uvm_km.c revision 1.40
1/*	$NetBSD: uvm_km.c,v 1.40 2000/11/24 07:07:27 chs Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70
71/*
72 * uvm_km.c: handle kernel memory allocation and management
73 */
74
75/*
76 * overview of kernel memory management:
77 *
78 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
79 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 *
82 * the kernel_map has several "submaps."   submaps can only appear in
83 * the kernel_map (user processes can't use them).   submaps "take over"
84 * the management of a sub-range of the kernel's address space.  submaps
85 * are typically allocated at boot time and are never released.   kernel
86 * virtual address space that is mapped by a submap is locked by the
87 * submap's lock -- not the kernel_map's lock.
88 *
89 * thus, the useful feature of submaps is that they allow us to break
90 * up the locking and protection of the kernel address space into smaller
91 * chunks.
92 *
93 * the vm system has several standard kernel submaps, including:
94 *   kmem_map => contains only wired kernel memory for the kernel
95 *		malloc.   *** access to kmem_map must be protected
96 *		by splimp() because we are allowed to call malloc()
97 *		at interrupt time ***
98 *   mb_map => memory for large mbufs,  *** protected by splimp ***
99 *   pager_map => used to map "buf" structures into kernel space
100 *   exec_map => used during exec to handle exec args
101 *   etc...
102 *
103 * the kernel allocates its private memory out of special uvm_objects whose
104 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 * are "special" and never die).   all kernel objects should be thought of
106 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
107 * object is equal to the size of kernel virtual address space (i.e. the
108 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 *
110 * most kernel private memory lives in kernel_object.   the only exception
111 * to this is for memory that belongs to submaps that must be protected
112 * by splimp().    each of these submaps has their own private kernel
113 * object (e.g. kmem_object, mb_object).
114 *
115 * note that just because a kernel object spans the entire kernel virutal
116 * address space doesn't mean that it has to be mapped into the entire space.
117 * large chunks of a kernel object's space go unused either because
118 * that area of kernel VM is unmapped, or there is some other type of
119 * object mapped into that range (e.g. a vnode).    for submap's kernel
120 * objects, the only part of the object that can ever be populated is the
121 * offsets that are managed by the submap.
122 *
123 * note that the "offset" in a kernel object is always the kernel virtual
124 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
125 * example:
126 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
127 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
128 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
129 *   then that means that the page at offset 0x235000 in kernel_object is
130 *   mapped at 0xf8235000.
131 *
132 * note that the offsets in kmem_object and mb_object also follow this
133 * rule.   this means that the offsets for kmem_object must fall in the
134 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
135 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
136 * in those objects will typically not start at zero.
137 *
138 * kernel object have one other special property: when the kernel virtual
139 * memory mapping them is unmapped, the backing memory in the object is
140 * freed right away.   this is done with the uvm_km_pgremove() function.
141 * this has to be done because there is no backing store for kernel pages
142 * and no need to save them after they are no longer referenced.
143 */
144
145#include <sys/param.h>
146#include <sys/systm.h>
147#include <sys/proc.h>
148
149#include <uvm/uvm.h>
150
151/*
152 * global data structures
153 */
154
155vm_map_t kernel_map = NULL;
156
157struct vmi_list vmi_list;
158simple_lock_data_t vmi_list_slock;
159
160/*
161 * local data structues
162 */
163
164static struct vm_map		kernel_map_store;
165static struct uvm_object	kmem_object_store;
166static struct uvm_object	mb_object_store;
167
168/*
169 * All pager operations here are NULL, but the object must have
170 * a pager ops vector associated with it; various places assume
171 * it to be so.
172 */
173static struct uvm_pagerops	km_pager;
174
175/*
176 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
177 * KVM already allocated for text, data, bss, and static data structures).
178 *
179 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
180 *    we assume that [min -> start] has already been allocated and that
181 *    "end" is the end.
182 */
183
184void
185uvm_km_init(start, end)
186	vaddr_t start, end;
187{
188	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
189
190	/*
191	 * first, initialize the interrupt-safe map list.
192	 */
193	LIST_INIT(&vmi_list);
194	simple_lock_init(&vmi_list_slock);
195
196	/*
197	 * next, init kernel memory objects.
198	 */
199
200	/* kernel_object: for pageable anonymous kernel memory */
201	uao_init();
202	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
203				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
204
205	/*
206	 * kmem_object: for use by the kernel malloc().  Memory is always
207	 * wired, and this object (and the kmem_map) can be accessed at
208	 * interrupt time.
