uvm_km.c revision 1.51
1/*	$NetBSD: uvm_km.c,v 1.51 2001/09/10 21:19:42 chris Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70
71/*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75/*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps."   submaps can only appear in
83 * the kernel_map (user processes can't use them).   submaps "take over"
84 * the management of a sub-range of the kernel's address space.  submaps
85 * are typically allocated at boot time and are never released.   kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 *   kmem_map => contains only wired kernel memory for the kernel
95 *		malloc.   *** access to kmem_map must be protected
96 *		by splvm() because we are allowed to call malloc()
97 *		at interrupt time ***
98 *   mb_map => memory for large mbufs,  *** protected by splvm ***
99 *   pager_map => used to map "buf" structures into kernel space
100 *   exec_map => used during exec to handle exec args
101 *   etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die).   all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object.   the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splvm().    each of these submaps has their own private kernel
113 * object (e.g. kmem_object, mb_object).
114 *
115 * note that just because a kernel object spans the entire kernel virutal
116 * address space doesn't mean that it has to be mapped into the entire space.
117 * large chunks of a kernel object's space go unused either because
118 * that area of kernel VM is unmapped, or there is some other type of
119 * object mapped into that range (e.g. a vnode).    for submap's kernel
120 * objects, the only part of the object that can ever be populated is the
121 * offsets that are managed by the submap.
122 *
123 * note that the "offset" in a kernel object is always the kernel virtual
124 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
125 * example:
126 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
127 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
128 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
129 *   then that means that the page at offset 0x235000 in kernel_object is
130 *   mapped at 0xf8235000.
131 *
132 * note that the offsets in kmem_object and mb_object also follow this
133 * rule.   this means that the offsets for kmem_object must fall in the
134 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
135 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
136 * in those objects will typically not start at zero.
137 *
138 * kernel object have one other special property: when the kernel virtual
139 * memory mapping them is unmapped, the backing memory in the object is
140 * freed right away.   this is done with the uvm_km_pgremove() function.
141 * this has to be done because there is no backing store for kernel pages
142 * and no need to save them after they are no longer referenced.
143 */
144
145#include <sys/param.h>
146#include <sys/systm.h>
147#include <sys/proc.h>
148
149#include <uvm/uvm.h>
150
151/*
152 * global data structures
153 */
154
155struct vm_map *kernel_map = NULL;
156
157/*
158 * local data structues
159 */
160
161static struct vm_map		kernel_map_store;
162static struct uvm_object	kmem_object_store;
163static struct uvm_object	mb_object_store;
164
165/*
166 * All pager operations here are NULL, but the object must have
167 * a pager ops vector associated with it; various places assume
168 * it to be so.
169 */
170static struct uvm_pagerops	km_pager;
171
172/*
173 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
174 * KVM already allocated for text, data, bss, and static data structures).
175 *
176 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
177 *    we assume that [min -> start] has already been allocated and that
178 *    "end" is the end.
179 */
180
181void
182uvm_km_init(start, end)
183	vaddr_t start, end;
184{
185	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
186
187	/*
188	 * next, init kernel memory objects.
189	 */
190
191	/* kernel_object: for pageable anonymous kernel memory */
192	uao_init();
193	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
194				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
195
196	/*
197	 * kmem_object: for use by the kernel malloc().  Memory is always
198	 * wired, and this object (and the kmem_map) can be accessed at
199	 * interrupt time.
200	 */
201	simple_lock_init(&kmem_object_store.vmobjlock);
202	kmem_object_store.pgops = &km_pager;
203	TAILQ_INIT(&kmem_object_store.memq);
204	kmem_object_store.uo_npages = 0;
205	/* we are special.  we never die */
206	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
207	uvmexp.kmem_object = &kmem_object_store;
208
209	/*
210	 * mb_object: for mbuf cluster pages on platforms which use the
211	 * mb_map.  Memory is always wired, and this object (and the mb_map)
212	 * can be accessed at interrupt time.
213	 */
214	simple_lock_init(&mb_object_store.vmobjlock);
215	mb_object_store.pgops = &km_pager;
216	TAILQ_INIT(&mb_object_store.memq);
217	mb_object_store.uo_npages = 0;
218	/* we are special.  we never die */
219	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
220	uvmexp.mb_object = &mb_object_store;
221
222	/*
223	 * init the map and reserve allready allocated kernel space
224	 * before installing.
