uvm_km.c revision 1.31
1/*	$NetBSD: uvm_km.c,v 1.31 1999/07/22 22:58:38 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69#include "opt_uvmhist.h"
70#include "opt_pmap_new.h"
71
72/*
73 * uvm_km.c: handle kernel memory allocation and management
74 */
75
76/*
77 * overview of kernel memory management:
78 *
79 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
80 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
81 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
82 *
83 * the kernel_map has several "submaps."   submaps can only appear in
84 * the kernel_map (user processes can't use them).   submaps "take over"
85 * the management of a sub-range of the kernel's address space.  submaps
86 * are typically allocated at boot time and are never released.   kernel
87 * virtual address space that is mapped by a submap is locked by the
88 * submap's lock -- not the kernel_map's lock.
89 *
90 * thus, the useful feature of submaps is that they allow us to break
91 * up the locking and protection of the kernel address space into smaller
92 * chunks.
93 *
94 * the vm system has several standard kernel submaps, including:
95 *   kmem_map => contains only wired kernel memory for the kernel
96 *		malloc.   *** access to kmem_map must be protected
97 *		by splimp() because we are allowed to call malloc()
98 *		at interrupt time ***
99 *   mb_map => memory for large mbufs,  *** protected by splimp ***
100 *   pager_map => used to map "buf" structures into kernel space
101 *   exec_map => used during exec to handle exec args
102 *   etc...
103 *
104 * the kernel allocates its private memory out of special uvm_objects whose
105 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
106 * are "special" and never die).   all kernel objects should be thought of
107 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
108 * object is equal to the size of kernel virtual address space (i.e. the
109 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
110 *
111 * most kernel private memory lives in kernel_object.   the only exception
112 * to this is for memory that belongs to submaps that must be protected
113 * by splimp().    each of these submaps has their own private kernel
114 * object (e.g. kmem_object, mb_object).
115 *
116 * note that just because a kernel object spans the entire kernel virutal
117 * address space doesn't mean that it has to be mapped into the entire space.
118 * large chunks of a kernel object's space go unused either because
119 * that area of kernel VM is unmapped, or there is some other type of
120 * object mapped into that range (e.g. a vnode).    for submap's kernel
121 * objects, the only part of the object that can ever be populated is the
122 * offsets that are managed by the submap.
123 *
124 * note that the "offset" in a kernel object is always the kernel virtual
125 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
126 * example:
127 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
128 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
129 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
130 *   then that means that the page at offset 0x235000 in kernel_object is
131 *   mapped at 0xf8235000.
132 *
133 * note that the offsets in kmem_object and mb_object also follow this
134 * rule.   this means that the offsets for kmem_object must fall in the
135 * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
136 * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
137 * in those objects will typically not start at zero.
138 *
139 * kernel object have one other special property: when the kernel virtual
140 * memory mapping them is unmapped, the backing memory in the object is
141 * freed right away.   this is done with the uvm_km_pgremove() function.
142 * this has to be done because there is no backing store for kernel pages
143 * and no need to save them after they are no longer referenced.
144 */
145
146#include <sys/param.h>
147#include <sys/systm.h>
148#include <sys/proc.h>
149
150#include <vm/vm.h>
151#include <vm/vm_page.h>
152#include <vm/vm_kern.h>
153
154#include <uvm/uvm.h>
155
156/*
157 * global data structures
158 */
159
160vm_map_t kernel_map = NULL;
161
162struct vmi_list vmi_list;
163simple_lock_data_t vmi_list_slock;
164
165/*
166 * local data structues
167 */
168
169static struct vm_map		kernel_map_store;
170static struct uvm_object	kmem_object_store;
171static struct uvm_object	mb_object_store;
172
173/*
174 * All pager operations here are NULL, but the object must have
175 * a pager ops vector associated with it; various places assume
176 * it to be so.
177 */
178static struct uvm_pagerops	km_pager;
179
180/*
181 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
182 * KVM already allocated for text, data, bss, and static data structures).