209	 */
210	simple_lock_init(&kmem_object_store.vmobjlock);
211	kmem_object_store.pgops = &km_pager;
212	TAILQ_INIT(&kmem_object_store.memq);
213	kmem_object_store.uo_npages = 0;
214	/* we are special.  we never die */
215	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
216	uvmexp.kmem_object = &kmem_object_store;
217
218	/*
219	 * mb_object: for mbuf cluster pages on platforms which use the
220	 * mb_map.  Memory is always wired, and this object (and the mb_map)
221	 * can be accessed at interrupt time.
222	 */
223	simple_lock_init(&mb_object_store.vmobjlock);
224	mb_object_store.pgops = &km_pager;
225	TAILQ_INIT(&mb_object_store.memq);
226	mb_object_store.uo_npages = 0;
227	/* we are special.  we never die */
228	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
229	uvmexp.mb_object = &mb_object_store;
230
231	/*
232	 * init the map and reserve allready allocated kernel space
233	 * before installing.
234	 */
235
236	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
237	kernel_map_store.pmap = pmap_kernel();
238	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
239	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
240	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
241		panic("uvm_km_init: could not reserve space for kernel");
242
243	/*
244	 * install!
245	 */
246
247	kernel_map = &kernel_map_store;
248}
249
250/*
251 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
252 * is allocated all references to that area of VM must go through it.  this
253 * allows the locking of VAs in kernel_map to be broken up into regions.
254 *
255 * => if `fixed' is true, *min specifies where the region described
256 *      by the submap must start
257 * => if submap is non NULL we use that as the submap, otherwise we
258 *	alloc a new map
259 */
260struct vm_map *
261uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
262	struct vm_map *map;
263	vaddr_t *min, *max;		/* OUT, OUT */
264	vsize_t size;
265	int flags;
266	boolean_t fixed;
267	struct vm_map *submap;
268{
269	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
270
271	size = round_page(size);	/* round up to pagesize */
272
273	/*
274	 * first allocate a blank spot in the parent map
275	 */
276
277	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
278	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
279	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
280	       panic("uvm_km_suballoc: unable to allocate space in parent map");
281	}
282
283	/*
284	 * set VM bounds (min is filled in by uvm_map)
285	 */
286
287	*max = *min + size;
288
289	/*
290	 * add references to pmap and create or init the submap
291	 */
292
293	pmap_reference(vm_map_pmap(map));
294	if (submap == NULL) {
295		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
296		if (submap == NULL)
297			panic("uvm_km_suballoc: unable to create submap");
298	} else {
299		uvm_map_setup(submap, *min, *max, flags);
300		submap->pmap = vm_map_pmap(map);
301	}
302
303	/*
304	 * now let uvm_map_submap plug in it...
305	 */
306
307	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
308		panic("uvm_km_suballoc: submap allocation failed");
309
310	return(submap);
311}
312
313/*
314 * uvm_km_pgremove: remove pages from a kernel uvm_object.
315 *
316 * => when you unmap a part of anonymous kernel memory you want to toss
317 *    the pages right away.    (this gets called from uvm_unmap_...).
318 */
319
320#define UKM_HASH_PENALTY 4      /* a guess */
321
322void
323uvm_km_pgremove(uobj, start, end)
324	struct uvm_object *uobj;
325	vaddr_t start, end;
326{
327	boolean_t by_list;
328	struct vm_page *pp, *ppnext;
329	vaddr_t curoff;
330	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
331
332	KASSERT(uobj->pgops == &aobj_pager);
333	simple_lock(&uobj->vmobjlock);
334
335	/* choose cheapest traversal */
336	by_list = (uobj->uo_npages <=
337	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
338
339	if (by_list)
340		goto loop_by_list;
341
342	/* by hash */
343
344	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
345		pp = uvm_pagelookup(uobj, curoff);
346		if (pp == NULL)
347			continue;
348
349		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
350		    pp->flags & PG_BUSY, 0, 0);
351
352		/* now do the actual work */
353		if (pp->flags & PG_BUSY) {
354			/* owner must check for this when done */
355			pp->flags |= PG_RELEASED;
356		} else {
357			/* free the swap slot... */
358			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
359
360			/*
361			 * ...and free the page; note it may be on the
362			 * active or inactive queues.
