolean_t zeroit;
543{
544	vaddr_t kva, loopva, offset;
545	struct vm_page *pg;
546	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
547
548	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
549	KASSERT(vm_map_pmap(map) == pmap_kernel());
550
551	size = round_page(size);
552	kva = vm_map_min(map);		/* hint */
553
554	/*
555	 * allocate some virtual space
556	 */
557
558	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
559	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
560					      UVM_INH_NONE, UVM_ADV_RANDOM,
561					      0)) != 0)) {
562		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
563		return(0);
564	}
565
566	/*
567	 * recover object offset from virtual address
568	 */
569
570	offset = kva - vm_map_min(kernel_map);
571	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
572
573	/*
574	 * now allocate the memory.
575	 */
576
577	loopva = kva;
578	while (size) {
579		simple_lock(&uvm.kernel_object->vmobjlock);
580		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
581		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
582		if (pg) {
583			pg->flags &= ~PG_BUSY;
584			UVM_PAGE_OWN(pg, NULL);
585		}
586		simple_unlock(&uvm.kernel_object->vmobjlock);
587		if (pg == NULL) {
588			uvm_wait("km_alloc1w");
589			continue;
590		}
591		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
592		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
593		loopva += PAGE_SIZE;
594		offset += PAGE_SIZE;
595		size -= PAGE_SIZE;
596	}
597	pmap_update(map->pmap);
598
599	/*
600	 * zero on request (note that "size" is now zero due to the above loop
601	 * so we need to subtract kva from loopva to reconstruct the size).
602	 */
603
604	if (zeroit)
605		memset((caddr_t)kva, 0, loopva - kva);
606	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
607	return(kva);
608}
609
610/*
611 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
612 *
613 * => memory is not allocated until fault time
614 */
615
616vaddr_t
617uvm_km_valloc(map, size)
618	struct vm_map *map;
619	vsize_t size;
620{
621	return(uvm_km_valloc_align(map, size, 0));
622}
623
624vaddr_t
625uvm_km_valloc_align(map, size, align)
626	struct vm_map *map;
627	vsize_t size;
628	vsize_t align;
629{
630	vaddr_t kva;
631	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
632
633	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
634	KASSERT(vm_map_pmap(map) == pmap_kernel());
635
636	size = round_page(size);
637	kva = vm_map_min(map);		/* hint */
638
639	/*
640	 * allocate some virtual space.  will be demand filled by kernel_object.
641	 */
642
643	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
644	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
645					    UVM_INH_NONE, UVM_ADV_RANDOM,
646					    0)) != 0)) {
647		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
648		return(0);
649	}
650
651	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
652	return(kva);
653}
654
655/*
656 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
657 *
658 * => memory is not allocated until fault time
659 * => if no room in map, wait for space to free, unless requested size
660 *    is larger than map (in which case we return 0)
661 */
662
663vaddr_t
664uvm_km_valloc_prefer_wait(map, size, prefer)
665	struct vm_map *map;
666	vsize_t size;
667	voff_t prefer;
668{
669	vaddr_t kva;
670	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
671
672	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
673	KASSERT(vm_map_pmap(map) == pmap_kernel());
674
675	size = round_page(size);
676	if (size > vm_map_max(map) - vm_map_min(map))
677		return(0);
678
679	for (;;) {
680		kva = vm_map_min(map);		/* hint */
681
682		/*
683		 * allocate some virtual space.   will be demand filled
684		 * by kernel_object.
685		 */
686
687		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
688		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
689		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
690		    == 0)) {
691			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
692			return(kva);
693		}
694
695		/*
696		 * failed.  sleep for a while (on map)
697		 */
698
699		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
700		tsleep((caddr_t)map, PVM, "vallocwait", 0);
701	}
702	/*NOTREACHED*/
703}
704
705vaddr_t
706uvm_km_valloc_wait(map, size)
707	struct vm_map *map;
708	vsize_t size;
709{
710	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
711}
712
713/* Sanity; must specify both or none. */
714#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
715    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
716#error Must specify MAP and UNMAP together.
717#endif
718
719/*
720 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
721 *
722 * => if the pmap specifies an alternate mapping method, we use it.
723 */
724
725/* ARGSUSED */
726vaddr_t
727uvm_km_alloc_poolpage1(map, obj, waitok)
728	struct vm_map *map;
729	struct uvm_object *obj;
730	boolean_t waitok;
731{
732#if defined(PMAP_MAP_POOLPAGE)
733	struct vm_page *pg;
734	vaddr_t va;
735
736 again:
737	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
738	if (__predict_false(pg == NULL)) {
739		if (waitok) {
740			uvm_wait("plpg");
741			goto again;
742		} else
743			return (0);
744	}
745	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
746	if (__predict_false(va == 0))
747		uvm_pagefree(pg);
748	return (va);
749#else
750	vaddr_t va;
751	int s;
752
753	/*
754	 * NOTE: We may be called with a map that doens't require splvm
755	 * protection (e.g. kernel_map).  However, it does not hurt to
756	 * go to splvm in this case (since unprocted maps will never be
757	 * accessed in interrupt context).
758	 *
759	 * XXX We may want to consider changing the interface to this
760	 * XXX function.
761	 */
762
763	s = splvm();
764	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
765	splx(s);
766	return (va);
767#endif /* PMAP_MAP_POOLPAGE */
768}
769
770/*
771 * uvm_km_free_poolpage: free a previously allocated pool page
772 *
773 * => if the pmap specifies an alternate unmapping method, we use it.
774 */
775
776/* ARGSUSED */
777void
778uvm_km_free_poolpage1(map, addr)
779	struct vm_map *map;
780	vaddr_t addr;
781{
782#if defined(PMAP_UNMAP_POOLPAGE)
783	paddr_t pa;
784
785	pa = PMAP_UNMAP_POOLPAGE(addr);
786	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
787#else
788	int s;
789
790	/*
791	 * NOTE: We may be called with a map that doens't require splvm
792	 * protection (e.g. kernel_map).  However, it does not hurt to
793	 * go to splvm in this case (since unprocted maps will never be
794	 * accessed in interrupt context).
795	 *
796	 * XXX We may want to consider changing the interface to this
797	 * XXX function.
798	 */
799
800	s = splvm();
801	uvm_km_free(map, addr, PAGE_SIZE);
802	splx(s);
803#endif /* PMAP_UNMAP_POOLPAGE */
804}
805