225	 */
226
227	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
228	kernel_map_store.pmap = pmap_kernel();
229	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
230	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
231	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
232		panic("uvm_km_init: could not reserve space for kernel");
233
234	/*
235	 * install!
236	 */
237
238	kernel_map = &kernel_map_store;
239}
240
241/*
242 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
243 * is allocated all references to that area of VM must go through it.  this
244 * allows the locking of VAs in kernel_map to be broken up into regions.
245 *
246 * => if `fixed' is true, *min specifies where the region described
247 *      by the submap must start
248 * => if submap is non NULL we use that as the submap, otherwise we
249 *	alloc a new map
250 */
251struct vm_map *
252uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
253	struct vm_map *map;
254	vaddr_t *min, *max;		/* OUT, OUT */
255	vsize_t size;
256	int flags;
257	boolean_t fixed;
258	struct vm_map *submap;
259{
260	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
261
262	size = round_page(size);	/* round up to pagesize */
263
264	/*
265	 * first allocate a blank spot in the parent map
266	 */
267
268	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
269	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
270	    UVM_ADV_RANDOM, mapflags)) != 0) {
271	       panic("uvm_km_suballoc: unable to allocate space in parent map");
272	}
273
274	/*
275	 * set VM bounds (min is filled in by uvm_map)
276	 */
277
278	*max = *min + size;
279
280	/*
281	 * add references to pmap and create or init the submap
282	 */
283
284	pmap_reference(vm_map_pmap(map));
285	if (submap == NULL) {
286		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
287		if (submap == NULL)
288			panic("uvm_km_suballoc: unable to create submap");
289	} else {
290		uvm_map_setup(submap, *min, *max, flags);
291		submap->pmap = vm_map_pmap(map);
292	}
293
294	/*
295	 * now let uvm_map_submap plug in it...
296	 */
297
298	if (uvm_map_submap(map, *min, *max, submap) != 0)
299		panic("uvm_km_suballoc: submap allocation failed");
300
301	return(submap);
302}
303
304/*
305 * uvm_km_pgremove: remove pages from a kernel uvm_object.
306 *
307 * => when you unmap a part of anonymous kernel memory you want to toss
308 *    the pages right away.    (this gets called from uvm_unmap_...).
309 */
310
311#define UKM_HASH_PENALTY 4      /* a guess */
312
313void
314uvm_km_pgremove(uobj, start, end)
315	struct uvm_object *uobj;
316	vaddr_t start, end;
317{
318	boolean_t by_list;
319	struct vm_page *pp, *ppnext;
320	vaddr_t curoff;
321	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
322
323	KASSERT(uobj->pgops == &aobj_pager);
324	simple_lock(&uobj->vmobjlock);
325
326	/* choose cheapest traversal */
327	by_list = (uobj->uo_npages <=
328	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
329
330	if (by_list)
331		goto loop_by_list;
332
333	/* by hash */
334
335	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
336		pp = uvm_pagelookup(uobj, curoff);
337		if (pp == NULL)
338			continue;
339
340		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
341		    pp->flags & PG_BUSY, 0, 0);
342
343		/* now do the actual work */
344		if (pp->flags & PG_BUSY) {
345			/* owner must check for this when done */
346			pp->flags |= PG_RELEASED;
347		} else {
348			/* free the swap slot... */
349			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
350
351			/*
352			 * ...and free the page; note it may be on the
353			 * active or inactive queues.
354			 */
355			uvm_lock_pageq();
356			uvm_pagefree(pp);
357			uvm_unlock_pageq();
358		}
359	}
360	simple_unlock(&uobj->vmobjlock);
361	return;
362
363loop_by_list:
364
365	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
366		ppnext = TAILQ_NEXT(pp, listq);
367		if (pp->offset < start || pp->offset >= end) {
368			continue;
369		}
370
371		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
372		    pp->flags & PG_BUSY, 0, 0);
373
374		if (pp->flags & PG_BUSY) {
375			/* owner must check for this when done */
376			pp->flags |= PG_RELEASED;
377		} else {
378			/* free the swap slot... */
379			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
380
381			/*
382			 * ...and free the page; note it may be on the
383			 * active or inactive queues.
384			 */
385			uvm_lock_pageq();
386			uvm_pagefree(pp);
387			uvm_unlock_pageq();
388		}
389	}
390	simple_unlock(&uobj->vmobjlock);
391}
392
393
394/*
395 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
396 *    objects
397 *
398 * => when you unmap a part of anonymous kernel memory you want to toss
399 *    the pages right away.    (this gets called from uvm_unmap_...).