363			 */
364			uvm_lock_pageq();
365			uvm_pagefree(pp);
366			uvm_unlock_pageq();
367		}
368	}
369	simple_unlock(&uobj->vmobjlock);
370	return;
371
372loop_by_list:
373
374	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
375		ppnext = TAILQ_NEXT(pp, listq);
376		if (pp->offset < start || pp->offset >= end) {
377			continue;
378		}
379
380		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
381		    pp->flags & PG_BUSY, 0, 0);
382
383		if (pp->flags & PG_BUSY) {
384			/* owner must check for this when done */
385			pp->flags |= PG_RELEASED;
386		} else {
387			/* free the swap slot... */
388			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
389
390			/*
391			 * ...and free the page; note it may be on the
392			 * active or inactive queues.
393			 */
394			uvm_lock_pageq();
395			uvm_pagefree(pp);
396			uvm_unlock_pageq();
397		}
398	}
399	simple_unlock(&uobj->vmobjlock);
400}
401
402
403/*
404 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
405 *    objects
406 *
407 * => when you unmap a part of anonymous kernel memory you want to toss
408 *    the pages right away.    (this gets called from uvm_unmap_...).
409 * => none of the pages will ever be busy, and none of them will ever
410 *    be on the active or inactive queues (because these objects are
411 *    never allowed to "page").
412 */
413
414void
415uvm_km_pgremove_intrsafe(uobj, start, end)
416	struct uvm_object *uobj;
417	vaddr_t start, end;
418{
419	boolean_t by_list;
420	struct vm_page *pp, *ppnext;
421	vaddr_t curoff;
422	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
423
424	KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
425	simple_lock(&uobj->vmobjlock);		/* lock object */
426
427	/* choose cheapest traversal */
428	by_list = (uobj->uo_npages <=
429	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
430
431	if (by_list)
432		goto loop_by_list;
433
434	/* by hash */
435
436	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
437		pp = uvm_pagelookup(uobj, curoff);
438		if (pp == NULL) {
439			continue;
440		}
441
442		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
443		    pp->flags & PG_BUSY, 0, 0);
444		KASSERT((pp->flags & PG_BUSY) == 0);
445		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
446		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
447		uvm_pagefree(pp);
448	}
449	simple_unlock(&uobj->vmobjlock);
450	return;
451
452loop_by_list:
453
454	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
455		ppnext = TAILQ_NEXT(pp, listq);
456		if (pp->offset < start || pp->offset >= end) {
457			continue;
458		}
459
460		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
461		    pp->flags & PG_BUSY, 0, 0);
462		KASSERT((pp->flags & PG_BUSY) == 0);
463		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
464		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
465		uvm_pagefree(pp);
466	}
467	simple_unlock(&uobj->vmobjlock);
468}
469
470
471/*
472 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
473 *
474 * => we map wired memory into the specified map using the obj passed in
475 * => NOTE: we can return NULL even if we can wait if there is not enough
476 *	free VM space in the map... caller should be prepared to handle
477 *	this case.
478 * => we return KVA of memory allocated
479 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
480 *	lock the map
481 */
482
483vaddr_t
484uvm_km_kmemalloc(map, obj, size, flags)
485	vm_map_t map;
486	struct uvm_object *obj;
487	vsize_t size;
488	int flags;
489{
490	vaddr_t kva, loopva;
491	vaddr_t offset;
492	struct vm_page *pg;
493	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
494
495	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
496		    map, obj, size, flags);
497	KASSERT(vm_map_pmap(map) == pmap_kernel());
498
499	/*
500	 * setup for call
501	 */
502
503	size = round_page(size);
504	kva = vm_map_min(map);	/* hint */
505
506	/*
507	 * allocate some virtual space
508	 */
509
510	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
511	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
512			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
513			!= KERN_SUCCESS)) {
514		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
515		return(0);
516	}
517
518	/*
519	 * if all we wanted was VA, return now
520	 */
521
522	if (flags & UVM_KMF_VALLOC) {
523		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
524		return(kva);
525	}
526
527	/*
528	 * recover object offset from virtual address
529	 */
530
531	offset = kva - vm_map_min(kernel_map);
532	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
533
534	/*
535	 * now allocate and map in the memory... note that we are the only ones
536	 * whom should ever get a handle on this area of VM.
537	 */
538
539	loopva = kva;
540	while (size) {
541		simple_lock(&obj->vmobjlock);
542		pg = uvm_pagealloc(obj, offset, NULL, 0);
543		if (pg) {
544			pg->flags &= ~PG_BUSY;	/* new page */
545			UVM_PAGE_OWN(pg, NULL);
546		}
547		simple_unlock(&obj->vmobjlock);
548
549		/*
550		 * out of memory?