183 *
184 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
185 *    we assume that [min -> start] has already been allocated and that
186 *    "end" is the end.
187 */
188
189void
190uvm_km_init(start, end)
191	vaddr_t start, end;
192{
193	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
194
195	/*
196	 * first, initialize the interrupt-safe map list.
197	 */
198	LIST_INIT(&vmi_list);
199	simple_lock_init(&vmi_list_slock);
200
201	/*
202	 * next, init kernel memory objects.
203	 */
204
205	/* kernel_object: for pageable anonymous kernel memory */
206	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
207				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
208
209	/*
210	 * kmem_object: for use by the kernel malloc().  Memory is always
211	 * wired, and this object (and the kmem_map) can be accessed at
212	 * interrupt time.
213	 */
214	simple_lock_init(&kmem_object_store.vmobjlock);
215	kmem_object_store.pgops = &km_pager;
216	TAILQ_INIT(&kmem_object_store.memq);
217	kmem_object_store.uo_npages = 0;
218	/* we are special.  we never die */
219	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
220	uvmexp.kmem_object = &kmem_object_store;
221
222	/*
223	 * mb_object: for mbuf cluster pages on platforms which use the
224	 * mb_map.  Memory is always wired, and this object (and the mb_map)
225	 * can be accessed at interrupt time.
226	 */
227	simple_lock_init(&mb_object_store.vmobjlock);
228	mb_object_store.pgops = &km_pager;
229	TAILQ_INIT(&mb_object_store.memq);
230	mb_object_store.uo_npages = 0;
231	/* we are special.  we never die */
232	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
233	uvmexp.mb_object = &mb_object_store;
234
235	/*
236	 * init the map and reserve allready allocated kernel space
237	 * before installing.
238	 */
239
240	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
241	kernel_map_store.pmap = pmap_kernel();
242	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
243	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
244	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
245		panic("uvm_km_init: could not reserve space for kernel");
246
247	/*
248	 * install!
249	 */
250
251	kernel_map = &kernel_map_store;
252}
253
254/*
255 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
256 * is allocated all references to that area of VM must go through it.  this
257 * allows the locking of VAs in kernel_map to be broken up into regions.
258 *
259 * => if `fixed' is true, *min specifies where the region described
260 *      by the submap must start
261 * => if submap is non NULL we use that as the submap, otherwise we
262 *	alloc a new map
263 */
264struct vm_map *
265uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
266	struct vm_map *map;
267	vaddr_t *min, *max;		/* OUT, OUT */
268	vsize_t size;
269	int flags;
270	boolean_t fixed;
271	struct vm_map *submap;
272{
273	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
274
275	size = round_page(size);	/* round up to pagesize */
276
277	/*
278	 * first allocate a blank spot in the parent map
279	 */
280
281	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
282	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
283	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
284	       panic("uvm_km_suballoc: unable to allocate space in parent map");
285	}
286
287	/*
288	 * set VM bounds (min is filled in by uvm_map)
289	 */
290
291	*max = *min + size;
292
293	/*
294	 * add references to pmap and create or init the submap
295	 */
296
297	pmap_reference(vm_map_pmap(map));
298	if (submap == NULL) {
299		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
300		if (submap == NULL)
301			panic("uvm_km_suballoc: unable to create submap");
302	} else {
303		uvm_map_setup(submap, *min, *max, flags);
304		submap->pmap = vm_map_pmap(map);
305	}
306
307	/*
308	 * now let uvm_map_submap plug in it...
309	 */
310
311	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
312		panic("uvm_km_suballoc: submap allocation failed");
313
314	return(submap);
315}
316
317/*
318 * uvm_km_pgremove: remove pages from a kernel uvm_object.
319 *
320 * => when you unmap a part of anonymous kernel memory you want to toss
321 *    the pages right away.    (this gets called from uvm_unmap_...).