400 * => none of the pages will ever be busy, and none of them will ever
401 *    be on the active or inactive queues (because these objects are
402 *    never allowed to "page").
403 */
404
405void
406uvm_km_pgremove_intrsafe(uobj, start, end)
407	struct uvm_object *uobj;
408	vaddr_t start, end;
409{
410	boolean_t by_list;
411	struct vm_page *pp, *ppnext;
412	vaddr_t curoff;
413	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
414
415	KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
416	simple_lock(&uobj->vmobjlock);		/* lock object */
417
418	/* choose cheapest traversal */
419	by_list = (uobj->uo_npages <=
420	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
421
422	if (by_list)
423		goto loop_by_list;
424
425	/* by hash */
426
427	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
428		pp = uvm_pagelookup(uobj, curoff);
429		if (pp == NULL) {
430			continue;
431		}
432
433		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
434		    pp->flags & PG_BUSY, 0, 0);
435		KASSERT((pp->flags & PG_BUSY) == 0);
436		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
437		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
438		uvm_pagefree(pp);
439	}
440	simple_unlock(&uobj->vmobjlock);
441	return;
442
443loop_by_list:
444
445	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
446		ppnext = TAILQ_NEXT(pp, listq);
447		if (pp->offset < start || pp->offset >= end) {
448			continue;
449		}
450
451		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
452		    pp->flags & PG_BUSY, 0, 0);
453		KASSERT((pp->flags & PG_BUSY) == 0);
454		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
455		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
456		uvm_pagefree(pp);
457	}
458	simple_unlock(&uobj->vmobjlock);
459}
460
461
462/*
463 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
464 *
465 * => we map wired memory into the specified map using the obj passed in
466 * => NOTE: we can return NULL even if we can wait if there is not enough
467 *	free VM space in the map... caller should be prepared to handle
468 *	this case.
469 * => we return KVA of memory allocated
470 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
471 *	lock the map
472 */
473
474vaddr_t
475uvm_km_kmemalloc(map, obj, size, flags)
476	struct vm_map *map;
477	struct uvm_object *obj;
478	vsize_t size;
479	int flags;
480{
481	vaddr_t kva, loopva;
482	vaddr_t offset;
483	vsize_t loopsize;
484	struct vm_page *pg;
485	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
486
487	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
488		    map, obj, size, flags);
489	KASSERT(vm_map_pmap(map) == pmap_kernel());
490
491	/*
492	 * setup for call
493	 */
494
495	size = round_page(size);
496	kva = vm_map_min(map);	/* hint */
497
498	/*
499	 * allocate some virtual space
500	 */
501
502	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
503	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
504			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
505			!= 0)) {
506		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
507		return(0);
508	}
509
510	/*
511	 * if all we wanted was VA, return now
512	 */
513
514	if (flags & UVM_KMF_VALLOC) {
515		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
516		return(kva);
517	}
518
519	/*
520	 * recover object offset from virtual address
521	 */
522
523	offset = kva - vm_map_min(kernel_map);
524	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
525
526	/*
527	 * now allocate and map in the memory... note that we are the only ones
528	 * whom should ever get a handle on this area of VM.
529	 */
530
531	loopva = kva;
532	loopsize = size;
533	while (loopsize) {
534		simple_lock(&obj->vmobjlock);
535		pg = uvm_pagealloc(obj, offset, NULL, 0);
536		if (__predict_true(pg != NULL)) {
537			pg->flags &= ~PG_BUSY;	/* new page */
538			UVM_PAGE_OWN(pg, NULL);
539		}
540		simple_unlock(&obj->vmobjlock);
541
542		/*
543		 * out of memory?
544		 */
545
546		if (__predict_false(pg == NULL)) {
547			if (flags & UVM_KMF_NOWAIT) {
548				/* free everything! */
549				uvm_unmap(map, kva, kva + size);
550				return(0);
551			} else {
552				uvm_wait("km_getwait2");	/* sleep here */
553				continue;
554			}
555		}
556
557		/*
558		 * map it in: note that we call pmap_enter with the map and
559		 * object unlocked in case we are kmem_map/kmem_object
560		 * (because if pmap_enter wants to allocate out of kmem_object
561		 * it will need to lock it itself!)