551		 */
552
553		if (__predict_false(pg == NULL)) {
554			if (flags & UVM_KMF_NOWAIT) {
555				/* free everything! */
556				uvm_unmap(map, kva, kva + size);
557				return(0);
558			} else {
559				uvm_wait("km_getwait2");	/* sleep here */
560				continue;
561			}
562		}
563
564		/*
565		 * map it in: note that we call pmap_enter with the map and
566		 * object unlocked in case we are kmem_map/kmem_object
567		 * (because if pmap_enter wants to allocate out of kmem_object
568		 * it will need to lock it itself!)
569		 */
570
571		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
572			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
573			    VM_PROT_ALL);
574		} else {
575			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
576			    UVM_PROT_ALL,
577			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
578		}
579		loopva += PAGE_SIZE;
580		offset += PAGE_SIZE;
581		size -= PAGE_SIZE;
582	}
583	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
584	return(kva);
585}
586
587/*
588 * uvm_km_free: free an area of kernel memory
589 */
590
591void
592uvm_km_free(map, addr, size)
593	vm_map_t map;
594	vaddr_t addr;
595	vsize_t size;
596{
597	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
598}
599
600/*
601 * uvm_km_free_wakeup: free an area of kernel memory and wake up
602 * anyone waiting for vm space.
603 *
604 * => XXX: "wanted" bit + unlock&wait on other end?
605 */
606
607void
608uvm_km_free_wakeup(map, addr, size)
609	vm_map_t map;
610	vaddr_t addr;
611	vsize_t size;
612{
613	vm_map_entry_t dead_entries;
614
615	vm_map_lock(map);
616	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
617			 &dead_entries);
618	wakeup(map);
619	vm_map_unlock(map);
620
621	if (dead_entries != NULL)
622		uvm_unmap_detach(dead_entries, 0);
623}
624
625/*
626 * uvm_km_alloc1: allocate wired down memory in the kernel map.
627 *
628 * => we can sleep if needed
629 */
630
631vaddr_t
632uvm_km_alloc1(map, size, zeroit)
633	vm_map_t map;
634	vsize_t size;
635	boolean_t zeroit;
636{
637	vaddr_t kva, loopva, offset;
638	struct vm_page *pg;
639	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
640
641	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
642	KASSERT(vm_map_pmap(map) == pmap_kernel());
643
644	size = round_page(size);
645	kva = vm_map_min(map);		/* hint */
646
647	/*
648	 * allocate some virtual space
649	 */
650
651	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
652	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
653					      UVM_INH_NONE, UVM_ADV_RANDOM,
654					      0)) != KERN_SUCCESS)) {
655		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
656		return(0);
657	}
658
659	/*
660	 * recover object offset from virtual address
661	 */
662
663	offset = kva - vm_map_min(kernel_map);
664	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
665
666	/*
667	 * now allocate the memory.  we must be careful about released pages.
668	 */
669
670	loopva = kva;
671	while (size) {
672		simple_lock(&uvm.kernel_object->vmobjlock);
673		pg = uvm_pagelookup(uvm.kernel_object, offset);
674
675		/*
676		 * if we found a page in an unallocated region, it must be
677		 * released
678		 */
679		if (pg) {
680			if ((pg->flags & PG_RELEASED) == 0)
681				panic("uvm_km_alloc1: non-released page");
682			pg->flags |= PG_WANTED;
683			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
684			    FALSE, "km_alloc", 0);
685			continue;   /* retry */
686		}
687
688		/* allocate ram */
689		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
690		if (pg) {
691			pg->flags &= ~PG_BUSY;	/* new page */
692			UVM_PAGE_OWN(pg, NULL);
693		}
694		simple_unlock(&uvm.kernel_object->vmobjlock);
695		if (__predict_false(pg == NULL)) {
696			uvm_wait("km_alloc1w");	/* wait for memory */
697			continue;
698		}
699
700		/*
701		 * map it in; note we're never called with an intrsafe
702		 * object, so we always use regular old pmap_enter().
703		 */
704		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
705		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
706
707		loopva += PAGE_SIZE;
708		offset += PAGE_SIZE;
709		size -= PAGE_SIZE;
710	}
711
712	/*
713	 * zero on request (note that "size" is now zero due to the above loop
714	 * so we need to subtract kva from loopva to reconstruct the size).