322 */
323
324#define UKM_HASH_PENALTY 4      /* a guess */
325
326void
327uvm_km_pgremove(uobj, start, end)
328	struct uvm_object *uobj;
329	vaddr_t start, end;
330{
331	boolean_t by_list;
332	struct vm_page *pp, *ppnext;
333	vaddr_t curoff;
334	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
335
336	simple_lock(&uobj->vmobjlock);		/* lock object */
337
338#ifdef DIAGNOSTIC
339	if (uobj->pgops != &aobj_pager)
340		panic("uvm_km_pgremove: object %p not an aobj", uobj);
341#endif
342
343	/* choose cheapest traversal */
344	by_list = (uobj->uo_npages <=
345	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
346
347	if (by_list)
348		goto loop_by_list;
349
350	/* by hash */
351
352	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
353		pp = uvm_pagelookup(uobj, curoff);
354		if (pp == NULL)
355			continue;
356
357		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
358		    pp->flags & PG_BUSY, 0, 0);
359
360		/* now do the actual work */
361		if (pp->flags & PG_BUSY) {
362			/* owner must check for this when done */
363			pp->flags |= PG_RELEASED;
364		} else {
365			/* free the swap slot... */
366			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
367
368			/*
369			 * ...and free the page; note it may be on the
370			 * active or inactive queues.
371			 */
372			uvm_lock_pageq();
373			uvm_pagefree(pp);
374			uvm_unlock_pageq();
375		}
376		/* done */
377	}
378	simple_unlock(&uobj->vmobjlock);
379	return;
380
381loop_by_list:
382
383	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
384		ppnext = pp->listq.tqe_next;
385		if (pp->offset < start || pp->offset >= end) {
386			continue;
387		}
388
389		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
390		    pp->flags & PG_BUSY, 0, 0);
391
392		/* now do the actual work */
393		if (pp->flags & PG_BUSY) {
394			/* owner must check for this when done */
395			pp->flags |= PG_RELEASED;
396		} else {
397			/* free the swap slot... */
398			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
399
400			/*
401			 * ...and free the page; note it may be on the
402			 * active or inactive queues.
403			 */
404			uvm_lock_pageq();
405			uvm_pagefree(pp);
406			uvm_unlock_pageq();
407		}
408		/* done */
409	}
410	simple_unlock(&uobj->vmobjlock);
411	return;
412}
413
414
415/*
416 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
417 *    objects
418 *
419 * => when you unmap a part of anonymous kernel memory you want to toss
420 *    the pages right away.    (this gets called from uvm_unmap_...).
421 * => none of the pages will ever be busy, and none of them will ever
422 *    be on the active or inactive queues (because these objects are
423 *    never allowed to "page").
424 */
425
426void
427uvm_km_pgremove_intrsafe(uobj, start, end)
428	struct uvm_object *uobj;
429	vaddr_t start, end;
430{
431	boolean_t by_list;
432	struct vm_page *pp, *ppnext;
433	vaddr_t curoff;
434	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
435
436	simple_lock(&uobj->vmobjlock);		/* lock object */
437
438#ifdef DIAGNOSTIC
439	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
440		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
441#endif
442
443	/* choose cheapest traversal */
444	by_list = (uobj->uo_npages <=
445	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
446
447	if (by_list)
448		goto loop_by_list;
449
450	/* by hash */
451
452	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
453		pp = uvm_pagelookup(uobj, curoff);
454		if (pp == NULL)
455			continue;
456
457		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
458		    pp->flags & PG_BUSY, 0, 0);
459#ifdef DIAGNOSTIC
460		if (pp->flags & PG_BUSY)
461			panic("uvm_km_pgremove_intrsafe: busy page");
462		if (pp->pqflags & PQ_ACTIVE)
463			panic("uvm_km_pgremove_intrsafe: active page");
464		if (pp->pqflags & PQ_INACTIVE)
465			panic("uvm_km_pgremove_intrsafe: inactive page");
466#endif
467
468		/* free the page */
469		uvm_pagefree(pp);
470	}
471	simple_unlock(&uobj->vmobjlock);
472	return;
473
474loop_by_list:
475
476	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
477		ppnext = pp->listq.tqe_next;
478		if (pp->offset < start || pp->offset >= end) {
479			continue;
480		}
481
482		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
483		    pp->flags & PG_BUSY, 0, 0);
484
485#ifdef DIAGNOSTIC
486		if (pp->flags & PG_BUSY)
487			panic("uvm_km_pgremove_intrsafe: busy page");
488		if (pp->pqflags & PQ_ACTIVE)
489			panic("uvm_km_pgremove_intrsafe: active page");
490		if (pp->pqflags & PQ_INACTIVE)
491			panic("uvm_km_pgremove_intrsafe: inactive page");
492#endif
493
494		/* free the page */
495		uvm_pagefree(pp);
496	}
497	simple_unlock(&uobj->vmobjlock);
498	return;
499}
500
501
502/*
503 * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
504 *
505 * => we map wired memory into the specified map using the obj passed in
506 * => NOTE: we can return NULL even if we can wait if there is not enough
507 *	free VM space in the map... caller should be prepared to handle
508 *	this case.