562		 */
563
564		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
565			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
566			    VM_PROT_ALL);
567		} else {
568			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
569			    UVM_PROT_ALL,
570			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
571		}
572		loopva += PAGE_SIZE;
573		offset += PAGE_SIZE;
574		loopsize -= PAGE_SIZE;
575	}
576
577       	pmap_update(pmap_kernel());
578
579	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
580	return(kva);
581}
582
583/*
584 * uvm_km_free: free an area of kernel memory
585 */
586
587void
588uvm_km_free(map, addr, size)
589	struct vm_map *map;
590	vaddr_t addr;
591	vsize_t size;
592{
593	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
594}
595
596/*
597 * uvm_km_free_wakeup: free an area of kernel memory and wake up
598 * anyone waiting for vm space.
599 *
600 * => XXX: "wanted" bit + unlock&wait on other end?
601 */
602
603void
604uvm_km_free_wakeup(map, addr, size)
605	struct vm_map *map;
606	vaddr_t addr;
607	vsize_t size;
608{
609	struct vm_map_entry *dead_entries;
610
611	vm_map_lock(map);
612	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
613	    &dead_entries);
614	wakeup(map);
615	vm_map_unlock(map);
616	if (dead_entries != NULL)
617		uvm_unmap_detach(dead_entries, 0);
618}
619
620/*
621 * uvm_km_alloc1: allocate wired down memory in the kernel map.
622 *
623 * => we can sleep if needed
624 */
625
626vaddr_t
627uvm_km_alloc1(map, size, zeroit)
628	struct vm_map *map;
629	vsize_t size;
630	boolean_t zeroit;
631{
632	vaddr_t kva, loopva, offset;
633	struct vm_page *pg;
634	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
635
636	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
637	KASSERT(vm_map_pmap(map) == pmap_kernel());
638
639	size = round_page(size);
640	kva = vm_map_min(map);		/* hint */
641
642	/*
643	 * allocate some virtual space
644	 */
645
646	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
647	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
648					      UVM_INH_NONE, UVM_ADV_RANDOM,
649					      0)) != 0)) {
650		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
651		return(0);
652	}
653
654	/*
655	 * recover object offset from virtual address
656	 */
657
658	offset = kva - vm_map_min(kernel_map);
659	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
660
661	/*
662	 * now allocate the memory.  we must be careful about released pages.
663	 */
664
665	loopva = kva;
666	while (size) {
667		simple_lock(&uvm.kernel_object->vmobjlock);
668		pg = uvm_pagelookup(uvm.kernel_object, offset);
669
670		/*
671		 * if we found a page in an unallocated region, it must be
672		 * released
673		 */
674		if (pg) {
675			if ((pg->flags & PG_RELEASED) == 0)
676				panic("uvm_km_alloc1: non-released page");
677			pg->flags |= PG_WANTED;
678			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
679			    FALSE, "km_alloc", 0);
680			continue;   /* retry */
681		}
682
683		/* allocate ram */
684		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
685		if (pg) {
686			pg->flags &= ~PG_BUSY;	/* new page */
687			UVM_PAGE_OWN(pg, NULL);
688		}
689		simple_unlock(&uvm.kernel_object->vmobjlock);
690		if (__predict_false(pg == NULL)) {
691			uvm_wait("km_alloc1w");	/* wait for memory */
692			continue;
693		}
694
695		/*
696		 * map it in; note we're never called with an intrsafe
697		 * object, so we always use regular old pmap_enter().
698		 */
699		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
700		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
701
702		loopva += PAGE_SIZE;
703		offset += PAGE_SIZE;
704		size -= PAGE_SIZE;
705	}
706
707	pmap_update(map->pmap);
708
709	/*
710	 * zero on request (note that "size" is now zero due to the above loop
711	 * so we need to subtract kva from loopva to reconstruct the size).
712	 */
713
714	if (zeroit)
715		memset((caddr_t)kva, 0, loopva - kva);
716
717	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
718	return(kva);
719}
720
721/*
722 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
723 *
724 * => memory is not allocated until fault time
725 */
726
727vaddr_t
728uvm_km_valloc(map, size)
729	struct vm_map *map;
730	vsize_t size;
731{
732	return(uvm_km_valloc_align(map, size, 0));
733}
734
735vaddr_t
736uvm_km_valloc_align(map, size, align)
737	struct vm_map *map;
738	vsize_t size;
739	vsize_t align;
740{
741	vaddr_t kva;
742	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
743
744	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
745	KASSERT(vm_map_pmap(map) == pmap_kernel());
746
747	size = round_page(size);
748	kva = vm_map_min(map);		/* hint */
749
750	/*
751	 * allocate some virtual space.  will be demand filled by kernel_object.