715	 */
716
717	if (zeroit)
718		memset((caddr_t)kva, 0, loopva - kva);
719
720	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
721	return(kva);
722}
723
724/*
725 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
726 *
727 * => memory is not allocated until fault time
728 */
729
730vaddr_t
731uvm_km_valloc(map, size)
732	vm_map_t map;
733	vsize_t size;
734{
735	vaddr_t kva;
736	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
737
738	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
739	KASSERT(vm_map_pmap(map) == pmap_kernel());
740
741	size = round_page(size);
742	kva = vm_map_min(map);		/* hint */
743
744	/*
745	 * allocate some virtual space.  will be demand filled by kernel_object.
746	 */
747
748	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
749	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
750					    UVM_INH_NONE, UVM_ADV_RANDOM,
751					    0)) != KERN_SUCCESS)) {
752		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
753		return(0);
754	}
755
756	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
757	return(kva);
758}
759
760/*
761 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
762 *
763 * => memory is not allocated until fault time
764 * => if no room in map, wait for space to free, unless requested size
765 *    is larger than map (in which case we return 0)
766 */
767
768vaddr_t
769uvm_km_valloc_prefer_wait(map, size, prefer)
770	vm_map_t map;
771	vsize_t size;
772	voff_t prefer;
773{
774	vaddr_t kva;
775	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
776
777	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
778	KASSERT(vm_map_pmap(map) == pmap_kernel());
779
780	size = round_page(size);
781	if (size > vm_map_max(map) - vm_map_min(map))
782		return(0);
783
784	while (1) {
785		kva = vm_map_min(map);		/* hint */
786
787		/*
788		 * allocate some virtual space.   will be demand filled
789		 * by kernel_object.
790		 */
791
792		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
793		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
794		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
795		    == KERN_SUCCESS)) {
796			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
797			return(kva);
798		}
799
800		/*
801		 * failed.  sleep for a while (on map)
802		 */
803
804		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
805		tsleep((caddr_t)map, PVM, "vallocwait", 0);
806	}
807	/*NOTREACHED*/
808}
809
810vaddr_t
811uvm_km_valloc_wait(map, size)
812	vm_map_t map;
813	vsize_t size;
814{
815	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
816}
817
818/* Sanity; must specify both or none. */
819#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
820    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
821#error Must specify MAP and UNMAP together.
822#endif
823
824/*
825 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
826 *
827 * => if the pmap specifies an alternate mapping method, we use it.
828 */
829
830/* ARGSUSED */
831vaddr_t
832uvm_km_alloc_poolpage1(map, obj, waitok)
833	vm_map_t map;
834	struct uvm_object *obj;
835	boolean_t waitok;
836{
837#if defined(PMAP_MAP_POOLPAGE)
838	struct vm_page *pg;
839	vaddr_t va;
840
841 again:
842	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
843	if (__predict_false(pg == NULL)) {
844		if (waitok) {
845			uvm_wait("plpg");
846			goto again;
847		} else
848			return (0);
849	}
850	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
851	if (__predict_false(va == 0))
852		uvm_pagefree(pg);
853	return (va);
854#else
855	vaddr_t va;
856	int s;
857
858	/*
859	 * NOTE: We may be called with a map that doens't require splimp
860	 * protection (e.g. kernel_map).  However, it does not hurt to
861	 * go to splimp in this case (since unprocted maps will never be
862	 * accessed in interrupt context).
863	 *
864	 * XXX We may want to consider changing the interface to this
865	 * XXX function.
866	 */
867
868	s = splimp();
869	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
870	splx(s);
871	return (va);
872#endif /* PMAP_MAP_POOLPAGE */
873}
874
875/*
876 * uvm_km_free_poolpage: free a previously allocated pool page
877 *
878 * => if the pmap specifies an alternate unmapping method, we use it.
879 */
880
881/* ARGSUSED */
882void
883uvm_km_free_poolpage1(map, addr)
884	vm_map_t map;
885	vaddr_t addr;
886{
887#if defined(PMAP_UNMAP_POOLPAGE)
888	paddr_t pa;
889
890	pa = PMAP_UNMAP_POOLPAGE(addr);
891	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
892#else
893	int s;
894
895	/*
896	 * NOTE: We may be called with a map that doens't require splimp
897	 * protection (e.g. kernel_map).  However, it does not hurt to
898	 * go to splimp in this case (since unprocted maps will never be
899	 * accessed in interrupt context).
900	 *
901	 * XXX We may want to consider changing the interface to this
902	 * XXX function.
903	 */
904
905	s = splimp();
906	uvm_km_free(map, addr, PAGE_SIZE);
907	splx(s);
908#endif /* PMAP_UNMAP_POOLPAGE */
909}
910