uvm_km.c revision 1.48
1/*	$NetBSD: uvm_km.c,v 1.48 2001/05/26 16:32:47 chs Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70
71/*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75/*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps."   submaps can only appear in
83 * the kernel_map (user processes can't use them).   submaps "take over"
84 * the management of a sub-range of the kernel's address space.  submaps
85 * are typically allocated at boot time and are never released.   kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 *   kmem_map => contains only wired kernel memory for the kernel
95 *		malloc.   *** access to kmem_map must be protected
96 *		by splvm() because we are allowed to call malloc()
97 *		at interrupt time ***
98 *   mb_map => memory for large mbufs,  *** protected by splvm ***
99 *   pager_map => used to map "buf" structures into kernel space
100 *   exec_map => used during exec to handle exec args
101 *   etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die).   all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object.   the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splvm().    each of these submaps has their own private kernel
113 * object (e.g. kmem_object, mb_object).
114 *
115 * note that just because a kernel object spans the entire kernel virutal
116 * address space doesn't mean that it has to be mapped into the entire space.
117 * large chunks of a kernel object's space go unused either because
118 * that area of kernel VM is unmapped, or there is some other type of
119 * object mapped into that range (e.g. a vnode).    for submap's kernel
120 * objects, the only part of the object that can ever be populated is the
121 * offsets that are managed by the submap.
122 *
123 * note that the "offset" in a kernel object is always the kernel virtual
124 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
125 * example:
126 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
127 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
128 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
129 *   then that means that the page at offset 0x235000 in kernel_object is
130 *   mapped at 0xf8235000.
131 *
132 * note that the offsets in kmem_object and mb_object also follow this
133 * rule.   this means that the offsets for kmem_object must fall in the
134 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
135 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
136 * in those objects will typically not start at zero.
137 *
138 * kernel object have one other special property: when the kernel virtual
139 * memory mapping them is unmapped, the backing memory in the object is
140 * freed right away.   this is done with the uvm_km_pgremove() function.
141 * this has to be done because there is no backing store for kernel pages
142 * and no need to save them after they are no longer referenced.
143 */
144
145#include <sys/param.h>
146#include <sys/systm.h>
147#include <sys/proc.h>
148
149#include <uvm/uvm.h>
150
151/*
152 * global data structures
153 */
154
155vm_map_t kernel_map = NULL;
156
157struct vmi_list vmi_list;
158struct simplelock vmi_list_slock;
159
160/*
161 * local data structues
162 */
163
164static struct vm_map		kernel_map_store;
165static struct uvm_object	kmem_object_store;
166static struct uvm_object	mb_object_store;
167
168/*
169 * All pager operations here are NULL, but the object must have
170 * a pager ops vector associated with it; various places assume
171 * it to be so.
172 */
173static struct uvm_pagerops	km_pager;
174
175/*
176 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
177 * KVM already allocated for text, data, bss, and static data structures).
178 *
179 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
180 *    we assume that [min -> start] has already been allocated and that
181 *    "end" is the end.
182 */
183
184void
185uvm_km_init(start, end)
186	vaddr_t start, end;
187{
188	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
189
190	/*
191	 * first, initialize the interrupt-safe map list.
192	 */
193	LIST_INIT(&vmi_list);
194	simple_lock_init(&vmi_list_slock);
195
196	/*
197	 * next, init kernel memory objects.
198	 */
199
200	/* kernel_object: for pageable anonymous kernel memory */
201	uao_init();
202	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
203				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
204
205	/*
206	 * kmem_object: for use by the kernel malloc().  Memory is always
207	 * wired, and this object (and the kmem_map) can be accessed at
208	 * interrupt time.
209	 */
210	simple_lock_init(&kmem_object_store.vmobjlock);
211	kmem_object_store.pgops = &km_pager;
212	TAILQ_INIT(&kmem_object_store.memq);
213	kmem_object_store.uo_npages = 0;
214	/* we are special.  we never die */
215	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
216	uvmexp.kmem_object = &kmem_object_store;
217
218	/*
219	 * mb_object: for mbuf cluster pages on platforms which use the
220	 * mb_map.  Memory is always wired, and this object (and the mb_map)
221	 * can be accessed at interrupt time.