752	 */
753
754	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
755	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
756					    UVM_INH_NONE, UVM_ADV_RANDOM,
757					    0)) != 0)) {
758		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
759		return(0);
760	}
761
762	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
763	return(kva);
764}
765
766/*
767 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
768 *
769 * => memory is not allocated until fault time
770 * => if no room in map, wait for space to free, unless requested size
771 *    is larger than map (in which case we return 0)
772 */
773
774vaddr_t
775uvm_km_valloc_prefer_wait(map, size, prefer)
776	struct vm_map *map;
777	vsize_t size;
778	voff_t prefer;
779{
780	vaddr_t kva;
781	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
782
783	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
784	KASSERT(vm_map_pmap(map) == pmap_kernel());
785
786	size = round_page(size);
787	if (size > vm_map_max(map) - vm_map_min(map))
788		return(0);
789
790	while (1) {
791		kva = vm_map_min(map);		/* hint */
792
793		/*
794		 * allocate some virtual space.   will be demand filled
795		 * by kernel_object.
796		 */
797
798		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
799		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
800		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
801		    == 0)) {
802			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
803			return(kva);
804		}
805
806		/*
807		 * failed.  sleep for a while (on map)
808		 */
809
810		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
811		tsleep((caddr_t)map, PVM, "vallocwait", 0);
812	}
813	/*NOTREACHED*/
814}
815
816vaddr_t
817uvm_km_valloc_wait(map, size)
818	struct vm_map *map;
819	vsize_t size;
820{
821	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
822}
823
824/* Sanity; must specify both or none. */
825#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
826    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
827#error Must specify MAP and UNMAP together.
828#endif
829
830/*
831 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
832 *
833 * => if the pmap specifies an alternate mapping method, we use it.
834 */
835
836/* ARGSUSED */
837vaddr_t
838uvm_km_alloc_poolpage1(map, obj, waitok)
839	struct vm_map *map;
840	struct uvm_object *obj;
841	boolean_t waitok;
842{
843#if defined(PMAP_MAP_POOLPAGE)
844	struct vm_page *pg;
845	vaddr_t va;
846
847 again:
848	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
849	if (__predict_false(pg == NULL)) {
850		if (waitok) {
851			uvm_wait("plpg");
852			goto again;
853		} else
854			return (0);
855	}
856	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
857	if (__predict_false(va == 0))
858		uvm_pagefree(pg);
859	return (va);
860#else
861	vaddr_t va;
862	int s;
863
864	/*
865	 * NOTE: We may be called with a map that doens't require splvm
866	 * protection (e.g. kernel_map).  However, it does not hurt to
867	 * go to splvm in this case (since unprocted maps will never be
868	 * accessed in interrupt context).
869	 *
870	 * XXX We may want to consider changing the interface to this
871	 * XXX function.
872	 */
873
874	s = splvm();
875	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
876	splx(s);
877	return (va);
878#endif /* PMAP_MAP_POOLPAGE */
879}
880
881/*
882 * uvm_km_free_poolpage: free a previously allocated pool page
883 *
884 * => if the pmap specifies an alternate unmapping method, we use it.
885 */
886
887/* ARGSUSED */
888void
889uvm_km_free_poolpage1(map, addr)
890	struct vm_map *map;
891	vaddr_t addr;
892{
893#if defined(PMAP_UNMAP_POOLPAGE)
894	paddr_t pa;
895
896	pa = PMAP_UNMAP_POOLPAGE(addr);
897	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
898#else
899	int s;
900
901	/*
902	 * NOTE: We may be called with a map that doens't require splvm
903	 * protection (e.g. kernel_map).  However, it does not hurt to
904	 * go to splvm in this case (since unprocted maps will never be
905	 * accessed in interrupt context).
906	 *
907	 * XXX We may want to consider changing the interface to this
908	 * XXX function.
909	 */
910
911	s = splvm();
912	uvm_km_free(map, addr, PAGE_SIZE);
913	splx(s);
914#endif /* PMAP_UNMAP_POOLPAGE */
915}
916