509 * => we return KVA of memory allocated
510 * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
511 *	lock the map
512 */
513
514vaddr_t
515uvm_km_kmemalloc(map, obj, size, flags)
516	vm_map_t map;
517	struct uvm_object *obj;
518	vsize_t size;
519	int flags;
520{
521	vaddr_t kva, loopva;
522	vaddr_t offset;
523	struct vm_page *pg;
524	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
525
526
527	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
528	map, obj, size, flags);
529#ifdef DIAGNOSTIC
530	/* sanity check */
531	if (vm_map_pmap(map) != pmap_kernel())
532		panic("uvm_km_kmemalloc: invalid map");
533#endif
534
535	/*
536	 * setup for call
537	 */
538
539	size = round_page(size);
540	kva = vm_map_min(map);	/* hint */
541
542	/*
543	 * allocate some virtual space
544	 */
545
546	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
547	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
548			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
549			!= KERN_SUCCESS) {
550		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
551		return(0);
552	}
553
554	/*
555	 * if all we wanted was VA, return now
556	 */
557
558	if (flags & UVM_KMF_VALLOC) {
559		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
560		return(kva);
561	}
562	/*
563	 * recover object offset from virtual address
564	 */
565
566	offset = kva - vm_map_min(kernel_map);
567	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
568
569	/*
570	 * now allocate and map in the memory... note that we are the only ones
571	 * whom should ever get a handle on this area of VM.
572	 */
573
574	loopva = kva;
575	while (size) {
576		simple_lock(&obj->vmobjlock);
577		pg = uvm_pagealloc(obj, offset, NULL, 0);
578		if (pg) {
579			pg->flags &= ~PG_BUSY;	/* new page */
580			UVM_PAGE_OWN(pg, NULL);
581		}
582		simple_unlock(&obj->vmobjlock);
583
584		/*
585		 * out of memory?
586		 */
587
588		if (pg == NULL) {
589			if (flags & UVM_KMF_NOWAIT) {
590				/* free everything! */
591				uvm_unmap(map, kva, kva + size);
592				return(0);
593			} else {
594				uvm_wait("km_getwait2");	/* sleep here */
595				continue;
596			}
597		}
598
599		/*
600		 * map it in: note that we call pmap_enter with the map and
601		 * object unlocked in case we are kmem_map/kmem_object
602		 * (because if pmap_enter wants to allocate out of kmem_object
603		 * it will need to lock it itself!)
604		 */
605		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
606#if defined(PMAP_NEW)
607			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
608			    VM_PROT_ALL);
609#else
610			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
611			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
612#endif
613		} else {
614			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
615			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
616		}
617		loopva += PAGE_SIZE;
618		offset += PAGE_SIZE;
619		size -= PAGE_SIZE;
620	}
621
622	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
623	return(kva);
624}
625
626/*
627 * uvm_km_free: free an area of kernel memory
628 */
629
630void
631uvm_km_free(map, addr, size)
632	vm_map_t map;
633	vaddr_t addr;
634	vsize_t size;
635{
636
637	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
638}
639
640/*
641 * uvm_km_free_wakeup: free an area of kernel memory and wake up
642 * anyone waiting for vm space.