222	 */
223	simple_lock_init(&mb_object_store.vmobjlock);
224	mb_object_store.pgops = &km_pager;
225	TAILQ_INIT(&mb_object_store.memq);
226	mb_object_store.uo_npages = 0;
227	/* we are special.  we never die */
228	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
229	uvmexp.mb_object = &mb_object_store;
230
231	/*
232	 * init the map and reserve allready allocated kernel space
233	 * before installing.
234	 */
235
236	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
237	kernel_map_store.pmap = pmap_kernel();
238	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
239	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
240	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
241		panic("uvm_km_init: could not reserve space for kernel");
242
243	/*
244	 * install!
245	 */
246
247	kernel_map = &kernel_map_store;
248}
249
250/*
251 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
252 * is allocated all references to that area of VM must go through it.  this
253 * allows the locking of VAs in kernel_map to be broken up into regions.
254 *
255 * => if `fixed' is true, *min specifies where the region described
256 *      by the submap must start
257 * => if submap is non NULL we use that as the submap, otherwise we
258 *	alloc a new map
259 */
260struct vm_map *
261uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
262	struct vm_map *map;
263	vaddr_t *min, *max;		/* OUT, OUT */
264	vsize_t size;
265	int flags;
266	boolean_t fixed;
267	struct vm_map *submap;
268{
269	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
270
271	size = round_page(size);	/* round up to pagesize */
272
273	/*
274	 * first allocate a blank spot in the parent map
275	 */
276
277	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
278	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
279	    UVM_ADV_RANDOM, mapflags)) != 0) {
280	       panic("uvm_km_suballoc: unable to allocate space in parent map");
281	}
282
283	/*
284	 * set VM bounds (min is filled in by uvm_map)
285	 */
286
287	*max = *min + size;
288
289	/*
290	 * add references to pmap and create or init the submap
291	 */
292
293	pmap_reference(vm_map_pmap(map));
294	if (submap == NULL) {
295		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
296		if (submap == NULL)
297			panic("uvm_km_suballoc: unable to create submap");
298	} else {
299		uvm_map_setup(submap, *min, *max, flags);
300		submap->pmap = vm_map_pmap(map);
301	}
302
303	/*
304	 * now let uvm_map_submap plug in it...
305	 */
306
307	if (uvm_map_submap(map, *min, *max, submap) != 0)
308		panic("uvm_km_suballoc: submap allocation failed");
309
310	return(submap);
311}
312
313/*
314 * uvm_km_pgremove: remove pages from a kernel uvm_object.
315 *
316 * => when you unmap a part of anonymous kernel memory you want to toss
317 *    the pages right away.    (this gets called from uvm_unmap_...).
318 */
319
320#define UKM_HASH_PENALTY 4      /* a guess */
321
322void
323uvm_km_pgremove(uobj, start, end)
324	struct uvm_object *uobj;
325	vaddr_t start, end;
326{
327	boolean_t by_list;
328	struct vm_page *pp, *ppnext;
329	vaddr_t curoff;
330	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
331
332	KASSERT(uobj->pgops == &aobj_pager);
333	simple_lock(&uobj->vmobjlock);
334
335	/* choose cheapest traversal */
336	by_list = (uobj->uo_npages <=
337	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
338
339	if (by_list)
340		goto loop_by_list;
341
342	/* by hash */
343
344	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
345		pp = uvm_pagelookup(uobj, curoff);
346		if (pp == NULL)
347			continue;
348
349		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
350		    pp->flags & PG_BUSY, 0, 0);
351
352		/* now do the actual work */
353		if (pp->flags & PG_BUSY) {
354			/* owner must check for this when done */
355			pp->flags |= PG_RELEASED;
356		} else {
357			/* free the swap slot... */
358			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
359
360			/*
361			 * ...and free the page; note it may be on the
362			 * active or inactive queues.
363			 */
364			uvm_lock_pageq();
365			uvm_pagefree(pp);
366			uvm_unlock_pageq();
367		}
368	}
369	simple_unlock(&uobj->vmobjlock);
370	return;
371
372loop_by_list:
373
374	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
375		ppnext = TAILQ_NEXT(pp, listq);
376		if (pp->offset < start || pp->offset >= end) {
377			continue;
378		}
379
380		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
381		    pp->flags & PG_BUSY, 0, 0);
382
383		if (pp->flags & PG_BUSY) {
384			/* owner must check for this when done */
385			pp->flags |= PG_RELEASED;
386		} else {
387			/* free the swap slot... */
388			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
389
390			/*
391			 * ...and free the page; note it may be on the
392			 * active or inactive queues.