643 *
644 * => XXX: "wanted" bit + unlock&wait on other end?
645 */
646
647void
648uvm_km_free_wakeup(map, addr, size)
649	vm_map_t map;
650	vaddr_t addr;
651	vsize_t size;
652{
653	vm_map_entry_t dead_entries;
654
655	vm_map_lock(map);
656	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
657			 &dead_entries);
658	wakeup(map);
659	vm_map_unlock(map);
660
661	if (dead_entries != NULL)
662		uvm_unmap_detach(dead_entries, 0);
663}
664
665/*
666 * uvm_km_alloc1: allocate wired down memory in the kernel map.
667 *
668 * => we can sleep if needed
669 */
670
671vaddr_t
672uvm_km_alloc1(map, size, zeroit)
673	vm_map_t map;
674	vsize_t size;
675	boolean_t zeroit;
676{
677	vaddr_t kva, loopva, offset;
678	struct vm_page *pg;
679	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
680
681	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
682
683#ifdef DIAGNOSTIC
684	if (vm_map_pmap(map) != pmap_kernel())
685		panic("uvm_km_alloc1");
686#endif
687
688	size = round_page(size);
689	kva = vm_map_min(map);		/* hint */
690
691	/*
692	 * allocate some virtual space
693	 */
694
695	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
696	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
697			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
698		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
699		return(0);
700	}
701
702	/*
703	 * recover object offset from virtual address
704	 */
705
706	offset = kva - vm_map_min(kernel_map);
707	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
708
709	/*
710	 * now allocate the memory.  we must be careful about released pages.
711	 */
712
713	loopva = kva;
714	while (size) {
715		simple_lock(&uvm.kernel_object->vmobjlock);
716		pg = uvm_pagelookup(uvm.kernel_object, offset);
717
718		/*
719		 * if we found a page in an unallocated region, it must be
720		 * released
721		 */
722		if (pg) {
723			if ((pg->flags & PG_RELEASED) == 0)
724				panic("uvm_km_alloc1: non-released page");
725			pg->flags |= PG_WANTED;
726			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
727			    FALSE, "km_alloc", 0);
728			continue;   /* retry */
729		}
730
731		/* allocate ram */
732		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
733		if (pg) {
734			pg->flags &= ~PG_BUSY;	/* new page */
735			UVM_PAGE_OWN(pg, NULL);
736		}
737		simple_unlock(&uvm.kernel_object->vmobjlock);
738		if (pg == NULL) {
739			uvm_wait("km_alloc1w");	/* wait for memory */
740			continue;
741		}
742
743		/*
744		 * map it in; note we're never called with an intrsafe
745		 * object, so we always use regular old pmap_enter().
746		 */
747		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
748		    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
749
750		loopva += PAGE_SIZE;
751		offset += PAGE_SIZE;
752		size -= PAGE_SIZE;
753	}
754
755	/*
756	 * zero on request (note that "size" is now zero due to the above loop
757	 * so we need to subtract kva from loopva to reconstruct the size).
758	 */
759
760	if (zeroit)
761		memset((caddr_t)kva, 0, loopva - kva);
762
763	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
764	return(kva);
765}
766
767/*
768 * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
769 *
770 * => memory is not allocated until fault time
771 */
772
773vaddr_t
774uvm_km_valloc(map, size)
775	vm_map_t map;
776	vsize_t size;
777{
778	vaddr_t kva;
779	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
780
781	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
782
783#ifdef DIAGNOSTIC
784	if (vm_map_pmap(map) != pmap_kernel())
785		panic("uvm_km_valloc");
786#endif
787
788	size = round_page(size);
789	kva = vm_map_min(map);		/* hint */
790
791	/*
792	 * allocate some virtual space.  will be demand filled by kernel_object.