393			 */
394			uvm_lock_pageq();
395			uvm_pagefree(pp);
396			uvm_unlock_pageq();
397		}
398	}
399	simple_unlock(&uobj->vmobjlock);
400}
401
402
403/*
404 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
405 *    objects
406 *
407 * => when you unmap a part of anonymous kernel memory you want to toss
408 *    the pages right away.    (this gets called from uvm_unmap_...).
409 * => none of the pages will ever be busy, and none of them will ever
410 *    be on the active or inactive queues (because these objects are
411 *    never allowed to "page").
412 */
413
414void
415uvm_km_pgremove_intrsafe(uobj, start, end)
416	struct uvm_object *uobj;
417	vaddr_t start, end;
418{
419	boolean_t by_list;
420	struct vm_page *pp, *ppnext;
421	vaddr_t curoff;
422	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
423
424	KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
425	simple_lock(&uobj->vmobjlock);		/* lock object */
426
427	/* choose cheapest traversal */
428	by_list = (uobj->uo_npages <=
429	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
430
431	if (by_list)
432		goto loop_by_list;
433
434	/* by hash */
435
436	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
437		pp = uvm_pagelookup(uobj, curoff);
438		if (pp == NULL) {
439			continue;
440		}
441
442		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
443		    pp->flags & PG_BUSY, 0, 0);
444		KASSERT((pp->flags & PG_BUSY) == 0);
445		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
446		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
447		uvm_pagefree(pp);
448	}
449	simple_unlock(&uobj->vmobjlock);
450	return;
451
452loop_by_list:
453
454	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
455		ppnext = TAILQ_NEXT(pp, listq);
456		if (pp->offset < start || pp->offset >= end) {
457			continue;
458		}
459
460		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
461		    pp->flags & PG_BUSY, 0, 0);
462		KASSERT((pp->flags & PG_BUSY) == 0);
463		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
464		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
465		uvm_pagefree(pp);
466	}
467	simple_unlock(&uobj->vmobjlock);
468}
469
470
471/*
472 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
473 *
474 * => we map wired memory into the specified map using the obj passed in
475 * => NOTE: we can return NULL even if we can wait if there is not enough
476 *	free VM space in the map... caller should be prepared to handle
477 *	this case.
478 * => we return KVA of memory allocated
479 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
480 *	lock the map
481 */
482
483vaddr_t
484uvm_km_kmemalloc(map, obj, size, flags)
485	vm_map_t map;
486	struct uvm_object *obj;
487	vsize_t size;
488	int flags;
489{
490	vaddr_t kva, loopva;
491	vaddr_t offset;
492	vsize_t loopsize;
493	struct vm_page *pg;
494	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
495
496	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
497		    map, obj, size, flags);
498	KASSERT(vm_map_pmap(map) == pmap_kernel());
499
500	/*
501	 * setup for call
502	 */
503
504	size = round_page(size);
505	kva = vm_map_min(map);	/* hint */
506
507	/*
508	 * allocate some virtual space
509	 */
510
511	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
512	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
513			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
514			!= 0)) {
515		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
516		return(0);
517	}
518
519	/*
520	 * if all we wanted was VA, return now
521	 */
522
523	if (flags & UVM_KMF_VALLOC) {
524		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
525		return(kva);
526	}
527
528	/*
529	 * recover object offset from virtual address
530	 */
531
532	offset = kva - vm_map_min(kernel_map);
533	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
534
535	/*
536	 * now allocate and map in the memory... note that we are the only ones
537	 * whom should ever get a handle on this area of VM.
538	 */
539
540	loopva = kva;
541	loopsize = size;
542	while (loopsize) {
543		simple_lock(&obj->vmobjlock);
544		pg = uvm_pagealloc(obj, offset, NULL, 0);
545		if (__predict_true(pg != NULL)) {
546			pg->flags &= ~PG_BUSY;	/* new page */
547			UVM_PAGE_OWN(pg, NULL);
548		}
549		simple_unlock(&obj->vmobjlock);
550
551		/*
552		 * out of memory?
553		 */
554
555		if (__predict_false(pg == NULL)) {
556			if (flags & UVM_KMF_NOWAIT) {
557				/* free everything! */
558				uvm_unmap(map, kva, kva + size);
559				return(0);
560			} else {
561				uvm_wait("km_getwait2");	/* sleep here */
562				continue;
563			}
564		}
565
566		/*
567		 * map it in: note that we call pmap_enter with the map and
568		 * object unlocked in case we are kmem_map/kmem_object
569		 * (because if pmap_enter wants to allocate out of kmem_object
570		 * it will need to lock it itself!)
571		 */
572
573		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
574			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
575			    VM_PROT_ALL);
576		} else {
577			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
578			    UVM_PROT_ALL,
579			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
580		}
581		loopva += PAGE_SIZE;
582		offset += PAGE_SIZE;
583		loopsize -= PAGE_SIZE;
584	}
585	pmap_update();
586	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
587	return(kva);
588}
589
590/*
591 * uvm_km_free: free an area of kernel memory
592 */
593
594void
595uvm_km_free(map, addr, size)
596	vm_map_t map;
597	vaddr_t addr;
598	vsize_t size;
599{
600	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
601}
602
603/*
604 * uvm_km_free_wakeup: free an area of kernel memory and wake up
605 * anyone waiting for vm space.
606 *
607 * => XXX: "wanted" bit + unlock&wait on other end?
608 */
609
610void
611uvm_km_free_wakeup(map, addr, size)
612	vm_map_t map;
613	vaddr_t addr;
614	vsize_t size;
615{
616	vm_map_entry_t dead_entries;
617
618	vm_map_lock(map);
619	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
620	    &dead_entries);
621	wakeup(map);
622	vm_map_unlock(map);
623	if (dead_entries != NULL)
624		uvm_unmap_detach(dead_entries, 0);
625}
626
627/*
628 * uvm_km_alloc1: allocate wired down memory in the kernel map.
629 *
630 * => we can sleep if needed
631 */
632
633vaddr_t
634uvm_km_alloc1(map, size, zeroit)
635	vm_map_t map;
636	vsize_t size;
637	boolean_t zeroit;
638{
639	vaddr_t kva, loopva, offset;
640	struct vm_page *pg;
641	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
642
643	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
644	KASSERT(vm_map_pmap(map) == pmap_kernel());
645
646	size = round_page(size);
647	kva = vm_map_min(map);		/* hint */
648
649	/*
650	 * allocate some virtual space
651	 */
652
653	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
654	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
655					      UVM_INH_NONE, UVM_ADV_RANDOM,
656					      0)) != 0)) {
657		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
658		return(0);
659	}
660
661	/*
662	 * recover object offset from virtual address
663	 */
664
665	offset = kva - vm_map_min(kernel_map);
666	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
667
668	/*
669	 * now allocate the memory.  we must be careful about released pages.
670	 */
671
672	loopva = kva;
673	while (size) {
674		simple_lock(&uvm.kernel_object->vmobjlock);
675		pg = uvm_pagelookup(uvm.kernel_object, offset);
676
677		/*
678		 * if we found a page in an unallocated region, it must be
679		 * released
680		 */
681		if (pg) {
682			if ((pg->flags & PG_RELEASED) == 0)
683				panic("uvm_km_alloc1: non-released page");
684			pg->flags |= PG_WANTED;
685			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
686			    FALSE, "km_alloc", 0);
687			continue;   /* retry */
688		}
689
690		/* allocate ram */
691		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
692		if (pg) {
693			pg->flags &= ~PG_BUSY;	/* new page */
694			UVM_PAGE_OWN(pg, NULL);
695		}
696		simple_unlock(&uvm.kernel_object->vmobjlock);
697		if (__predict_false(pg == NULL)) {
698			uvm_wait("km_alloc1w");	/* wait for memory */
699			continue;
700		}
701
702		/*
703		 * map it in; note we're never called with an intrsafe
704		 * object, so we always use regular old pmap_enter().
705		 */
706		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
707		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
708
709		loopva += PAGE_SIZE;
710		offset += PAGE_SIZE;
711		size -= PAGE_SIZE;
712	}
713
714	pmap_update();
715
716	/*
717	 * zero on request (note that "size" is now zero due to the above loop
718	 * so we need to subtract kva from loopva to reconstruct the size).
719	 */
720
721	if (zeroit)
722		memset((caddr_t)kva, 0, loopva - kva);
723
724	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
725	return(kva);
726}
727
728/*
729 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
730 *
731 * => memory is not allocated until fault time
732 */
733
734vaddr_t
735uvm_km_valloc(map, size)
736	vm_map_t map;
737	vsize_t size;
738{
739	return(uvm_km_valloc_align(map, size, 0));
740}
741
742vaddr_t
743uvm_km_valloc_align(map, size, align)
744	vm_map_t map;
745	vsize_t size;
746	vsize_t align;
747{
748	vaddr_t kva;
749	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
750
751	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
752	KASSERT(vm_map_pmap(map) == pmap_kernel());
753
754	size = round_page(size);
755	kva = vm_map_min(map);		/* hint */
756
757	/*
758	 * allocate some virtual space.  will be demand filled by kernel_object.