793	 */
794
795	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
796	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
797	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
798		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
799		return(0);
800	}
801
802	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
803	return(kva);
804}
805
806/*
807 * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
808 *
809 * => memory is not allocated until fault time
810 * => if no room in map, wait for space to free, unless requested size
811 *    is larger than map (in which case we return 0)
812 */
813
814vaddr_t
815uvm_km_valloc_wait(map, size)
816	vm_map_t map;
817	vsize_t size;
818{
819	vaddr_t kva;
820	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
821
822	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
823
824#ifdef DIAGNOSTIC
825	if (vm_map_pmap(map) != pmap_kernel())
826		panic("uvm_km_valloc_wait");
827#endif
828
829	size = round_page(size);
830	if (size > vm_map_max(map) - vm_map_min(map))
831		return(0);
832
833	while (1) {
834		kva = vm_map_min(map);		/* hint */
835
836		/*
837		 * allocate some virtual space.   will be demand filled
838		 * by kernel_object.
839		 */
840
841		if (uvm_map(map, &kva, size, uvm.kernel_object,
842		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
843		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
844		    == KERN_SUCCESS) {
845			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
846			return(kva);
847		}
848
849		/*
850		 * failed.  sleep for a while (on map)
851		 */
852
853		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
854		tsleep((caddr_t)map, PVM, "vallocwait", 0);
855	}
856	/*NOTREACHED*/
857}
858
859/* Sanity; must specify both or none. */
860#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
861    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
862#error Must specify MAP and UNMAP together.
863#endif
864
865/*
866 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
867 *
868 * => if the pmap specifies an alternate mapping method, we use it.
869 */
870
871/* ARGSUSED */
872vaddr_t
873uvm_km_alloc_poolpage1(map, obj, waitok)
874	vm_map_t map;
875	struct uvm_object *obj;
876	boolean_t waitok;
877{
878#if defined(PMAP_MAP_POOLPAGE)
879	struct vm_page *pg;
880	vaddr_t va;
881
882 again:
883	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
884	if (pg == NULL) {
885		if (waitok) {
886			uvm_wait("plpg");
887			goto again;
888		} else
889			return (0);
890	}
891	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
892	if (va == 0)
893		uvm_pagefree(pg);
894	return (va);
895#else
896	vaddr_t va;
897	int s;
898
899	/*
900	 * NOTE: We may be called with a map that doens't require splimp
901	 * protection (e.g. kernel_map).  However, it does not hurt to
902	 * go to splimp in this case (since unprocted maps will never be
903	 * accessed in interrupt context).
904	 *
905	 * XXX We may want to consider changing the interface to this
906	 * XXX function.
907	 */
908
909	s = splimp();
910	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
911	splx(s);
912	return (va);
913#endif /* PMAP_MAP_POOLPAGE */
914}
915
916/*
917 * uvm_km_free_poolpage: free a previously allocated pool page
918 *
919 * => if the pmap specifies an alternate unmapping method, we use it.
920 */
921
922/* ARGSUSED */
923void
924uvm_km_free_poolpage1(map, addr)
925	vm_map_t map;
926	vaddr_t addr;
927{
928#if defined(PMAP_UNMAP_POOLPAGE)
929	paddr_t pa;
930
931	pa = PMAP_UNMAP_POOLPAGE(addr);
932	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
933#else
934	int s;
935
936	/*
937	 * NOTE: We may be called with a map that doens't require splimp
938	 * protection (e.g. kernel_map).  However, it does not hurt to
939	 * go to splimp in this case (since unprocted maps will never be
940	 * accessed in interrupt context).
941	 *
942	 * XXX We may want to consider changing the interface to this
943	 * XXX function.
944	 */
945
946	s = splimp();
947	uvm_km_free(map, addr, PAGE_SIZE);
948	splx(s);
949#endif /* PMAP_UNMAP_POOLPAGE */
950}
951