759	 */
760
761	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
762	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
763					    UVM_INH_NONE, UVM_ADV_RANDOM,
764					    0)) != 0)) {
765		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
766		return(0);
767	}
768
769	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
770	return(kva);
771}
772
773/*
774 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
775 *
776 * => memory is not allocated until fault time
777 * => if no room in map, wait for space to free, unless requested size
778 *    is larger than map (in which case we return 0)
779 */
780
781vaddr_t
782uvm_km_valloc_prefer_wait(map, size, prefer)
783	vm_map_t map;
784	vsize_t size;
785	voff_t prefer;
786{
787	vaddr_t kva;
788	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
789
790	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
791	KASSERT(vm_map_pmap(map) == pmap_kernel());
792
793	size = round_page(size);
794	if (size > vm_map_max(map) - vm_map_min(map))
795		return(0);
796
797	while (1) {
798		kva = vm_map_min(map);		/* hint */
799
800		/*
801		 * allocate some virtual space.   will be demand filled
802		 * by kernel_object.
803		 */
804
805		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
806		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
807		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
808		    == 0)) {
809			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
810			return(kva);
811		}
812
813		/*
814		 * failed.  sleep for a while (on map)
815		 */
816
817		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
818		tsleep((caddr_t)map, PVM, "vallocwait", 0);
819	}
820	/*NOTREACHED*/
821}
822
823vaddr_t
824uvm_km_valloc_wait(map, size)
825	vm_map_t map;
826	vsize_t size;
827{
828	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
829}
830
831/* Sanity; must specify both or none. */
832#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
833    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
834#error Must specify MAP and UNMAP together.
835#endif
836
837/*
838 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
839 *
840 * => if the pmap specifies an alternate mapping method, we use it.
841 */
842
843/* ARGSUSED */
844vaddr_t
845uvm_km_alloc_poolpage1(map, obj, waitok)
846	vm_map_t map;
847	struct uvm_object *obj;
848	boolean_t waitok;
849{
850#if defined(PMAP_MAP_POOLPAGE)
851	struct vm_page *pg;
852	vaddr_t va;
853
854 again:
855	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
856	if (__predict_false(pg == NULL)) {
857		if (waitok) {
858			uvm_wait("plpg");
859			goto again;
860		} else
861			return (0);
862	}
863	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
864	if (__predict_false(va == 0))
865		uvm_pagefree(pg);
866	return (va);
867#else
868	vaddr_t va;
869	int s;
870
871	/*
872	 * NOTE: We may be called with a map that doens't require splvm
873	 * protection (e.g. kernel_map).  However, it does not hurt to
874	 * go to splvm in this case (since unprocted maps will never be
875	 * accessed in interrupt context).
876	 *
877	 * XXX We may want to consider changing the interface to this
878	 * XXX function.
879	 */
880
881	s = splvm();
882	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
883	splx(s);
884	return (va);
885#endif /* PMAP_MAP_POOLPAGE */
886}
887
888/*
889 * uvm_km_free_poolpage: free a previously allocated pool page
890 *
891 * => if the pmap specifies an alternate unmapping method, we use it.
892 */
893
894/* ARGSUSED */
895void
896uvm_km_free_poolpage1(map, addr)
897	vm_map_t map;
898	vaddr_t addr;
899{
900#if defined(PMAP_UNMAP_POOLPAGE)
901	paddr_t pa;
902
903	pa = PMAP_UNMAP_POOLPAGE(addr);
904	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
905#else
906	int s;
907
908	/*
909	 * NOTE: We may be called with a map that doens't require splvm
910	 * protection (e.g. kernel_map).  However, it does not hurt to
911	 * go to splvm in this case (since unprocted maps will never be
912	 * accessed in interrupt context).
913	 *
914	 * XXX We may want to consider changing the interface to this
915	 * XXX function.
916	 */
917
918	s = splvm();
919	uvm_km_free(map, addr, PAGE_SIZE);
920	splx(s);
921#endif /* PMAP_UNMAP_POOLPAGE */
922}
923